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Abstract. The purpose of this paper is to study pointwise upper bounds
for integral operators whenever some bound for the input function is
known. Applications to the cases of Hardy, Riemann-Liouville or Volterra
type operators and the Abel transform, among others, are given. The
underlying techniques are closely related to Yano’s extrapolation theory.

1. Introduction and motivation

In 1917, Radon [12] found a way of reconstructing a function from its
projections, and in 1972 G. Hounsfield was able to build the first x-ray com-
puted tomography scanner, which used the Radon transform to recover an
object from its projection data [9]. The case when the object was cylindri-
cally symmetric was originally solved by Abel in 1826 [1], using the nowadays
called Abel transform:

(1.1) Af(x) =

∫ ∞
x

f(t)t√
t2 − x2

dt.

This is the special case of the Radon transform in which all projections
are identical and hence, a single projection is enough for an exact object
reconstruction.

In many papers dealing with the Abel transform, the starting condition
on the function f is that “it decays at infinity faster than 1/t”. Obviously,
if the information that we have on the function f is just that f(t) ≤ C

t
for some constant C > 0, then we cannot say anything about Af since
A
(
1
t

)
≡ ∞. However, if we assume that the decay of f at infinity is a little

faster, namely, that there exists p0 > 1 such that, for every 1 < p ≤ p0 and
every t > 0,

(1.2) f(t) ≤ C

t
2− 1

p

,
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then Af(x) <∞ for every x > 0 and

Af(x) ≤ C
∫ ∞
x

1
√
t2 − x2t1−

1
p

dt ≤ Cx
1
p
−1

p− 1
.

Therefore, taking infimum over 1 < p ≤ p0, we get that, for every x > 0,

Af(x) ≤ C
(

1 + log+
1

x

)
.

The purpose of this paper is to prove that we can obtain the same upper
bound for Af(x), under a condition on the decay of f at infinity weaker
than (1.2).

This problem seems to be of interest even when we are dealing with inte-
gral operators of the form

(1.3) TKf(x) =

∫ ∞
0

K(x, t)f(t)dt,

with K a positive kernel. This class of operators includes

(1.4) Saf(t) =

∫ ∞
0

a(s)f(st)ds,

with a being a positive, locally integrable function. These operators were
first introduced by Braverman [4] and Lai [10] and also studied by Andersen
in [2]. In particular, they cover the cases of Hardy operators, Riemann-
Liouville, Calderón operator, Laplace and Abel transforms, among many
others.

Our general setting will be the following: let w be a positive, locally

integrable function and set W (t) =
∫ t
0 w(s)ds. We will assume that W (t) >

0, for every t > 0. Moreover, since W is increasing, it is equivalent to
a strictly increasing function and hence, we can assume without loss of
generality that W has an inverse, that we will denote by:

W (−1) : (0,W (∞)) −→ (0,∞).

Let us consider positive, measurable functions f satisfying

f(t) ≤ C

W (t)
, t ∈ (0,∞),

and an operator TK as in (1.3). Obviously, for such an f , it holds that

TKf(x) ≤ C
∫ ∞
0

K(x, t)

W (t)
dt = M(x),

and hence the function M is an upper pointwise bound for TK on that
set of functions. However, on many occasions, M ≡ ∞ and no interesting
information can be obtained without assuming some extra condition. As in
the example of the Abel transform, we will assume that M ≡ ∞ but, for
every 1 < p ≤ p0, ∫ ∞

0

K(x, t)

W (t)1/p
dt <∞.
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In fact, we will need to have some control on how this quantity blows up
when p is close to 1, so to be precise, we will assume that it can be controlled
by 1

(p−1)m . That is, there exists m > 0 such that, for every x,

(1.5) U(x) := sup
1<p≤p0

(p− 1)mp
(∫ ∞

0

K(x, t)

W (t)1/p
dt

)p
<∞.

In Section 3, we will see that this is the case of many other interesting
examples.

Since our goal is to find pointwise upper bounds, we will work with the
following normed spaces:

Definition 1.1. We say that a measurable function f ∈ B(W ) if and only
if W−1 is a pointwise upper bound for f , that is

B(W ) :=

{
f measurable : ‖f‖B(W ) = sup

t>0
f(t)W (t) <∞

}
.

We observe that if (1.5) is satisfied, then clearly, there exist positive
constants Cw, C

′
w > 0 such that∫ ∞

1

K(x, t)

W (t)
dt ≤ C ′w inf

1<p≤p0

U(x)1/p

(p− 1)m
≤ CwU(x)

(
1 + log+

1

U(x)

)m
,

but this computation fails completely whenever we are dealing with values
of the variable t close to zero. Hence, we want to find conditions on the
functions f ∈ B(W ) so that the above bound remains true for the whole
operator, that is

TKf(x) ≤ CwU(x)
(

1 + log+
1

U(x)

)m
.

For convenience, we will write log1 x = 1 + log+ x and we consider the
space

L(logL)m(w) =
{
f : ‖f‖L(logL)m(w) <∞

}
,

where

‖f‖L(logL)m(w) =

∫ ∞
0

f∗w(t)
(

log1
1

t

)m
dt.

Here, f∗w is the decreasing rearrangement with respect to w defined by

f∗w(t) = inf{s > 0 : w({x : |f(x)| > s}) ≤ t}.

As usual, the symbol f . g will indicate the existence of a constant C > 0,
independent of all parameters involved, so that f ≤ Cg. When both f . g
and g . f , we will write f ≈ g. We emphasize that our constants C may
depend on w, since w will always be fixed and is not considered a parameter.
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2. Main Results

In order to give the proof of our main theorem, we first need the following
result.

Proposition 2.1. If T is a sublinear operator such that

T : Lp(w) −→ B(U−1/p)

is bounded, for every 1 < p ≤ p0 with constant less than or equal to 1
(p−1)m ,

then

T : L(logL)m(w) −→ B(U−1m )

is bounded with

(2.1) Um(t) = U(t)
(

log1
1

U(t)

)m
.

Proof. The proof follows the standard scheme of Yano’s extrapolation the-
orem in its modern version (see [5, 6, 14]) but we include it for the sake of
completeness. Let f be a positive function satisfying ‖f‖∞ ≤ 1. Then,

sup
t>0

Tf(t)U−1/p(t) .
‖f‖Lp(w)

(p− 1)m
≤
‖f‖1/p

L1(w)

(p− 1)m
,

and hence

Tf(t) . inf
1<p≤p0

1

(p− 1)m
(
‖f‖L1(w)U(t)

)1/p
. ‖f‖L1(w)U(t)

(
log1

1

‖f‖L1(w)U(t)

)m
. ‖f‖L1(w)

(
log1

1

‖f‖L1(w)

)m
Um(t).

From here, it follows that, if ‖f‖∞ ≤ 1, then

(2.2) ‖Tf‖B(U−1
m ) . Dm(‖f‖L1(w)),

where Dm(s) = s
(
log1

1
s

)m
. Now, for a bounded function with |f | ≥

1, whenever f 6= 0, we can decompose f =
∑

n≥0 2n+1fn, where fn =

2−(n+1)fχEn and En = {2n < f ≤ 2n+1}. If we consider the distribution
function

λwf (y) =

∫
{x:|f(x)|>y}

w(x)dx,

we have that ‖fn‖L1(w) ≤ λwf (2n). With this estimate, together with the

fact that ‖fn‖∞ ≤ 1 and B(U−1m ) is a normed space, we can use (2.2) on
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every fn to conclude that

‖Tf‖B(U−1
m ) .

∞∑
n=0

2nDm(‖fn‖L1(w)) .
∞∑
n=0

2nDm(λwf (2n))

.
∫ ∞
0

Dm(λwf (y))dy = ‖f‖L(logL)m(w),

as we wanted to see. We extend this estimate to a general function (not
necessarily bounded) by a density argument. �

Remark 2.2. It is easy to see that, if f is a decreasing function, then

‖f‖L(logL)m(w) ≈
∫ ∞
0

f(t)
(

log1
1

W (t)

)m
w(t)dt.

The following result follows immediately by Hölder’s inequality:

Lemma 2.3. Let w be a positive, locally integrable function on (0,∞) and
let Pw be the generalized Hardy operator

Pwf(x) =
1

W (x)

∫ x

0
f(s)w(s)ds.

Then,

Pw : Lp(w) −→ B(W 1/p)

is bounded, with constant 1.

Now, we are ready to prove the main result of this paper, following the
ideas introduced in [7]:

Theorem 2.4. Let TK be defined as in (1.3) and satisfying (1.5). Um will
stand for the expression in (2.1). Then, for every x,

TKf(x) . ‖f‖Dm(W )Um(x),

where

‖f‖Dm(W ) = ‖f‖B(W )

+

∫ 1

0
sup
s>0

(
min

(W (s)

W (t)
, 1
)
f(s)

)(
log1

1

W (t)

)m−1
w(t)dt.

Proof. By (1.5), we have that

TK : B(W 1/p) −→ B(U−1/p)

with constant less than or equal to (p − 1)−m and hence, by the previous
lemma,

TK ◦ Pw : Lp(w) −→ B(U−1/p),

is bounded, with the same behavior of the constant. Then, applying Propo-
sition 2.1, we obtain that

TK ◦ Pw : L(logL)m(w) −→ B(U−1m )
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is bounded. Now, since for t small enough, t ≤ δ < 1,(
log1

1

W (t)

)m
≈
∫ 1

t

(
log1

1

W (s)

)m−1 w(s)

W (s)
ds,

we have that∫ δ

0
g(t)

(
log1

1

W (t)

)m
w(t)dt .

∫ 1

0
Pwg(t)

(
log1

1

W (t)

)m−1
w(t)dt.

Therefore, by Remark 2.2, if g is decreasing,

sup
t>0

TK(Pwg)(t)

Um(t)
.
∫ ∞
0

g(t)
(

log1
1

W (t)

)m
w(t)dt(2.3)

. ‖g‖L1(w) +

∫ δ

0
g(t)

(
log1

1

W (t)

)m
w(t)dt

. ‖Pwg‖B(W ) +

∫ 1

0
Pwg(t)

(
log1

1

W (t)

)m−1
w(t)dt.

Let us now assume that f ∈ B(W ) is a decreasing function satisfying∫ 1

0

sups≤tW (s)f(s)

W (t)

(
log1

1

W (t)

)m−1
w(t)dt <∞.

Set H(t) = sups≤tW (s)f(s). With this definition, H is an increasing

function such that H(0) = 0 and H(t)
W (t) is decreasing, so we have that

H
(
W (−1)(t)

)
is quasi-concave on (0,W (∞)). It is known (see [3, Chap-

ter 2]) that in this case, there exists h decreasing such that H
(
W (−1)(t)

)
≈∫ t

0 h(s)ds, with equivalence constant 2, so by a change of variables, there
exists g decreasing such that

1

2
H(t) ≤

∫ t

0
g(s)w(s)ds ≤ 2H(t).

On the other hand,

f(t) ≤ H(t)

W (t)
≈
∫ t
0 g(s)w(s)ds

W (t)
= Pwg(t),

and thus

TKf(t) . TK(Pwg)(t).

Therefore, using (2.3)

sup
t>0

TKf(t)

Um(t)
. sup

t>0

TK(Pwg)(t)

Um(t)

. ‖Pwg‖B(W ) +

∫ 1

0
Pwg(t)

(
log1

1

W (t)

)m−1
w(t)dt.
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Since

‖Pwg‖B(W ) = sup
t>0

W (t)

∫ t
0 g(s)w(s)ds

W (t)
≈ sup

t>0
H(t) = ‖f‖B(W ),

and

Pwg(t) ≈
sups≤tW (s)f(s)

W (t)
,

we obtain that, for every decreasing function f ∈ B(W ),

sup
t>0

TKf(t)

Um(t)
. ‖f‖B(W )(2.4)

+

∫ 1

0

sups≤tW (s)f(s)

W (t)

(
log1

1

W (t)

)m−1
w(t)dt.

Finally, if we take a general function f ∈ B(W ), we can consider its
least decreasing majorant F (t) = supr≥t f(r). We have that F ∈ B(W ) is
decreasing and f ≤ F . Hence, TKf(x) ≤ TKF (x) and the result follows
immediately applying (2.4) to the function F , since

‖F‖B(W ) = sup
t>0

F (t)W (t) = sup
t>0

sup
r≥t

f(r)W (t) = sup
t>0

f(t)W (t) = ‖f‖B(W ),

and

sups≤tW (s)F (s)

W (t)
=

sups≤tW (s) supr≥s f(r)

W (t)
=

supr>0 f(r)W (min(t, r))

W (t)

=
max

(
sups≤t f(s)W (s),W (t) sups≥t f(t)

)
W (t)

= sup
s>0

(
min

(
W (s)

W (t)
, 1

)
f(s)

)
.

�

Notice that the natural setting for Theorem 2.4 is that of decreasing
functions, and we just extend it to general functions by considering their
least decreasing majorants. In fact, if f is itself decreasing, the expression
for ‖f‖Dm(W ) can be written in a simpler way. The next corollary is just the
result that we get in this setting and corresponds to the estimate in (2.4):

Corollary 2.5. Under the hypotheses of Theorem 2.4 we have that, for
every decreasing function f ,

TKf(x) . ‖f‖Dm(W )Um(x),

where

‖f‖Dm(W ) = ‖f‖B(W ) +

∫ 1

0

sups≤tW (s)f(s)

W (t)

(
log1

1

W (t)

)m−1
w(t)dt.

Finally, the following corollary gives a bound for the iterative operator of
order n ∈ N, TnKf = TK(Tn−1K f):
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Corollary 2.6. Assume that TK satisfies (1.5), with U ≈ W−1. Then, for
every n ∈ N, we have that

TnKf(x) . ‖f‖Dnm(W )
1

W (x)
(log1W (x))nm .

Proof. Since TK satisfies (1.5), with U ≈W−1, we have that

TK : B(W 1/p) −→ B(W 1/p),

with constant less than or equal to (p− 1)−m, so we can iterate to conclude
that the same holds for TnK , with constant controlled by (p − 1)−nm. The
proof now follows as in Theorem 2.4. �

3. Examples and applications

In this section, we will use Theorem 2.4 on some interesting examples.
Obviously, if one is only interested in decreasing functions, all the conditions
can be written as in Corollary 2.5 instead.

(I) The Abel transform: Let us start by solving the initial question about
the Abel transform.

Corollary 3.1. If a positive measurable function f(t) . 1/t satisfies that

(3.1)

∫ ∞
1

sup
y

(f(y)ymin(y, t))
dt

t2
<∞

then, for every x > 0,

Af(x) . log1
1

x
.

Remark 3.2. Before giving the proof, we should emphasize the fact that it
is very easy to verify that condition (3.1) is weaker than (1.2).

Proof. First of all, making a change of variables, it is immediate to see that,
if g(s) = f(1s ) 1

s2
and

TKg(x) =

∫ x

0

g(s)√
x2 − s2

ds,

then, for every x > 0,

(3.2) Af(x) =
1

x
TKg

(1

x

)
.

On the other hand, we have that

sup
1<p≤2

(p− 1)p
(∫ x

0

1√
x2 − s2s1/p

ds

)p
≈ 1

x
<∞,

and therefore, applying Theorem 2.4, we get

TKg(x) .
log1 x

x
,



POINTWISE BOUNDS FOR INTEGRAL OPERATORS 9

whenever g ∈ B(W ) with W (t) = t and∫ 1

0
sup
s>0

(
g(s) min

(s
t
, 1
))

dt <∞.

The result now follows rewriting this condition in terms of f and using
(3.2). �

(II) The Riemann-Liouville operator: Given α > 0, let us consider the
operator

Rαf(x) =

∫ x

0
f(t)(x− t)α−1dt.

Then, making the change of variables y = t
x , we have that

Rαf(x) = xα
∫ 1

0
(1− y)α−1f(yx)dy := xαIαf(x),

and hence

sup
1<p≤2

(p− 1)p
(
Iα

( 1

y1/p

)
(x)

)p
.

1

x
.

Consequently, if we take W (t) = t and U(t) = 1
t , we have that Iα is under

the hypotheses of Theorem 2.4 and therefore

Iαf(x) .
log1 x

x
,

whenever f(t) . 1/t and satisfies that∫ 1

0
sup
s>0

(
min

(s
t
, 1
)
f(s)

)
dt <∞.

Hence, under these conditions on f , it holds that, for every x > 0,

Rαf(x) . xα−1(log1 x).

(III) Iterative operators: Observe that in the two previous examples,
the function U coincides with W−1, and hence we can apply Corollary 2.6
to obtain the following:

(III.1) For every n ∈ N and every positive measurable function f(t) . 1/t
such that ∫ ∞

1
sup
y

(f(y)ymin(y, t)) (log1 t)
n−1 dt

t2
<∞,

it holds that, for every x > 0,

Anf(x) .
(

log1
1

x

)n
.
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(III.2) For every n ∈ N and every positive measurable function f(t) . 1/t
such that ∫ 1

0
sup
s>0

(
min

(s
t
, 1
)
f(s)

)(
log1

1

t

)n−1
dt <∞,

it holds that, for every x > 0,

Rnαf(x) . xα−1(log1 x)n.

(IV) Braverman-Lai’s operators: Let us now consider the operator Sa
defined in (1.4) and let us assume the following: there exist an increasing
function D ≥ 0, with D(t) = 0 if and only if t = 0, and a function E so
that, for some m > 0 and every 1 < p ≤ p0,

(3.3)

∫ ∞
0

(
sup
t>0

E(t)

D(st)

)1/p

a(s)ds .
1

(p− 1)m
.

Then, one can immediately see that, for every t > 0,∫ ∞
0

a(s)

D(st)1/p
ds .

1

(p− 1)mE(t)1/p
,

and hence, (1.5) holds with W = D and U . E−1. A direct consequence of
Theorem 2.4 is the following:

Corollary 3.3. If (3.3) holds, then, for every f ∈ B(D) satisfying∫ 1

0
sup
s>0

(
min

(
D(s)

D(t)
, 1

)
f(s)

)(
log1

1

D(t)

)m−1
dD(t) <∞,

we have that

Saf(x) .
1

E(x)
(log1E(x))m.

Remark 3.4. In the simplest case, when a(s) = χ(0,1)(s), the operator

Saf(t) = Sf(t) = 1
t

∫ t
0 f(s)ds is the Hardy operator and we obtain that if

D(t) = E(t) = t, we can take m = 1 to conclude that

Saf(t) .
log1 t

t
,

whenever f(t) . 1/t and∫ 1

0
sup
s>0

(
min

(s
t
, 1
)
f(s)

)
dt <∞.

By taking a function f such that f(t) = 1
t , whenever t > 1, we see that the

pointwise bound cannot be improved. However, in this particular example,
in order to get that pointwise bound, it is possible to weaken the condition
on the function near 0 by simply assuming that f ∈ L1(0, 1).
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(V) Other applications: In Theorem 2.4, the condition that we require
on f is that its least decreasing majorant F satisfies ‖F‖Dm(W ) < ∞. To
finish this section, we will present two more versions of our main result in
which the role of F is played by the decreasing rearrangement f∗ and the
level function f◦, respectively.

Assume that K(x, t) is decreasing in t. Then, by Hardy’s inequality [3,
Theorem 2.2], we have that, for every function f ,

TKf(x) =

∫ ∞
0

K(x, t)f(t)dt ≤
∫ ∞
0

K(x, t)f∗(t)dt = TK(f∗)(x),

so we can apply Corollary 2.5 to f∗ and write the following result:

Corollary 3.5. Under the hypotheses of Theorem 2.4 if, for every x > 0,
K(x, t) is decreasing in t ∈ (0,∞), then

TKf(x) . ‖f∗‖Dm(W )Um(x).

Similarly, assume now that we have a Volterra operator

VKf(x) =

∫ x

0
K(x, t)f(t)dt,

with K(x, t) decreasing in t ∈ (0, x). In [11], the authors show that, for
every bounded function f ≥ 0 with compact support in (0,∞), it holds that

VKf(x) ≤ VK(f◦)(x),

where f◦ is a decreasing function associated with f called the Halperin level
function (see [8, 13]). Therefore, this estimate together with Corollary 2.5
and Fatou’s lemma yield:

Corollary 3.6. Under the hypotheses of Theorem 2.4, if K(x, t) is decreas-
ing in t ∈ (0, x) for every x > 0, then

VKf(x) . ‖f◦‖Dm(W )Um(x).

4. Generalization to sublinear operators

Although our motivation has been to study integral operators with posi-
tive kernels, our main result can be extended to more general operators as
follows:

Theorem 4.1. Let T be a sublinear operator such that, for every x

U(x) := sup
1<p≤p0

sup
‖f‖

B(W1/p)
≤1

(p− 1)pmTf(x)p <∞.

Then, we have that

Tf(x) . ‖f‖Dm(W )Um(x).

In the proof of Theorem 2.4, we make use of the fact that the operators
TK are monotone. Since now we do not have this property on T , we will
need to introduce auxiliary functions κ and ρ to get around this problem.



12 M. J. CARRO AND C. DOMINGO-SALAZAR

Proof. We will follow the proof of Theorem 2.4. Let κ be an arbitrary
function with ‖κ‖∞ ≤ 2. Define

Tκf := T (κf).

By our assumption, it is easy to check that, for every 1 < p ≤ p0,

Tκ : B(W 1/p) −→ B(U−1/p),

with constant controlled by (p − 1)−m. As before, we get that, for every
function ‖κ‖∞ ≤ 2 and every g decreasing,

(4.1) sup
t>0

Tκ(Pwg)(t)

Um(t)
. ‖Pwg‖B(W ) +

∫ 1

0
Pwg(t)

(
log1

1

W (t)

)m−1
w(t)dt.

Let us now assume that f ∈ B(W ) is a decreasing function satisfying that∫ 1

0

sups≤tW (s)f(s)

W (t)

(
log1

1

W (t)

)m−1
w(t)dt <∞.

If H(t) = sups≤tW (s)f(s), we have the existence of a decreasing function g
such that

1

2
H(t) ≤

∫ t

0
g(s)w(s)ds ≤ 2H(t).

With this,

f(t) ≤ H(t)

W (t)
≤

2
∫ t
0 g(s)w(s)ds

W (t)
= 2Pwg(t),

so we can write, for some ‖κ‖∞ ≤ 2,

f(t) = κ(t)Pwg(t).

Therefore, for every function ρ with ‖ρ‖∞ ≤ 1, we can use (4.1) with
‖κρ‖∞ ≤ 2 to show that

sup
t>0

T (ρf)(t)

Um(t)
= sup

t>0

Tκρ(Pwg)(t)

Um(t)
(4.2)

. ‖Pwg‖B(W ) +

∫ 1

0
Pwg(t)

(
log1

1

W (t)

)m−1
w(t)dt

≈ ‖f‖B(W ) +

∫ 1

0

sups≤tW (s)f(s)

W (t)

(
log1

1

W (t)

)m−1
w(t)dt.

Choosing ρ ≡ 1, we finish the proof in the decreasing case. For a gen-
eral function f ∈ B(W ), we consider its least decreasing majorant F (t) =
supr≥t f(r), which lies in B(W ) and satisfies f ≤ F . Hence, we write
Tf(x) = T (ρF )(x) for some ‖ρ‖∞ ≤ 1, and the result follows immediately
applying (4.2) together with

‖F‖B(W ) = ‖f‖B(W )

and
sups≤tW (s)F (s)

W (t)
= sup

s>0

(
min

(W (s)

W (t)
, 1
)
f(s)

)
.
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