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Abstract. The purpose of this paper is to check that the square function Gα, introduced by
E. M. Stein in 1958, can be controlled by a finite sum of sparse operators when α > n+1

2
. This

provides a useful tool to obtain weighted estimates for Gα and related Fourier multipliers.

1. Introduction and main result

The object of study of this paper will be the square function Gα, defined for α > 0 as

Gαf(x) =

(∫ ∞
0

∣∣∣∣ ∂∂tBt
αf(x)

∣∣∣∣2 tdt
)1/2

,

where Bt
α is the Bochner-Riesz multiplier

B̂t
αf(ξ) =

(
1− |ξ|

2

t2

)α
+

f̂(ξ).

This function was first introduced by E. M. Stein in [24] to study L2 properties of the maximal
Bochner-Riesz operator and deduce almost everywhere convergence for Bochner-Riesz means
of Fourier integrals and series. See also [26, Chapter VII] and the detailed overview of the
topic contained in [17]. It can be easily checked that

∂

∂t
Bt
αf(x) =

2α

t

∫
Rn

|ξ|2

t2

(
1− |ξ|

2

t2

)α−1
+

f̂(ξ)e2πixξdξ,

and hence, up to a constant, we have that

Gαf(x) =

(∫ ∞
0
|Kα

t ∗ f(x)|2dt
t

)1/2

,

with K̂α
t (ξ) = |ξ|2

t2

(
1− |ξ|

2

t2

)α−1
+

. This second expression has been taken as a definition in

several references, such as [2, 11, 27]. In the last one, G. Sunouchi shows that, when α > n+1
2 ,

we have that
Gα : Lp(Rn) −→ Lp(Rn)

is bounded for every 1 < p ≤ 2 and

Gα : L1(Rn) −→ L1,∞(Rn).
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To prove it, the author relates Gα to an L2(0,∞) vector-valued Calderón-Zygmund operator
and is able to use the classical theory together with interpolation to deduce his result. How-
ever, if we want to establish weighted inequalities, it seems that the vector-valued technique in
this case does not work as cleanly. Our main result basically states that the modern approach
of pointwise domination by sparse operators, which has been so fruitful in Calderón-Zygmund
theory, can also be applied to Gα.

Theorem 1.1. Let α > n+1
2 . Then, for every Schwartz function f on Rn, |Gαf | can be

pointwise controlled by a finite sum of sparse operators {Sk}k applied to f . More precisely,

|Gαf(x)| ≤ C
3n∑
k=1

Skf(x),

for some constant C that only depends on α and the dimension n.

Despite the fact that we have not yet defined what a sparse operator is, what becomes
clear at this point is that this domination allows us to deduce for Gα all the estimates that
we know for arbitrary sparse operators (which are much easier to handle). The use of sparse
theory to obtain weighted estimates for square functions can be found in many recent papers,
such as [7, 18, 21]. However, the standard approach is to control these functions by sparse
square functions (which contain the square nature of the operator in their definition). In our
case, we rely on the Calderón-Zygmund properties of the L2(0,∞)-valued description of Gα,
and the sparse operators appearing in the domination are completely “square-free”. Some
interesting consequences of Theorem 1.1 will be presented in Section 3, but first, let us focus
on the proof of the theorem itself.

2. Proof of Theorem 1.1

For simplicity, from now on we will use the notation x . y to denote that there exists a
constant C > 0, independent of all non-fixed parameters, such that x ≤ Cy. If x . y and
y . x, we will write x ≈ y.

We will start by making the definition of sparse operators precise. For convenience, we
will follow the exposition in [22], but we also refer to [16] for a simpler and more effective
approach to sparse domination. Given a dyadic lattice of cubes in Rn, we will say that a
family of cubes S is λ-sparse, with 0 < λ < 1 if, for every Q ∈ S, there exists a measurable
subset FQ ⊆ Q such that |FQ| ≥ (1− λ)|Q| and {FQ}Q∈S are pairwise disjoint.

Definition 2.1. Given a λ-sparse family S, we define the λ-sparse operator S associated
with it by

Sf(x) =
∑
Q∈S

(
1

|Q|

∫
Q
|f |
)
χQ(x).

We will also need the following definitions of the so-called local mean oscillation:

Definition 2.2. Given a function g and a measurable set E, we define

ω(g,E) = sup
x∈E

g(x)− inf
x∈E

g(x).

Given 0 < λ < 1 and a cube Q, we also define

ωλ(g,Q) = min{ω(g,E) : E ⊆ Q, |E| ≥ (1− λ)|Q|}.
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The next theorem is the key tool that we will need for our purposes. Its proof is contained
in [22], as a consequence of a series of results therein.

Theorem 2.3. Let f be a measurable function and let g : Rn → R be such that, for every
ε > 0,

|{x ∈ [−R,R]n : |g(x)| > ε}| = o(Rn), as R→∞.
Assume that, given a dyadic cube Q and 0 < λ ≤ 2−n−2, it holds that, for some δ > 0,

(2.1) ωλ(g,Q) ≤ Cλ
∞∑
k=0

2−δk
(

1

|2k+1Q|

∫
2k+1Q

|f |
)
.

Then |g| is pointwise controlled by a sum of 3n ν-sparse operators applied to f , with ν being
a universal constant only depending on the dimension n.

Fix α = n+1
2 + δ, with δ > 0. If we define

Ttf(x) =
Kα
t ∗ f(x)√

t
,

it holds that,
Gαf(x) = ‖Ttf(x)‖L2(0,∞).

By [27], we know that Gα is of weak-type (1, 1), that is

(2.2) y|{x ∈ Rn : ‖Ttf(x)‖L2(0,∞) > y}| ≤ ‖Gα‖L1→L1,∞‖f‖L1(Rn).

Also, the author shows (see [27, Equations (3) and (4)]) that, given r > 0 and s ∈ R satisfying
r > 2|s|, it holds that

(2.3) |Kt(r + s)−Kt(r)| . min{t−
1
2
−δr−n−δ, |s| t

1
2
−δr−n−δ},

where

Kt(|x|) =
Kα
t (x)√
t
.

Taking g(x) = Gαf(x), we have that the decay assumption for g in Theorem 2.3 is trivially
satisfied (using, for instance, that Gα is of weak-type (1,1)). Hence, if we show (2.1), we
conclude that Gαf is dominated by sparse operators and, consequently, finish the proof of
Theorem 1.1. Fix a cube Q and 0 < λ ≤ 2−n−2. Let x, x′ ∈ Q. Then,

|‖Ttf(x)‖L2(0,∞) − ‖Ttf(x′)‖L2(0,∞)| ≤ ‖Ttf(x)− Ttf(x′)‖L2(0,∞)

=

∥∥∥∥∥∥Tt(fχ2knQ)(x) +
∑
k≥kn

Tt(fχ2k+1Q\2kQ)(x)− Tt(fχ2knQ)(x′)−
∑
k≥kn

Tt(fχ2k+1Q\2kQ)(x′)

∥∥∥∥∥∥
L2(0,∞)

≤ I + II,

where kn ∈ N is a dimensional constant to be chosen later,

I = ‖Tt(fχ2knQ)(x)‖L2(0,∞) + ‖Tt(fχ2knQ)(x′)‖L2(0,∞),

and after using Minkowski’s integral inequality,

II =
∑
k≥kn

∫
2k+1Q\2kQ

‖Kt(|x− y|)−Kt(|x′ − y|)‖L2(0,∞)|f(y)|dy.
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We start by studying II. Since x, x′ ∈ Q and y ∈ 2k+1Q \ 2kQ, we can set r = |x′ − y| and
observe that |x− y| = r + s, with s ∈ (−|x− x′|, |x− x′|). Therefore,

‖Kt(|x− y|)−Kt(|x′ − y|)‖2L2(0,∞) = ‖Kt(r + s)−Kt(r)‖2L2(0,∞).

Computing the L2 norm and using (2.3) with the different bounds on (0, |s|−1) and (|s|−1,∞)
respectively, we can control the previous expression by∫ |s|−1

0
|s|2t1−2δr−2n−2δdt+

∫ ∞
|s|−1

t−1−2δr−2n−2δdt ≈ |s|2δ

r2n+2δ
.

To use (2.3), we need to choose kn ∈ N so that r > 2|s| for all k ≥ kn, keeping in mind that
r = |x′ − y| ≈ 2k`(Q) and |s| ≤ |x − x′| . `(Q), where `(Q) denotes the side-length of Q.
Also, with these relations, the last quotient is essentially majorized by

`(Q)2δ

22k(n+δ)`(Q)2n+2δ
=

(
1

2k(n+δ)|Q|

)2

.

Now we go back to II and see that

II .
∑
k≥kn

∫
2k+1Q\2kQ

|f(y)|
2k(n+δ)|Q|

dy .
∑
k≥kn

2−δk
(

1

|2k+1Q|

∫
2k+1Q

|f(y)|dy
)
.

To study I, we just use (2.2) to get that if

E∗ =

{
z ∈ Q : ‖Tt(fχ2knQ)(z)‖L2(0,∞) >

2nkn‖Gα‖L1→L1,∞

λ|2knQ|

∫
2knQ

|f |
}
,

then

|E∗| ≤ ‖Gα‖L1→L1,∞
λ|2knQ|

2nkn‖Gα‖L1→L1,∞
∫
2knQ |f |

‖fχ2knQ‖L1(Rn) = λ|Q|.

So defining E = Q \ E∗, we deduce that, when x ∈ E,

‖Tt(fχ2knQ(x))‖L2(0,∞) . Cλ
1

|2knQ|

∫
2knQ

|f |,

and the size of E is controlled by

|E| ≥ |Q| − |E∗| ≥ (1− λ)|Q|.

Summing up, we have shown that there exists a measurable set E ⊆ Q such that |E| ≥
(1− λ)|Q| and satisfying that, for every x, x′ ∈ E,

|‖Ttf(x)‖L2(0,∞) − ‖Ttf(x′)‖L2(0,∞)| ≤ I + II . Cλ

∞∑
k=0

2−δk
(

1

|2k+1Q|

∫
2k+1Q

|f(y)|dy
)
.

Hence, the same bound holds for ωλ(‖Ttf(·)‖L2(0,∞), Q), which proves (2.1) and, as a conse-
quence, Theorem 1.1.
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3. Consequences and applications

For this section, we will recall some notions concerning Orlicz spaces and Muckenhoupt
weights. From now on, ϕ : [0,∞) → [0,∞) will be a Young function, that is, a convex,
increasing function such that ϕ(0) = 0 and limt→∞ ϕ(t) = ∞. From these properties, one
can deduce that its inverse ϕ−1 exists on (0,∞). Moreover, given a Young function ϕ, we
can define its complementary function ψ by

(3.1) ψ(s) = sup
t>0
{st− ϕ(t)}.

We will assume that limt→∞ ϕ(t)/t = ∞ to ensure that ψ is finite valued. Under these
conditions, ψ is also a Young function, and it can be related to the dual of the Orlicz space

ϕ(L) = {f : ϕ(|f |) ∈ L1(Rn)}.
See [13] for further details.

Also, recall that we define the Hardy-Littlewood maximal operator M by

Mf(x) = sup
Q3x

1

|Q|

∫
Q
|f(y)|dy,

where the supremum is taken over all cubes Q ⊆ Rn containing x. Now, given a Young
function ϕ as above, we can define the following variant of M :

Mϕ(L)f(x) := sup
Q3x
‖f‖ϕ(L),Q,

where

‖f‖ϕ(L),Q = inf

{
λ > 0 :

1

|Q|

∫
Q
ϕ

(
|f(x)|
λ

)
dx ≤ 1

}
is the Luxemburg norm associated with the Orlicz space ϕ(L) localized in Q. Notice that,
if ϕ(t) = t, then Mϕ(L) = M is the classical Hardy-Littlewood maximal operator, and if
ϕ1 ≤ ϕ2, then Mϕ1(L)f ≤Mϕ2(L)f

Concerning weights, recall that for 1 < p <∞, Ap is the class of weights w > 0 such that

‖w‖Ap = sup
Q⊆Rn

w(Q)

|Q|

(
w1−p′(Q)

|Q|

)p−1
<∞,

where w(Q) denotes the measure of Q with respect to w. As p decreases to 1, the condition
above strengthens to

‖w‖A1 = sup
x∈Rn

Mw(x)

w(x)
<∞,

and as p tends to ∞, the condition weakens to

‖w‖A∞ = sup
Q⊆Rn

∫
QM(wχQ)

w(Q)
.

We also recall that for 1 ≤ p <∞, ARp is the class of weights w > 0 such that

‖w‖ARp = sup
E⊆Q

|E|
|Q|

(
w(Q)

w(E)

)1/p

<∞,
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where the supremum is taken over all cubes Q and all measurable sets E ⊆ Q. This ARp class
was introduced in [12] to characterize the restricted weak-type (p, p) of the Hardy-Littlewood
maximal operator M , as follows:

(3.2) ‖MχE‖Lp,∞(w) . ‖w‖ARp w(E)1/p

While ARp may not be as well-known as the Muckenhoupt Ap class, these weights possess
some interesting properties related to extrapolation theory [4, 5]. We should mention that

ARp is strictly larger than Ap when p > 1 since, for example, the weight |x|n(p−1) ∈ ARp \Ap.

3.1. Weighted estimates for Gα. An interesting weighted estimate that we obtain as a
byproduct of Theorem 1.1 is the following:

Corollary 3.1. Let α > n+1
2 . Then, for every 1 < p <∞ and w ∈ Ap,

‖Gαf‖Lp(w) . ‖w‖
max

{
1, 1
p−1

}
Ap

‖f‖Lp(w).

It is known (see [1, Theorem 1] or the discussion in [17]) that if Gα is bounded on the
unweighted Lp(Rn) for all 1 < p < ∞, then necessarily α ≥ n+1

2 , so except for the critical

case α = n+1
2 , we cannot expect to lower the value of α in Corollary 3.1. The proof of

this corollary only relies on the fact that sparse operators satisfy this inequality. This is an
easy computation that can be carried out for p = 2 by duality and then extended to every
1 < p < ∞ by Rubio de Francia’s extrapolation [23]. This strong-type (p, p) estimate for
sparse operators became of great interest when it was shown [16, 19, 20] that it provided
a new (and much easier) proof of the celebrated A2 conjecture [8] for Calderón-Zygmund
operators.

Also in the range 1 < p <∞, we have the following restricted weak-type result. The proof
for sparse operators follows by duality using the same ideas as in [4, Theorem 4.1]), with the
obvious modifications. We include the proof for the sake of completeness.

Corollary 3.2. Let α > n+1
2 . Then, for every measurable set E, every 1 < p < ∞ and

w ∈ ARp ,

(3.3) ‖GαχE‖Lp,∞(w) . ‖w‖
p+1
ARp

w(E)1/p.

Proof. Let us consider the λ-sparse operator

Sf(x) =
∑
Q∈S

(
1

|Q|

∫
Q
|f |
)
χQ(x);

that is, for every Q ∈ S, there exists a measurable subset FQ ⊆ Q such that |FQ| ≥ (1−λ)|Q|
and {FQ}Q∈S are pairwise disjoint. By duality, let us take h ≥ 0 such that ‖h‖Lp′,1(w) = 1.

Then, using Theorem 1.1, we have to prove that, for every measurable set E,∫
Rn
SχE(x)h(x)w(x) dx . ‖w‖p+1

ARp
w(E)1/p.

Let c > 0 such that, for every y ∈ Q, there exists another cube Qy centered at y such

that Q ⊂ Qy ⊂ cQ. Then, since |Q|/|FQ| ≤ 1
1−λ , it holds that |cQ|/|FQ| ≤ cn

1−λ and thus
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w(cQ)/w(FQ) . ‖w‖p
ARp

. Hence, for every y ∈ Q,

|E ∩Q|
|Q|

∫
Q
h(x)w(x) dx . ‖w‖p

ARp

|E ∩Q|
|Q|

(
1

w(cQ)

∫
Q
h(x)w(x) dx

)
w(FQ)

. ‖w‖p
ARp

|E ∩Q|
|Q|

(
1

w(Qy)

∫
Qy

h(x)w(x) dx

)
w(FQ)

. ‖w‖p
ARp
MχE(y)M c

wh(y)w(FQ),

where

M c
wh(z) = sup

Qz

1

w(Qz)

∫
Qz

|h(x)|w(x) dx,

being Qz cubes centered at z. Consequently,

|E ∩Q|
|Q|

∫
Q
h(x)w(x) dx . ‖w‖p

ARp
inf
y∈Q

(
MχE(y)M c

wh(y)
)
w(FQ)

. ‖w‖p
ARp

∫
FQ

MχE(x)M c
wh(x)w(x) dx.

Summing in Q ∈ S and using that {FQ}Q are pairwise disjoint and (3.2), we obtain that∫
Rn
SχE(x)h(x)w(x) dx . ‖w‖p

ARp

∫
Rn
MχE(x)M c

wh(x)w(x) dx

.‖w‖p
ARp
‖MχE‖Lp′,∞(w)‖M

c
wh‖Lp,1(w) . ‖w‖

p+1
ARp

w(E)1/p,

as we wanted to prove. �

The important property of inequality (3.3) is that, unlike the one in Corollary 3.1, it can
be extrapolated down to p = 1 by means of the techniques presented in [4], and deduce the
weak-type (1,1) of Gα for A1 weights as a consequence. We also want to point out that this
estimate takes place between Banach spaces and this might be useful for applications. See
[3] for examples that illustrate how we can take advantage of this fact when dealing with
operators that can be written as averages.

In Corollary 3.4 below, we will see another approach to establish the weak-type (1,1) of Gα
for A1 weights with better constants than with the previous extrapolation argument. It will
come as a consequence of the endpoint result in Corollary 3.3, which was proved for sparse
operators in [7, Theorem 1.6]. Its original purpose was to obtain a borderline variant of the
Muckenhoupt-Wheeden inequality for Calderón-Zygmund operators. In our case, it yields
the following weak-type (1,1) estimate for Gα with respect to general weights on Rn:

Corollary 3.3. Suppose that ϕ is a Young function satisfying

Cϕ =
∞∑
k=1

1

ψ−1(22k)
<∞,

where ψ is its complementary function as in (3.1). Then, for every weight w on Rn and
every α > n+1

2 ,

‖Gαf‖L1,∞(w) . Cϕ‖f‖L1(Mϕ(L)w)
.
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For instance, if we denote

log1(x) := 1 + log+(x) and logk(x) := log1 logk−1(x), for k > 1,

one can take ϕ(t) = t log2 t(log3 t)
δ for some 1 < δ < 2 and check that

Cϕ .
1

δ − 1
.

Also, we have the following particular case if we assume that the weight is in A1:

Corollary 3.4. For every weight u ∈ A1 and every α > n+1
2 ,

‖Gαf‖L1,∞(u) . (‖u‖A1 log1 ‖u‖A∞)‖f‖L1(u).

This can be proved by taking ϕ(t) = tr for some r > 1, checking that Cϕ ≈ log1 r
′ and then

choosing a suitable r by means of the sharp Reverse Hölder property for A1 weights proved
in [9]. See also [10] for a different proof of this A1 weighted estimate for sparse operators.

3.2. Application to maximal radial multipliers. For α > 0, whenever we write
(
d
dt

)α
we will be referring to the derivative defined by

̂( d

dt

)α
h(ξ) = (−2πiξ)αĥ(ξ),

in the distributional sense if needed. In [1, Theorem 4], the author proves the following
pointwise estimate for maximal radial Fourier multipliers (see also [6] for related results in
the quasiradial setting):

Theorem 3.5. For α > 1
2 , let m : [0,∞)→∞ be a bounded function satisfying

(3.4)

∫ ∞
0

∣∣∣∣sα+1

(
d

ds

)α m(s)

s

∣∣∣∣2 dss <∞.

Then,

T ∗mf(x) . Gαf(x), a.e. x ∈ Rn,
where T ∗mf(x) = supt>0 |T tmf(x)| is the maximal operator associated with the family of mul-
tipliers {T tm}t>0 defined by

T̂ tmf(ξ) = m(t|ξ|)f̂(ξ).

Using Theorem 1.1 and its consequences, we deduce the following:

Corollary 3.6. Let α > n+1
2 and m : [0,∞) → ∞ be a bounded function satisfying (3.4).

Then T ∗m can be controlled by a finite sum of sparse operators. In particular, for every
1 < p <∞ and w ∈ Ap,

‖T ∗mf‖Lp(w) . ‖w‖
max

{
1, 1
p−1

}
Ap

‖f‖Lp(w),

and for every weight u ∈ A1,

‖T ∗mf‖L1,∞(u) . (‖u‖A1 log1 ‖u‖A∞)‖f‖L1(u).
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Weighted estimates for multipliers have also been studied in [14, 15], although the authors
deal with general multipliers satisfying a Hörmander type condition. The class of multipliers
that satisfy our assumption (3.4) can be related to the Bessel potential spaces introduced in
[25, Chapter V]. See [1, Section III] for more details on this relation and particular examples
of this class.
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