Master: Functional Analysis and PDE

December 2015. List 3

1) Prove that $\hat{u}(\xi) = -|\xi|^{-2}$ in \mathbb{R}^3 is a tempered distribution and satisfies $\Delta u = \delta$. Show that *u* is in fact a function in $L^{\infty} + L^2$.

2) Let $n \ge 3$ and let $E(x) = |x|^{2-n}$. Prove that:

- a) *E* is a tempered distribution.
- b) Compute ΔE whenever exists.
- c) Show that $\Delta E = \delta$ in the sense of distributions.

Recall Green's identity: If *R* is a bounded domain with smooth boundary *S* and *f* and *g* are C^1 functions on \mathbb{R} , then:

$$\int_{R} (f\Delta g - g\Delta f) dx = \int_{S} (f\delta_{\nu}g - g\delta_{\nu}f) d\sigma,$$

where δ_v is the directional derivative with respect to the outward normal vector to R.

3) Let us consider the Heat equation

$$\frac{\partial u}{\partial t} = \Delta u, \qquad t > 0, \ x \in \mathbb{R}^n.$$

a) Prove that if $P(x,t) = t^{-n/2} e^{-\frac{|x|^2}{4t}}$ then *P* satisfies the Heat equation. b) Let $P_{\varepsilon}(x,t) = \chi_{(\varepsilon,\infty)}(t)P(x,t)$. Prove that $\lim_{\varepsilon \to 0} P_{\varepsilon}$ is the fundamental solution of the Heat equation in \mathbb{R}^{n+1} .

4) Prove that if P(x,t) is as in exercise 3 with t > 0, $x \in \mathbb{R}^n$, then: a) $S'(\mathbb{R}^n) - \lim_{t \to 0} P(x,t) = 0$. b) For every $\lambda > 0$,

$$F(x,\lambda) = S'(\mathbb{R}^n) - \lim_{\varepsilon \to 0} \int_{\varepsilon}^{\infty} e^{-\lambda t} P(x,t) dt$$

is the fundamental solution of $\Delta + \lambda I$.

- **5**) a) For which $s \in \mathbb{R}$, we have that $1 \in H^{s}(\mathbb{R}^{n})$.
- b) For which $s \in \mathbb{R}$, we have that $\delta \in H^{s}(\mathbb{R}^{n})$.
- c) For which $s \in \mathbb{R}$, we have that $\chi_{[0,1]} \in H^s(\mathbb{R})$.

d) For which $s \in \mathbb{R}$, we have that $\chi_{[0,1]} \times \chi_{[0,1]} \in H^s(\mathbb{R}^2)$.

6) Prove that if $\varphi \in S(\mathbb{R}^n)$ and $f \in H^s(\mathbb{R}^n)$, then $\varphi f \in H^s(\mathbb{R}^n)$.

7) Prove, justifying all the steps, that if $f, g \in L^2(\mathbb{R})$ are such that their derivatives in the sense of distributions $f', g' \in L^2(\mathbb{R})$, then the following integration by parts formula holds

$$\int_{\mathbb{R}} fg' = -\int_{\mathbb{R}} f'g.$$

8) Given a function $f \in H^s(\mathbb{R}^n)$ prove that if f_R is such that $\hat{f}_R = \chi_{B(0,R)}\hat{f}$, then $H^2 - \lim_{R \to \infty} f_R = f$ and deduce that $C^{\infty} \cap L^2$ is dense in H^2 .