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De�nition (Hardy spaces)

Let 1 ≤ p <∞. We de�ne the space Hp by

Hp =

{
f ∈ H(D) : ‖f‖pHp := sup

0<r<1

1

2π

∫ 2π

0

|f(reit)|pdt <∞
}
.

We also de�ne

H∞ =
{
f ∈ H(D) : ‖f‖∞ = sup

z∈D
|f(z)| <∞

}
.
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The following result connects Hp-spaces to Lp-spaces:

Theorem (Hp ⊆ Lp(T))
Let 1 ≤ p ≤ ∞. A function f belongs to Hp if, and only if, it is the
Poisson integral of some g ∈ Lp(T) whose Fourier coe�cients satisfy

ĝ(k) =
1

2π

∫ 2π

0

g(eit)e−iktdt = 0 ∀k < 0.

Moreover,
g(eit) = lim

r→1−
f(reit)

exists for almost every 0 ≤ t < 2π, and ‖g‖Lp(T) = ‖f‖Hp .

With this result, for all 1 ≤ p ≤ ∞, the Hardy space Hp can be
interpreted as a subspace of Lp(T),

Hp = {f ∈ Lp(T) : f̂(k) = 0, ∀k < 0}.
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Proposition (H2 ↔ `2)

Let f(z) =
∞∑
n=0

anz
n ∈ H(D). Then,

f ∈ H2 ⇐⇒ {an}n ∈ `2.

Moreover, we have that ‖f‖H2 = ‖{an}n‖2.

As a consequence, we have that H2 is isometrically isomorphic to `2

(thus, it is a Hilbert space) and

H2 =

{
f ∈ H(D) : f(z) =

∞∑
n=0

anz
n with {an}n ∈ `2

}
.
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Remark (Density of polynomials in H2)

The last proposition also implies that the space of polynomials is dense in
H2, since every function f ∈ H2 can be approximated by the partial

sums of its power series
∞∑
n=0

anz
n.

Indeed,∥∥∥∥f − N∑
n=0

anz
n

∥∥∥∥
H2

=

∥∥∥∥ ∞∑
n=N+1

anz
n

∥∥∥∥
H2

=

( ∞∑
n=N+1

|an|2
)1/2

N−→ 0.
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De�nition (Inner function)

We say that f ∈ H∞ is an inner function if

|f(eit)| = 1

almost everywhere on T.

Remark

If f is an inner function, then |f(z)| ≤ 1 for all z ∈ D.

Indeed, f ∈ H∞ and thus, for all z ∈ D,

|f(z)| =|(Pf)(z)| ≤ 1

2π

∫ 2π

0

|f(eit)||Pz(eit)|dt

=
1

2π

∫ 2π

0

Pz(e
it)dt = 1.
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De�nition (Blaschke product)

Let {an}n ⊆ D \ {0} satisfying
∞∑
n=0

(1− |an|) <∞ and m ≥ 0. We de�ne

the Blaschke product associated with {an}n and m by

B(z) := zm
∞∏
n=0

|an|
an
· an − z
1− anz

, z ∈ D.

Proposition

Under these conditions, B de�nes a function in H∞ and |B| = 1 a.e. on
T.
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Theorem (Characterization of inner functions)

Suppose that λ is a constant with |λ| = 1, B is a Blaschke product and
µ is a �nite, positive, Borel measure on T which is singular with respect
to the Lebesgue measure. Then

G(z) = λB(z) exp

{
−
∫ 2π

0

eit + z

eit − z
dµ(t)

}
, z ∈ D,

is an inner function. Moreover, every inner function is of this form.

EXAMPLE TIME!!
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De�nition (Outer function)

If ϕ is a positive, measurable function on T such that logϕ ∈ L1(T), then

Q(z) = λ exp

{
1

2π

∫ 2π

0

eit + z

eit − z
logϕ(eit)dt

}
, z ∈ D,

is called an outer function. Here λ is a constant with |λ| = 1.
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Theorem (Factorization)

Let 1 ≤ p ≤ ∞ and assume that f ∈ Hp is not identically zero. Then,
there is an outer function Qf ∈ Hp (whose constant factor is λ = 1) and
an inner function Gf such that

f = GfQf .

Moreover, this decomposition is unique.

The functions Gf and Qf are called the inner and outer factors of f ,
respectively.
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De�nition (Invariant subspace)

Given a metric, vector space E and T ∈ L(E), we say that a closed
subspace F ⊆ E is invariant under T if

T (F ) ⊆ F.

De�nition (Cyclic element)

We say that an element x ∈ E is cyclic for T ∈ L(E) if

OT (x) := 〈x, Tx, T 2x, ...〉 = E.
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Summing up...

Hp = {f ∈ Lp(T) : f̂(k) = 0 ∀k < 0}.

H2 is a Hilbert space.

Polynomials are dense in H2.

Inner functions: f ∈ H∞ : |f | = 1 a.e. on T (⇒ f(z) ≤ 1 on D).
Inner functions are G(z) = λB(z)Sµ(z).

Outer functions Q.

For all f ∈ Hp, f = GfQf in a unique way.

x ∈ E is cyclic for T i� OT (x) = 〈x, Tx, T 2x, ...〉 = E.
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The shift operator

De�nition (Shift operator)

Let H be a separable Hilbert space and let {ξn}n≥0 ⊆ H be an
orthonormal basis. We de�ne the shift operator S on H as the
continuous, linear operator satisfying

S(ξn) = ξn+1, n ≥ 0.

PROBLEM: We want to study the invariant subspaces for the shift
operator on a Hilbert space H.
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Identi�cation H ↔ H2

We know that {eikt}k∈Z is an orthonormal basis for the Hilbert space
L2(T). By Fischer-Riesz's theorem, this is equivalent to saying that, for
all f ∈ L2(T),

f =
∑
k∈Z

f̂(k)eikt, in L2(T).

We have that

H2 = {f ∈ L2(T) : f̂(k) = 0, ∀k < 0},

so every function in H2 has the form

f =
∞∑
n=0

f̂(n)eint, in H2.

Therefore, {eint}n≥0 is an orthonormal basis for the Hilbert space H2.
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The main result

Identi�cation H ↔ H2

We identify
ξn ←→ eint,

for all n ≥ 0.

Even more, if we write z = eit ∈ T, then eint = zn for all n ≥ 0 and the
shift operator becomes multiplication by z on H2.

f(z) =

∞∑
n=0

anz
n =⇒ (Sf)(z) =

∞∑
n=0

anz
n+1 = zf(z).
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The main result

Beurling's theorem

Given a closed subspace M ⊆ H2, M will be invariant under S if
zM ⊆M . Equivalently, M is invariant if and only if p(z)M ⊆M for
every polynomial p.

Theorem (Beurling)

A non-zero subspace M ⊆ H2 is invariant under S if and only if there
exists an inner function G such that

M = GH2 = {Gf : f ∈ H2}.

Moreover, G is unique up to a constant factor of modulus 1.
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The proof

Assume that M = GH2.

{0} 6=M ⊆ H2:

Since G ∈ H∞, we have that Gf ∈ H2 for all
f ∈ H2.

M is closed: |G| = 1 a.e., and thus ‖Gf‖2 = ‖f‖2. Consider
{Gfn}n a sequence in M converging to a function g ∈ H2.
In particular, {Gfn}n is Cauchy in H2, and consequently {fn}n is
Cauchy as well.
Then {fn}n converges to a function f ∈ H2 and

‖Gfn −Gf‖2 = ‖fn − f‖2
n→ 0. We conclude that g = Gf ∈M .

M is S-invariant: If f ∈ H2,

S(Gf)(z) = zG(z)f(z) = G(z)[zf(z)] ∈ GH2.
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Let's prove that if G1H
2 = G2H

2 for some inner functions G1, G2, then
G1 = λG2 with |λ| = 1.

Indeed, we have that

G1 = G2f, and G2 = G1g,

for some f, g ∈ H2. Moreover,

|f | = |G1|
|G2|

= 1 and |g| = 1

|f |
= 1 a.e. on T,

so both f and g = 1/f are inner functions. In particular, f ∈ H(D) and

|f | ≤ 1,
1

|f |
≤ 1 on D.

Therefore, |f | = 1 on D and by the maximum principle, f = λ with
|λ| = 1, as we wanted to show.
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Conversely, let M 6= {0} be an invariant subspace. Consider k the least
non-negative integer so that there exists a function f ∈M satisfying

f(z) = akz
k + ak+1z

k+1 + · · · , with ak 6= 0.

Using the minimality of k, we have that f /∈ zM , and by hypothesis,
zM ⊆M , so zM is a proper subspace of M . Moreover, zM is closed in
M , and by the orthogonal projection theorem, we have

M = zM ⊕ (zM)⊥M ,

where
(zM)⊥M := {f ∈M : f⊥zg ∀g ∈M},

and (zM)⊥M 6= {0}.
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Now, take G ∈ (zM)⊥M with ‖G‖2 = 1.

Since znM ⊆ zM for all n ≥ 1,
we deduce that G⊥znM , and in particular,

G⊥znG, n ≥ 1.

That is, writing z = eit,

0 =
1

2π

∫ 2π

0

G(eit)e−intG(eit)dt

=
1

2π

∫ 2π

0

|G(eit)|2e−intdt, ∀n ≥ 1.

Furthermore, if we conjugate the previous equation, since |G(eit)|2 ∈ R,
we obtain

0 =
1

2π

∫ 2π

0

|G(eit)|2eintdt, ∀n ≥ 1.
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That is, all the Fourier coe�cients of the function |G|2 ∈ L1(T) are zero
except for the one corresponding to n = 0, which is ‖G‖22 = 1.

Since
L1-functions are determined by their Fourier coe�cients, we conclude
that

|G|2 = 1 a.e. on T,

and hence, G is an inner function.
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Next, we will show that M = GH2.

We have that G ∈M , so by the S-invariance of M , we get that
PG ∈M for every polynomial P .
Moreover, we know that the polynomials are dense in H2.
Now, if f ∈ H2, consider a sequence of polynomials {Pn}n converging to
f in H2. Since M is closed in H2 and PnG ∈M for all n ≥ 0, we
conclude that the limit function fG lies in M as well.
With this, we prove that

GH2 ⊆M.
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1

2π

∫ 2π

0

h(eit)G(eit)e−intdt = 0, n ≥ 0.

h ∈M . Since G⊥znM for all n ≥ 1, we have that G⊥znh, that is

1

2π

∫ 2π

0

einth(eit)G(eit)dt = 0, n ≥ 1.

Combining both identities, we conclude that

1

2π

∫ 2π

0

h(eit)G(eit)e−iktdt = 0, k ∈ Z,
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That is, all Fourier coe�cients of the function hG ∈ L1(T) are zero.

This implies that hG = 0 a.e. on T.
Since |G| = 1 a.e. on T, we get that h = 0 as an H2-function and we
complete the proof.
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Bijection

We have that inner functions are the ones of the form

G(z) = λB(z) exp

{
−
∫ 2π

0

eit + z

eit − z
dµ(t)

}
, z ∈ D,

where λ is a constant with |λ| = 1, B is a Blaschke product and µ is a
�nite, positive, Borel measure on T which is singular with respect to the
Lebesgue measure.

Therefore, there is a bijection

{({an}n,m, µ)} ←→ {Invariant subspaces for S},

where {an}n ⊆ D \ {0} satis�es the Blaschke condition
(
∑
n(1− |an|) <∞) and m ≥ 0.
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Basic invariant subspaces

Given a function f ∈ H2, we may wonder what invariant subspace is the
smallest one containing f . Such subspace is given by

OS(f) = 〈f, zf, z2f, ...〉.

We have the following proposition:

Proposition

Let f ∈ H2 and f = GfQf be its factorization as a product of an inner
and an outer function. Then,

OS(f) = GfH
2.
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Since Qf ∈ H2, we have that f = GfQf ∈ GfH2.

Now, GfH
2 is closed and S-invariant, so we have that OS(f) ⊆ GfH2.

By Beurling's theorem, there exists an inner function G such that
OS(f) = GH2.
Given that f ∈ OS(f), there exists a function h = GhQh ∈ H2 such that

f = GfQf = GGhQh.

But GGh is another inner function, so by the uniqueness of this
factorization, Qf = Qh and Gf = GGh. In particular, Gf ∈ GH2, and
by invariance and density of the polynomials in H2, we conclude that

GfH
2 ⊆ GH2 = OS(f),

and we complete the proof.
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GfH
2 ⊆ GH2 = OS(f),

and we complete the proof.
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cyclic vectors

This result yields an easy description of cyclic vectors:

Corollary

A function f ∈ H2 is cyclic for S if and only if f is an outer function.

Indeed, f = GfQf is cyclic if and only if

OS(f) = GfH
2 = H2,

and by the �uniqueness up to a constant factor� of Beurling's theorem,
this happens i� Gf = λ with |λ| = 1. Therefore, f = λQf is an outer
function.

EXAMPLE TIME!!
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Greatest common divisor of a family of inner functions

De�nition (GCD of a family of inner functions)

Given two inner functions G1 and G2, we say that G2 divides G1 if the
quotient

G1

G2

is another inner function.

Also, given a non-empty family of inner functions G, we say that the
inner function G0 is the greatest common divisor of G if G0 divides every
function in G and, for every G1 satisfying this property, we have that G1

divides G0.
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Proposition

Every non-empty family G of inner functions has a greatest common
divisor.

Idea of the proof:

- Let M be the intersection of all invariant subspaces containing G (M is
the smallest invariant subspace containing G)
- By Beurling's theorem, M = G0H

2, for some inner function G0.
- One can check that G0 is the greatest common divisor of G.
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The End!
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