Invariant subspaces for the shift operator

Invariant subspaces for the shift operator

Carlos Domingo Salazar

18/01/2012 22/03/2012

Invariant subspaces for the shift operator

Preliminaries

- Hardy spaces
- Inner and outer functions
- Invariant subspaces

2 Beurling's theorem

- The main result
- Some consequences

Contents

Preliminaries

- Hardy spaces
- Inner and outer functions
- Invariant subspaces

- The main result
- Some consequences

Contents

Preliminaries

- Hardy spaces
- Inner and outer functions
- Invariant subspaces

- The main result
- Some consequences

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 - のへで

Hardy spaces

Definition (Hardy spaces)

Let $1 \leq p < \infty$. We define the space H^p by

$$H^{p} = \left\{ f \in \mathcal{H}(\mathbb{D}) : \|f\|_{H^{p}}^{p} := \sup_{0 < r < 1} \frac{1}{2\pi} \int_{0}^{2\pi} |f(re^{it})|^{p} dt < \infty \right\}.$$

We also define

$$H^{\infty} = \left\{ f \in \mathcal{H}(\mathbb{D}) : \|f\|_{\infty} = \sup_{z \in \mathbb{D}} |f(z)| < \infty \right\}.$$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 - のへで

Hardy spaces

The following result connects H^p -spaces to L^p -spaces:

Theorem $(H^p \subseteq L^p(\mathbb{T}))$

Let $1 \leq p \leq \infty$. A function f belongs to H^p if, and only if, it is the Poisson integral of some $g \in L^p(\mathbb{T})$ whose Fourier coefficients satisfy

$$\hat{g}(k) = \frac{1}{2\pi} \int_0^{2\pi} g(e^{it}) e^{-ikt} dt = 0 \qquad \forall k < 0.$$

Moreover,

$$g(e^{it}) = \lim_{r \to 1^-} f(re^{it})$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ り へ ()

exists for almost every $0 \le t < 2\pi$, and $\|g\|_{L^p(\mathbb{T})} = \|f\|_{H^p}$.

Hardy spaces

The following result connects H^p -spaces to L^p -spaces:

Theorem $(H^p \subseteq L^p(\mathbb{T}))$

Let $1 \leq p \leq \infty$. A function f belongs to H^p if, and only if, it is the Poisson integral of some $g \in L^p(\mathbb{T})$ whose Fourier coefficients satisfy

$$\hat{g}(k) = \frac{1}{2\pi} \int_0^{2\pi} g(e^{it}) e^{-ikt} dt = 0 \qquad \forall k < 0.$$

Moreover,

$$g(e^{it}) = \lim_{r \to 1^-} f(re^{it})$$

exists for almost every $0 \le t < 2\pi$, and $\|g\|_{L^p(\mathbb{T})} = \|f\|_{H^p}$.

With this result, for all $1 \le p \le \infty$, the Hardy space H^p can be interpreted as a subspace of $L^p(\mathbb{T})$,

$$H^{p} = \{ f \in L^{p}(\mathbb{T}) : \hat{f}(k) = 0, \ \forall k < 0 \}.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ り へ ()

Hardy spaces

Proposition $(H^2 \leftrightarrow \ell^2)$

Let
$$f(z) = \sum_{n=0}^{\infty} a_n z^n \in \mathcal{H}(\mathbb{D})$$
. Then,
 $f \in H^2 \iff \{a_n\}_n \in \mathbb{N}$

 ℓ^2 .

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Moreover, we have that $||f||_{H^2} = ||\{a_n\}_n||_2$.

Hardy spaces

Proposition $(H^2 \leftrightarrow \ell^2)$

Let
$$f(z) = \sum_{n=0}^{\infty} a_n z^n \in \mathcal{H}(\mathbb{D}).$$
 Then,

$$f \in H^2 \iff \{a_n\}_n \in \ell^2.$$

Moreover, we have that $||f||_{H^2} = ||\{a_n\}_n||_2$.

As a consequence, we have that H^2 is isometrically isomorphic to ℓ^2 (thus, it is a Hilbert space) and

$$H^{2} = \left\{ f \in \mathcal{H}(\mathbb{D}) : f(z) = \sum_{n=0}^{\infty} a_{n} z^{n} \text{ with } \{a_{n}\}_{n} \in \ell^{2} \right\}.$$

Hardy spaces

Remark (Density of polynomials in H^2)

The last proposition also implies that the space of polynomials is dense in H^2 , since every function $f \in H^2$ can be approximated by the partial sums of its power series $\sum_{n=0}^{\infty} a_n z^n$.

イロト 不得 とうき とうとう

Sac

Hardy spaces

Remark (Density of polynomials in H^2)

The last proposition also implies that the space of polynomials is dense in H^2 , since every function $f \in H^2$ can be approximated by the partial sums of its power series $\sum_{n=0}^{\infty} a_n z^n$.

Indeed,

$$\left\| f - \sum_{n=0}^{N} a_n z^n \right\|_{H^2} = \left\| \sum_{n=N+1}^{\infty} a_n z^n \right\|_{H^2} = \left(\sum_{n=N+1}^{\infty} |a_n|^2 \right)^{1/2} \xrightarrow{N} 0.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへ⊙

Contents

Preliminaries

- Hardy spaces
- Inner and outer functions
- Invariant subspaces

- The main result
- Some consequences

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 - のへで

Inner functions

Definition (Inner function)

We say that $f \in H^{\infty}$ is an inner function if

$$|f(e^{it})| = 1$$

イロト イロト イヨト イヨト 三日

500

almost everywhere on \mathbb{T} .

Inner functions

Definition (Inner function)

We say that $f \in H^\infty$ is an inner function if

$$|f(e^{it})| = 1$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

almost everywhere on \mathbb{T} .

Remark

If f is an inner function, then $|f(z)| \leq 1$ for all $z \in \mathbb{D}$.

Inner functions

Definition (Inner function)

We say that $f \in H^\infty$ is an inner function if

$$|f(e^{it})| = 1$$

almost everywhere on \mathbb{T} .

Remark

If f is an inner function, then $|f(z)| \leq 1$ for all $z \in \mathbb{D}$.

Indeed, $f \in H^{\infty}$ and thus, for all $z \in \mathbb{D}$,

$$|f(z)| = |(\mathcal{P}f)(z)| \le \frac{1}{2\pi} \int_0^{2\pi} |f(e^{it})| |P_z(e^{it})| dt$$
$$= \frac{1}{2\pi} \int_0^{2\pi} P_z(e^{it}) dt = 1.$$

Inner functions

Definition (Blaschke product)

Let $\{a_n\}_n \subseteq \mathbb{D} \setminus \{0\}$ satisfying $\sum_{n=0}^{\infty} (1 - |a_n|) < \infty$ and $m \ge 0$. We define the Blaschke product associated with $\{a_n\}_n$ and m by

$$B(z) := z^m \prod_{n=0}^{\infty} \frac{|a_n|}{a_n} \cdot \frac{a_n - z}{1 - \overline{a_n} z}, \qquad z \in \mathbb{D}.$$

イロト 不得 とうき とうとう

Э

SQA

Inner functions

Definition (Blaschke product)

Let $\{a_n\}_n \subseteq \mathbb{D} \setminus \{0\}$ satisfying $\sum_{n=0}^{\infty} (1 - |a_n|) < \infty$ and $m \ge 0$. We define the Blaschke product associated with $\{a_n\}_n$ and m by

$$B(z) := z^m \prod_{n=0}^{\infty} \frac{|a_n|}{a_n} \cdot \frac{a_n - z}{1 - \overline{a_n} z}, \qquad z \in \mathbb{D}.$$

Proposition

Under these conditions, B defines a function in H^∞ and |B|=1 a.e. on $\mathbb{T}.$

▲ロト ▲□ト ▲ヨト ▲ヨト ヨー つくで

Inner functions

Theorem (Characterization of inner functions)

Suppose that λ is a constant with $|\lambda| = 1$, B is a Blaschke product and μ is a finite, positive, Borel measure on \mathbb{T} which is singular with respect to the Lebesgue measure. Then

$$G(z) = \lambda B(z) \exp\left\{-\int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} d\mu(t)\right\}, \qquad z \in \mathbb{D},$$

イロト 不得下 不良下 不良下

Sac

is an inner function. Moreover, every inner function is of this form.

Inner functions

Theorem (Characterization of inner functions)

Suppose that λ is a constant with $|\lambda| = 1$, B is a Blaschke product and μ is a finite, positive, Borel measure on \mathbb{T} which is singular with respect to the Lebesgue measure. Then

$$G(z) = \lambda B(z) \exp\left\{-\int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} d\mu(t)\right\}, \qquad z \in \mathbb{D},$$

is an inner function. Moreover, every inner function is of this form.

EXAMPLE TIME!!

・ロト ・四ト ・日ト ・日・ 日

SQA

Outer functions

Definition (Outer function)

If φ is a positive, measurable function on \mathbb{T} such that $\log \varphi \in L^1(\mathbb{T})$, then

$$Q(z) = \lambda \exp\left\{\frac{1}{2\pi} \int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} \log \varphi(e^{it}) dt\right\}, \qquad z \in \mathbb{D},$$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー のく⊙

is called an outer function. Here λ is a constant with $|\lambda| = 1$.

Factorization theorem

Theorem (Factorization)

Let $1 \le p \le \infty$ and assume that $f \in H^p$ is not identically zero. Then, there is an outer function $Q_f \in H^p$ (whose constant factor is $\lambda = 1$) and an inner function G_f such that

$$f = G_f Q_f.$$

SQA

Moreover, this decomposition is unique.

Factorization theorem

Theorem (Factorization)

Let $1 \le p \le \infty$ and assume that $f \in H^p$ is not identically zero. Then, there is an outer function $Q_f \in H^p$ (whose constant factor is $\lambda = 1$) and an inner function G_f such that

$$f = G_f Q_f.$$

Moreover, this decomposition is unique.

The functions G_f and Q_f are called the inner and outer factors of f, respectively.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー のく⊙

Contents

Preliminaries

- Hardy spaces
- Inner and outer functions
- Invariant subspaces

- The main result
- Some consequences

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 - のへで

Invariant subspaces and cyclic vectors

Definition (Invariant subspace)

Given a metric, vector space E and $T \in \mathcal{L}(E)$, we say that a closed subspace $F \subseteq E$ is invariant under T if

 $T(F) \subseteq F.$

Invariant subspaces and cyclic vectors

Definition (Invariant subspace)

Given a metric, vector space E and $T \in \mathcal{L}(E)$, we say that a closed subspace $F \subseteq E$ is invariant under T if

 $T(F) \subseteq F$.

Definition (Cyclic element)

We say that an element $x \in E$ is cyclic for $T \in \mathcal{L}(E)$ if

 $\mathcal{O}_T(x) := \overline{\langle x, Tx, T^2x, \ldots \rangle} = E.$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー のく⊙

Summing up...

•
$$H^p = \{ f \in L^p(\mathbb{T}) : \widehat{f}(k) = 0 \ \forall k < 0 \}.$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Summing up...

• $H^p = \{ f \in L^p(\mathbb{T}) : \widehat{f}(k) = 0 \ \forall k < 0 \}.$

(日) (同) (三) (三) (三) (つ) (○)

 \bullet H^2 is a Hilbert space.

Summing up...

• $H^p = \{ f \in L^p(\mathbb{T}) : \widehat{f}(k) = 0 \ \forall k < 0 \}.$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ り へ ()

- H^2 is a Hilbert space.
- Polynomials are dense in H^2 .

Summing up...

- $H^p = \{ f \in L^p(\mathbb{T}) : \widehat{f}(k) = 0 \ \forall k < 0 \}.$
- H^2 is a Hilbert space.
- Polynomials are dense in H^2 .
- Inner functions: $f \in H^{\infty}$: |f| = 1 a.e. on $\mathbb{T} (\Rightarrow f(z) \le 1$ on $\mathbb{D})$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ り へ ()

Summing up...

- $H^p = \{ f \in L^p(\mathbb{T}) : \widehat{f}(k) = 0 \ \forall k < 0 \}.$
- H^2 is a Hilbert space.
- Polynomials are dense in H^2 .
- Inner functions: $f \in H^{\infty}$: |f| = 1 a.e. on $\mathbb{T} (\Rightarrow f(z) \le 1$ on $\mathbb{D})$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ り へ ()

• Inner functions are $G(z) = \lambda B(z)S_{\mu}(z)$.

Summing up...

- $H^p = \{ f \in L^p(\mathbb{T}) : \widehat{f}(k) = 0 \ \forall k < 0 \}.$
- H^2 is a Hilbert space.
- Polynomials are dense in H^2 .
- Inner functions: $f \in H^{\infty}$: |f| = 1 a.e. on $\mathbb{T} (\Rightarrow f(z) \le 1$ on $\mathbb{D})$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ り へ ()

- Inner functions are $G(z) = \lambda B(z)S_{\mu}(z)$.
- Outer functions Q.

Summing up...

- $H^p = \{ f \in L^p(\mathbb{T}) : \hat{f}(k) = 0 \ \forall k < 0 \}.$
- H^2 is a Hilbert space.
- Polynomials are dense in H^2 .
- Inner functions: $f \in H^{\infty}$: |f| = 1 a.e. on $\mathbb{T} (\Rightarrow f(z) \le 1$ on $\mathbb{D})$.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー のく⊙

- Inner functions are $G(z) = \lambda B(z)S_{\mu}(z)$.
- Outer functions Q.
- For all $f \in H^p$, $f = G_f Q_f$ in a unique way.

Summing up...

- $H^p = \{ f \in L^p(\mathbb{T}) : \widehat{f}(k) = 0 \ \forall k < 0 \}.$
- H^2 is a Hilbert space.
- Polynomials are dense in H^2 .
- Inner functions: $f \in H^{\infty}$: |f| = 1 a.e. on $\mathbb{T} (\Rightarrow f(z) \le 1$ on $\mathbb{D})$.

▲ロト ▲□ト ▲ヨト ▲ヨト ヨー つくで

- Inner functions are $G(z) = \lambda B(z)S_{\mu}(z)$.
- Outer functions Q.
- For all $f \in H^p$, $f = G_f Q_f$ in a unique way.
- $x \in E$ is cyclic for T iff $\mathcal{O}_T(x) = \overline{\langle x, Tx, T^2x, ... \rangle} = E$.

Invariant subspaces for the shift operator Beurling's theorem

Contents

Preliminarie:

- Hardy spaces
- Inner and outer functions
- Invariant subspaces

2 Beurling's theorem

- The main result
- Some consequences

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 - のへで

Invariant subspaces for the shift operator Beurling's theorem The main result

Contents

- Hardy spaces
- Inner and outer functions
- Invariant subspaces

• Some consequences

イロト 不得下 不良下 不良下

∃ <\nabla \lambda \lambda

Invariant subspaces for the shift operator Beurling's theorem The main result

The shift operator

Definition (Shift operator)

Let H be a separable Hilbert space and let $\{\xi_n\}_{n\geq 0} \subseteq H$ be an orthonormal basis. We define the shift operator S on H as the continuous, linear operator satisfying

$$S(\xi_n) = \xi_{n+1}, \qquad n \ge 0.$$

イロト 不得 とうき とうとう

э

Sac
The shift operator

Definition (Shift operator)

Let H be a separable Hilbert space and let $\{\xi_n\}_{n\geq 0} \subseteq H$ be an orthonormal basis. We define the shift operator S on H as the continuous, linear operator satisfying

$$S(\xi_n) = \xi_{n+1}, \qquad n \ge 0.$$

Sac

PROBLEM: We want to study the invariant subspaces for the shift operator on a Hilbert space *H*.

Identification $H \leftrightarrow H^2$

We know that $\{e^{ikt}\}_{k\in\mathbb{Z}}$ is an orthonormal basis for the Hilbert space $L^2(\mathbb{T})$. By Fischer-Riesz's theorem, this is equivalent to saying that, for all $f \in L^2(\mathbb{T})$,

$$f = \sum_{k \in \mathbb{Z}} \hat{f}(k) e^{ikt}, \quad \text{in } L^2(\mathbb{T}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Identification $H \leftrightarrow H^2$

We know that $\{e^{ikt}\}_{k\in\mathbb{Z}}$ is an orthonormal basis for the Hilbert space $L^2(\mathbb{T})$. By Fischer-Riesz's theorem, this is equivalent to saying that, for all $f \in L^2(\mathbb{T})$,

$$f = \sum_{k \in \mathbb{Z}} \hat{f}(k) e^{ikt}, \quad \text{in } L^2(\mathbb{T}).$$

We have that

$$H^2 = \{ f \in L^2(\mathbb{T}) : \hat{f}(k) = 0, \; \forall k < 0 \},$$

so every function in H^2 has the form

$$f=\sum_{n=0}^{\infty} \widehat{f}(n)e^{int}, \quad \text{in } H^2.$$

Identification $H \leftrightarrow H^2$

We know that $\{e^{ikt}\}_{k\in\mathbb{Z}}$ is an orthonormal basis for the Hilbert space $L^2(\mathbb{T})$. By Fischer-Riesz's theorem, this is equivalent to saying that, for all $f \in L^2(\mathbb{T})$,

$$f = \sum_{k \in \mathbb{Z}} \hat{f}(k) e^{ikt}, \quad \text{in } L^2(\mathbb{T}).$$

We have that

$$H^2 = \{ f \in L^2(\mathbb{T}) : \hat{f}(k) = 0, \; \forall k < 0 \},$$

so every function in H^2 has the form

$$f=\underset{n=0}{\overset{\infty}{\sum}}\widehat{f}(n)e^{int},\quad\text{in }H^{2}.$$

Therefore, $\{e^{int}\}_{n\geq 0}$ is an orthonormal basis for the Hilbert space H^2 .

Identification $H \leftrightarrow H^2$

We identify

$$\xi_n \longleftrightarrow e^{int},$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

for all $n \ge 0$.

Identification $H \leftrightarrow H^2$

We identify

$$\xi_n \longleftrightarrow e^{int},$$

for all $n \ge 0$. Even more, if we write $z = e^{it} \in \mathbb{T}$, then $e^{int} = z^n$ for all $n \ge 0$ and the shift operator becomes multiplication by z on H^2 .

$$f(z) = \sum_{n=0}^{\infty} a_n z^n \Longrightarrow (Sf)(z) = \sum_{n=0}^{\infty} a_n z^{n+1} = zf(z).$$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー のく⊙

Beurling's theorem

Given a closed subspace $M \subseteq H^2$, M will be *invariant* under S if $zM \subseteq M$. Equivalently, M is invariant if and only if $p(z)M \subseteq M$ for every polynomial p.

Beurling's theorem

Given a closed subspace $M \subseteq H^2$, M will be *invariant* under S if $zM \subseteq M$. Equivalently, M is invariant if and only if $p(z)M \subseteq M$ for every polynomial p.

Theorem (Beurling)

A non-zero subspace $M\subseteq H^2$ is invariant under S if and only if there exists an inner function G such that

$$M = GH^2 = \{Gf : f \in H^2\}.$$

500

Moreover, G is unique up to a constant factor of modulus 1.

The proof

Assume that $M = GH^2$.

• $\{0\} \neq M \subseteq H^2$:

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

The proof

Assume that $M = GH^2$.

• $\{0\} \neq M \subseteq H^2$: Since $G \in H^\infty$, we have that $Gf \in H^2$ for all $f \in H^2$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ り へ ()

• M is closed:

The proof

Assume that $M = GH^2$.

• $\{0\} \neq M \subseteq H^2$: Since $G \in H^{\infty}$, we have that $Gf \in H^2$ for all $f \in H^2$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ り へ ()

• M is closed: |G| = 1 a.e., and thus $||Gf||_2 = ||f||_2$.

The proof

Assume that $M = GH^2$.

- $\{0\} \neq M \subseteq H^2$: Since $G \in H^{\infty}$, we have that $Gf \in H^2$ for all $f \in H^2$.
- *M* is closed: |G| = 1 a.e., and thus $||Gf||_2 = ||f||_2$. Consider $\{Gf_n\}_n$ a sequence in *M* converging to a function $g \in H^2$.

The proof

Assume that $M = GH^2$.

- $\{0\} \neq M \subseteq H^2$: Since $G \in H^{\infty}$, we have that $Gf \in H^2$ for all $f \in H^2$.
- M is closed: |G| = 1 a.e., and thus $||Gf||_2 = ||f||_2$. Consider $\{Gf_n\}_n$ a sequence in M converging to a function $g \in H^2$. In particular, $\{Gf_n\}_n$ is Cauchy in H^2 , and consequently $\{f_n\}_n$ is Cauchy as well.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー のく⊙

The proof

Assume that $M = GH^2$.

- $\{0\} \neq M \subseteq H^2$: Since $G \in H^{\infty}$, we have that $Gf \in H^2$ for all $f \in H^2$.
- M is closed: |G| = 1 a.e., and thus $||Gf||_2 = ||f||_2$. Consider $\{Gf_n\}_n$ a sequence in M converging to a function $g \in H^2$. In particular, $\{Gf_n\}_n$ is Cauchy in H^2 , and consequently $\{f_n\}_n$ is Cauchy as well.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー のく⊙

Then $\{f_n\}_n$ converges to a function $f \in H^2$ and $\|Gf_n - Gf\|_2 = \|f_n - f\|_2 \xrightarrow{n} 0.$

The proof

Assume that $M = GH^2$.

- $\{0\} \neq M \subseteq H^2$: Since $G \in H^{\infty}$, we have that $Gf \in H^2$ for all $f \in H^2$.
- M is closed: |G| = 1 a.e., and thus $||Gf||_2 = ||f||_2$. Consider $\{Gf_n\}_n$ a sequence in M converging to a function $g \in H^2$. In particular, $\{Gf_n\}_n$ is Cauchy in H^2 , and consequently $\{f_n\}_n$ is Cauchy as well.

Then $\{f_n\}_n$ converges to a function $f \in H^2$ and $\|Gf_n - Gf\|_2 = \|f_n - f\|_2 \xrightarrow{n} 0$. We conclude that $g = Gf \in M$.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー のく⊙

• M is S-invariant:

The proof

Assume that $M = GH^2$.

- $\{0\} \neq M \subseteq H^2$: Since $G \in H^{\infty}$, we have that $Gf \in H^2$ for all $f \in H^2$.
- M is closed: |G| = 1 a.e., and thus $||Gf||_2 = ||f||_2$. Consider $\{Gf_n\}_n$ a sequence in M converging to a function $g \in H^2$. In particular, $\{Gf_n\}_n$ is Cauchy in H^2 , and consequently $\{f_n\}_n$ is Cauchy as well.

Then $\{f_n\}_n$ converges to a function $f \in H^2$ and $\|Gf_n - Gf\|_2 = \|f_n - f\|_2 \xrightarrow{n} 0$. We conclude that $g = Gf \in M$.

• M is S-invariant: If $f \in H^2$,

$$S(Gf)(z) = zG(z)f(z) = G(z)[zf(z)] \in GH^2.$$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー のく⊙

The proof

Let's prove that if $G_1H^2 = G_2H^2$ for some inner functions G_1 , G_2 , then $G_1 = \lambda G_2$ with $|\lambda| = 1$.

(日) (同) (三) (三) (三) (つ) (○)

The proof

Let's prove that if $G_1H^2 = G_2H^2$ for some inner functions G_1 , G_2 , then $G_1 = \lambda G_2$ with $|\lambda| = 1$. Indeed, we have that

$$G_1 = G_2 f$$
, and $G_2 = G_1 g$,

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ り へ ()

for some $f, g \in H^2$.

The proof

Let's prove that if $G_1H^2 = G_2H^2$ for some inner functions G_1 , G_2 , then $G_1 = \lambda G_2$ with $|\lambda| = 1$. Indeed, we have that

$$G_1 = G_2 f$$
, and $G_2 = G_1 g$,

for some $f, g \in H^2$. Moreover,

$$|f|=rac{|G_1|}{|G_2|}=1$$
 and $|g|=rac{1}{|f|}=1$ a.e. on \mathbb{T}_{+}

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ り へ ()

so both f and g = 1/f are inner functions.

The proof

Let's prove that if $G_1H^2 = G_2H^2$ for some inner functions G_1 , G_2 , then $G_1 = \lambda G_2$ with $|\lambda| = 1$. Indeed, we have that

$$G_1 = G_2 f$$
, and $G_2 = G_1 g$,

for some $f, g \in H^2$. Moreover,

$$|f| = \frac{|G_1|}{|G_2|} = 1$$
 and $|g| = \frac{1}{|f|} = 1$ a.e. on \mathbb{T} ,

so both f and g=1/f are inner functions. In particular, $f\in \mathcal{H}(\mathbb{D})$ and

$$|f| \leq 1, \quad \frac{1}{|f|} \leq 1 \text{ on } \mathbb{D}.$$

The proof

Let's prove that if $G_1H^2 = G_2H^2$ for some inner functions G_1 , G_2 , then $G_1 = \lambda G_2$ with $|\lambda| = 1$. Indeed, we have that

$$G_1 = G_2 f$$
, and $G_2 = G_1 g$,

for some $f, g \in H^2$. Moreover,

$$|f| = \frac{|G_1|}{|G_2|} = 1$$
 and $|g| = \frac{1}{|f|} = 1$ a.e. on \mathbb{T} ,

so both f and g=1/f are inner functions. In particular, $f\in \mathcal{H}(\mathbb{D})$ and

$$|f| \leq 1, \quad \frac{1}{|f|} \leq 1 \text{ on } \mathbb{D}.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ り へ ()

Therefore, |f| = 1 on \mathbb{D} and by the maximum principle, $f = \lambda$ with $|\lambda| = 1$, as we wanted to show.

The proof

Conversely, let $M \neq \{0\}$ be an invariant subspace. Consider k the least non-negative integer so that there exists a function $f \in M$ satisfying

$$f(z) = a_k z^k + a_{k+1} z^{k+1} + \cdots,$$
 with $a_k \neq 0.$

The proof

Conversely, let $M \neq \{0\}$ be an invariant subspace. Consider k the least non-negative integer so that there exists a function $f \in M$ satisfying

$$f(z) = a_k z^k + a_{k+1} z^{k+1} + \cdots,$$
 with $a_k \neq 0.$

・ロト ・ 中下・ エリト ・ ヨー・ うへつ

Using the minimality of k, we have that $f \notin zM$, and by hypothesis, $zM \subseteq M$, so zM is a proper subspace of M.

The proof

Conversely, let $M \neq \{0\}$ be an invariant subspace. Consider k the least non-negative integer so that there exists a function $f \in M$ satisfying

$$f(z) = a_k z^k + a_{k+1} z^{k+1} + \cdots$$
, with $a_k \neq 0$.

Using the minimality of k, we have that $f \notin zM$, and by hypothesis, $zM \subseteq M$, so zM is a proper subspace of M. Moreover, zM is closed in M, and by the orthogonal projection theorem, we have

$$M = zM \oplus (zM)^{\perp_M},$$

where

$$(zM)^{\perp_M} := \{ f \in M : f \bot zg \quad \forall g \in M \},\$$

ション ふゆ アメリア ショー シック

and $(zM)^{\perp_M} \neq \{0\}.$

The proof

Now, take $G \in (zM)^{\perp_M}$ with $||G||_2 = 1$.

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

The proof

Now, take $G \in (zM)^{\perp_M}$ with $||G||_2 = 1$. Since $z^n M \subseteq zM$ for all $n \ge 1$, we deduce that $G \perp z^n M$, and in particular,

 $G \perp z^n G, \qquad n \ge 1.$

The proof

Now, take $G \in (zM)^{\perp_M}$ with $||G||_2 = 1$. Since $z^n M \subseteq zM$ for all $n \ge 1$, we deduce that $G \perp z^n M$, and in particular,

$$G \perp z^n G, \qquad n \ge 1.$$

That is, writing $z = e^{it}$,

$$\begin{split} 0 &= \frac{1}{2\pi} \int_0^{2\pi} G(e^{it}) e^{-int} \overline{G(e^{it})} dt \\ &= \frac{1}{2\pi} \int_0^{2\pi} |G(e^{it})|^2 e^{-int} dt, \qquad \forall n \ge 1. \end{split}$$

The proof

Now, take $G \in (zM)^{\perp_M}$ with $||G||_2 = 1$. Since $z^n M \subseteq zM$ for all $n \ge 1$, we deduce that $G \perp z^n M$, and in particular,

$$G \perp z^n G, \qquad n \ge 1.$$

That is, writing $z = e^{it}$,

$$\begin{split} 0 &= \frac{1}{2\pi} \int_{0}^{2\pi} G(e^{it}) e^{-int} \overline{G(e^{it})} dt \\ &= \frac{1}{2\pi} \int_{0}^{2\pi} |G(e^{it})|^2 e^{-int} dt, \qquad \forall n \ge 1. \end{split}$$

Furthermore, if we conjugate the previous equation, since $|G(e^{it})|^2 \in \mathbb{R}$, we obtain

$$0 = \frac{1}{2\pi} \int_0^{2\pi} |G(e^{it})|^2 e^{int} dt, \qquad \forall n \ge 1.$$

The proof

That is, all the Fourier coefficients of the function $|G|^2 \in L^1(\mathbb{T})$ are zero except for the one corresponding to n = 0, which is $||G||_2^2 = 1$.

The proof

That is, all the Fourier coefficients of the function $|G|^2 \in L^1(\mathbb{T})$ are zero except for the one corresponding to n = 0, which is $||G||_2^2 = 1$. Since L^1 -functions are determined by their Fourier coefficients, we conclude that

$$|G|^2 = 1$$
 a.e. on \mathbb{T} ,

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ り へ ()

and hence, G is an inner function.

The proof

Next, we will show that $M = GH^2$.

The proof

Next, we will show that $M = GH^2$. We have that $G \in M$, so by the S-invariance of M, we get that $PG \in M$ for every polynomial P.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー のく⊙

The proof

Next, we will show that $M = GH^2$. We have that $G \in M$, so by the S-invariance of M, we get that $PG \in M$ for every polynomial P. Moreover, we know that the polynomials are dense in H^2 .

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー のく⊙

The proof

Next, we will show that $M = GH^2$. We have that $G \in M$, so by the S-invariance of M, we get that $PG \in M$ for every polynomial P. Moreover, we know that the polynomials are dense in H^2 . Now, if $f \in H^2$, consider a sequence of polynomials $\{P_n\}_n$ converging to f in H^2 . Since M is closed in H^2 and $P_nG \in M$ for all $n \ge 0$, we conclude that the limit function fG lies in M as well.

The proof

Next, we will show that $M = GH^2$. We have that $G \in M$, so by the S-invariance of M, we get that $PG \in M$ for every polynomial P. Moreover, we know that the polynomials are dense in H^2 . Now, if $f \in H^2$, consider a sequence of polynomials $\{P_n\}_n$ converging to f in H^2 . Since M is closed in H^2 and $P_nG \in M$ for all $n \ge 0$, we conclude that the limit function fG lies in M as well. With this, we prove that

 $GH^2 \subseteq M.$

The proof

We know that GH^2 is closed in M, so

$$M = GH^2 \oplus (GH^2)^{\perp_M}.$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○
The proof

We know that GH^2 is closed in M, so

$$M = GH^2 \oplus (GH^2)^{\perp_M}.$$

Therefore, if we prove that $(GH^2)^{\perp_M} = \{0\}$, we are done.

The proof

Take $h \in M$ with $h \perp GH^2$.

• $h \perp GH^2$. In particular we have that $h \perp Gz^n$ for all $n \geq 0$, so

$$\frac{1}{2\pi}\int_0^{2\pi}h(e^{it})\overline{G(e^{it})}e^{-int}dt=0,\qquad n\geq 0.$$

The proof

Take $h \in M$ with $h \perp GH^2$.

• $h \perp GH^2$. In particular we have that $h \perp Gz^n$ for all $n \ge 0$, so

$$\frac{1}{2\pi} \int_0^{2\pi} h(e^{it}) \overline{G(e^{it})} e^{-int} dt = 0, \qquad n \ge 0.$$

• $h \in M$. Since $G \perp z^n M$ for all $n \ge 1$, we have that $G \perp z^n h$, that is

$$\frac{1}{2\pi}\int_{0}^{2\pi}e^{int}h(e^{it})\overline{G(e^{it})}dt=0,\qquad n\geq 1.$$

The proof

Take $h \in M$ with $h \perp GH^2$.

• $h \perp GH^2$. In particular we have that $h \perp Gz^n$ for all $n \ge 0$, so

$$\frac{1}{2\pi} \int_0^{2\pi} h(e^{it}) \overline{G(e^{it})} e^{-int} dt = 0, \qquad n \ge 0.$$

• $h \in M$. Since $G \perp z^n M$ for all $n \ge 1$, we have that $G \perp z^n h$, that is

$$\frac{1}{2\pi}\int_{0}^{2\pi}e^{int}h(e^{it})\overline{G(e^{it})}dt=0,\qquad n\geq 1.$$

Combining both identities, we conclude that

$$\frac{1}{2\pi} \int_0^{2\pi} h(e^{it}) \overline{G(e^{it})} e^{-ikt} dt = 0, \qquad k \in \mathbb{Z},$$

The proof

That is, all Fourier coefficients of the function $h\overline{G} \in L^1(\mathbb{T})$ are zero.

The proof

That is, all Fourier coefficients of the function $h\overline{G} \in L^1(\mathbb{T})$ are zero. This implies that $h\overline{G} = 0$ a.e. on \mathbb{T} .

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

The proof

That is, all Fourier coefficients of the function $h\overline{G} \in L^1(\mathbb{T})$ are zero. This implies that $h\overline{G} = 0$ a.e. on \mathbb{T} . Since |G| = 1 a.e. on \mathbb{T} , we get that h = 0 as an H^2 -function and we complete the proof.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Contents

- Hardy spaces
- Inner and outer functions
- Invariant subspaces

- The main result
- Some consequences

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 - のへで

Bijection

We have that inner functions are the ones of the form

$$G(z) = \lambda B(z) \exp\left\{-\int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} d\mu(t)\right\}, \qquad z \in \mathbb{D},$$

where λ is a constant with $|\lambda| = 1$, B is a Blaschke product and μ is a finite, positive, Borel measure on \mathbb{T} which is singular with respect to the Lebesgue measure.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Bijection

We have that inner functions are the ones of the form

$$G(z) = \lambda B(z) \exp\left\{-\int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} d\mu(t)\right\}, \qquad z \in \mathbb{D},$$

where λ is a constant with $|\lambda| = 1$, B is a Blaschke product and μ is a finite, positive, Borel measure on \mathbb{T} which is singular with respect to the Lebesgue measure.

Therefore, there is a bijection

 $\{(\{a_n\}_n, m, \mu)\} \longleftrightarrow \{$ Invariant subspaces for $S\},\$

・ロト ・ 中下・ エリト ・ ヨー・ うらつ

where $\{a_n\}_n \subseteq \mathbb{D} \setminus \{0\}$ satisfies the Blaschke condition $(\sum_n (1 - |a_n|) < \infty)$ and $m \ge 0$.

Basic invariant subspaces

Given a function $f \in H^2$, we may wonder what invariant subspace is the smallest one containing f. Such subspace is given by

$$\mathcal{O}_S(f) = \overline{\langle f, zf, z^2 f, \dots \rangle}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Basic invariant subspaces

Given a function $f \in H^2$, we may wonder what invariant subspace is the smallest one containing f. Such subspace is given by

$$\mathcal{O}_S(f) = \overline{\langle f, zf, z^2 f, \ldots \rangle}.$$

We have the following proposition:

Proposition

Let $f \in H^2$ and $f = G_f Q_f$ be its factorization as a product of an inner and an outer function. Then,

$$\mathcal{O}_S(f) = G_f H^2.$$

イロト 不得 トイヨト イヨト

= 900

Basic invariant subspaces

Since $Q_f \in H^2$, we have that $f = G_f Q_f \in G_f H^2$.

Basic invariant subspaces

Since $Q_f \in H^2$, we have that $f = G_f Q_f \in G_f H^2$. Now, $G_f H^2$ is closed and S-invariant, so we have that $\mathcal{O}_S(f) \subseteq G_f H^2$.

Basic invariant subspaces

Since $Q_f \in H^2$, we have that $f = G_f Q_f \in G_f H^2$. Now, $G_f H^2$ is closed and S-invariant, so we have that $\mathcal{O}_S(f) \subseteq G_f H^2$. By Beurling's theorem, there exists an inner function G such that $\mathcal{O}_S(f) = GH^2$.

Basic invariant subspaces

Since $Q_f \in H^2$, we have that $f = G_f Q_f \in G_f H^2$. Now, $G_f H^2$ is closed and S-invariant, so we have that $\mathcal{O}_S(f) \subseteq G_f H^2$. By Beurling's theorem, there exists an inner function G such that $\mathcal{O}_S(f) = GH^2$. Given that $f \in \mathcal{O}_S(f)$, there exists a function $h = G_h Q_h \in H^2$ such that

$$f = G_f Q_f = G G_h Q_h.$$

Basic invariant subspaces

Since $Q_f \in H^2$, we have that $f = G_f Q_f \in G_f H^2$. Now, $G_f H^2$ is closed and S-invariant, so we have that $\mathcal{O}_S(f) \subseteq G_f H^2$. By Beurling's theorem, there exists an inner function G such that $\mathcal{O}_S(f) = G H^2$. Given that $f \in \mathcal{O}_S(f)$, there exists a function $h = G_h Q_h \in H^2$ such that

$$f = G_f Q_f = G G_h Q_h.$$

・ロト ・ 中下・ エリト ・ ヨー・ うらつ

But GG_h is another inner function, so by the uniqueness of this factorization, $Q_f = Q_h$ and $G_f = GG_h$.

Basic invariant subspaces

Since $Q_f \in H^2$, we have that $f = G_f Q_f \in G_f H^2$. Now, $G_f H^2$ is closed and S-invariant, so we have that $\mathcal{O}_S(f) \subseteq G_f H^2$. By Beurling's theorem, there exists an inner function G such that $\mathcal{O}_S(f) = G H^2$. Given that $f \in \mathcal{O}_S(f)$, there exists a function $h = G_h Q_h \in H^2$ such that

$$f = G_f Q_f = G G_h Q_h.$$

But GG_h is another inner function, so by the uniqueness of this factorization, $Q_f = Q_h$ and $G_f = GG_h$. In particular, $G_f \in GH^2$, and by invariance and density of the polynomials in H^2 , we conclude that

$$G_f H^2 \subseteq G H^2 = \mathcal{O}_S(f),$$

・ロト ・ 中下・ エリト ・ ヨー・ うへつ

and we complete the proof.

cyclic vectors

This result yields an easy description of cyclic vectors:

Corollary

A function $f \in H^2$ is cyclic for S if and only if f is an outer function.

イロト イロト イヨト イヨト 三日

500

cyclic vectors

This result yields an easy description of cyclic vectors:

Corollary

A function $f \in H^2$ is cyclic for S if and only if f is an outer function.

Indeed, $f = G_f Q_f$ is cyclic if and only if

$$\mathcal{O}_S(f) = G_f H^2 = H^2,$$

▲ロト ▲□ト ▲ヨト ▲ヨト ヨー つくで

and by the "uniqueness up to a constant factor" of Beurling's theorem, this happens iff $G_f = \lambda$ with $|\lambda| = 1$.

cyclic vectors

This result yields an easy description of cyclic vectors:

Corollary

A function $f \in H^2$ is cyclic for S if and only if f is an outer function.

Indeed, $f = G_f Q_f$ is cyclic if and only if

$$\mathcal{O}_S(f) = G_f H^2 = H^2,$$

and by the "uniqueness up to a constant factor" of Beurling's theorem, this happens iff $G_f = \lambda$ with $|\lambda| = 1$. Therefore, $f = \lambda Q_f$ is an outer function.

・ロト ・ 中下・ エリト ・ ヨー・ うへつ

cyclic vectors

This result yields an easy description of cyclic vectors:

Corollary

A function $f \in H^2$ is cyclic for S if and only if f is an outer function.

Indeed, $f = G_f Q_f$ is cyclic if and only if

$$\mathcal{O}_S(f) = G_f H^2 = H^2,$$

and by the "uniqueness up to a constant factor" of Beurling's theorem, this happens iff $G_f = \lambda$ with $|\lambda| = 1$. Therefore, $f = \lambda Q_f$ is an outer function.

EXAMPLE TIME!!

Greatest common divisor of a family of inner functions

Definition (GCD of a family of inner functions)

Given two inner functions G_1 and G_2 , we say that G_2 divides G_1 if the quotient $\frac{G_1}{G_2}$

イロト 不得下 イヨト イヨト

-

SQA

is another inner function.

Greatest common divisor of a family of inner functions

Definition (GCD of a family of inner functions)

Given two inner functions G_1 and $G_2,$ we say that G_2 divides G_1 if the quotient

$\frac{G_1}{G_2}$

is another inner function.

Also, given a non-empty family of inner functions \mathcal{G} , we say that the inner function G_0 is the greatest common divisor of \mathcal{G} if G_0 divides every function in \mathcal{G} and, for every G_1 satisfying this property, we have that G_1 divides G_0 .

イロト 不得 トイヨト イヨト

3

SQA

Greatest common divisor of a family of inner functions

Definition (GCD of a family of inner functions)

Given two inner functions G_1 and $G_2,$ we say that G_2 divides G_1 if the quotient

$\frac{G_1}{G_2}$

is another inner function.

Also, given a non-empty family of inner functions \mathcal{G} , we say that the inner function G_0 is the greatest common divisor of \mathcal{G} if G_0 divides every function in \mathcal{G} and, for every G_1 satisfying this property, we have that G_1 divides G_0 .

イロト 不得 トイヨト イヨト

3

SQA

Every non-empty family \mathcal{G} of inner functions has a greatest common divisor.

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへぐ

Every non-empty family ${\mathcal G}$ of inner functions has a greatest common divisor.

Idea of the proof:

- Let M be the intersection of all invariant subspaces containing \mathcal{G} (M is the smallest invariant subspace containing \mathcal{G})

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー のく⊙

Every non-empty family ${\mathcal G}$ of inner functions has a greatest common divisor.

Idea of the proof:

- Let M be the intersection of all invariant subspaces containing \mathcal{G} (M is the smallest invariant subspace containing \mathcal{G})

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー のく⊙

- By Beurling's theorem, $M = G_0 H^2$, for some inner function G_0 .

Every non-empty family \mathcal{G} of inner functions has a greatest common divisor.

Idea of the proof:

- Let M be the intersection of all invariant subspaces containing G (M is the smallest invariant subspace containing G)

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー のく⊙

- By Beurling's theorem, $M = G_0 H^2$, for some inner function G_0 .
- One can check that G_0 is the greatest common divisor of \mathcal{G} .

The End!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ● ●