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It is well-known (Muckenhoupt, 1972) that the Hardy-Littlewood
maximal operator M satisfies, for 1 < p < oo:

IM fllLeoe@w) < Cllflrw) <= w € Ay
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Reaching weak-type (1,1) esti via Extrapolation Theory

A, weights

It is well-known (Muckenhoupt, 1972) that the Hardy-Littlewood
maximal operator M satisfies, for 1 < p < oo:

||MfHLPv°°(w) < C”fHLP(w) S we Ap

where, for 1 < p < oo, w € 4, if

w(Q) (wp’/p@))”/ g

|wlla, = sgp < 00,

Q) Q)

and w € Ay if
Muw(z) < Cw(z) a.e.x € R",

with |Jw]|| 4, being the least constant C' > 0 in the previous expression.



One of the most important properties of A, weights is that they can be
characterized in terms of A; weights in the following way:

wEAp<:>w:u1_pv,

for some u,v € Aj.
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Reaching weak-type (1,1) esti via Extrapolation Theory

Factorization

One of the most important properties of A, weights is that they can be
characterized in terms of A; weights in the following way:

weEA, = w= ul™Py, for some u,v € A;.

Also,

ue A = u~(Mf)°, forsomefe Ll (R")and0<d<1.



Reaching weak-type (1,1) esti via Extrapolation Theory

Factorization

One of the most important properties of A, weights is that they can be
characterized in terms of A; weights in the following way:

weEA, = w= ul™Py, for some u,v € A;.
Also,
ue Ay <= um (Mf)°, forsome fec L] (R")and0<§<1.
Therefore, we can think of A, weights as those of the form:
(M),

with f € L1 (R"),0< & <1 and u € A;.

loc



Reaching weak-type (1,1) esti via Extrapolation Theory

Rubio de Francia

In this setting, we have the Rubio de Francia extrapolation theorem:

Theorem (Rubio de Francia's Extrapolation Theorem)

Given a sublinear operator T such that for some 1 < py < oo we have
1T flLroo(wy < C(w,po)||fllLrow) for every w € Ay,
then, for every 1 < p < oo,

IT 1l oo (w) < C(w, po, p)|| fllLr(w)  for every w € Ap.




It is also known (Kerman and Torchinsky, 1982) that the
Hardy-Littlewood maximal operator M satisfies, for 1 < p < oc:

I MXE| Lo (w) < Cw(B)YP <= w € AR

«Or «Fr «E=>»

«E)»

DA



Reaching weak-type (1,1) esti via Extrapolation Theory

Restricted weak-type

It is also known (Kerman and Torchinsky, 1982) that the
Hardy-Littlewood maximal operator M satisfies, for 1 < p < oo:

I MXE| Lo (w) < Cw(B)YP <= w € AR

where, for 1 < p < oo, w € A% if

1/
g = sup |g| (“’(@) T



Reaching weak-type (1,1) esti via Extrapolation Theory

Restricted weak-type

It is also known (Kerman and Torchinsky, 1982) that the
Hardy-Littlewood maximal operator M satisfies, for 1 < p < oo:

I MXE| Lo (w) < Cw(B)YP <= w € AR

where, for 1 < p < oo, w € A% if

oz = sup 101 (142 i)/ oo

It holds that A, C AT C A,,. for every e > 0 and AT = A;.



weight u, then

with

It can be proved that given a locally integrable function f and an A;

(Mf)~Pu e A,

_ 1
M) Pular < full{”
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Reaching weak-type (1,1) esti via Extrapolation Theory

A new class of weights

It can be proved that given a locally integrable function f and an A;
weight u, then

(Mf)"Pu e AT,
with ,
_ 1
1M ) Pullar S llullf)-
However, we do not know if all AZ} weights are of this form! Therefore,
the class we want to define is exactly

Ay ={w=(Mf)'"Pu, where f € Ll ue A} C AR,

with ,
. 1
hwllz, = inf flull}?.



Given a sublinear operator T such that for some 1 < pg < co we have
ITx 2l Lro> (w) < C(w,po)w(E)/P°

then, for every 1 < p < oo,

for every w € Epo,

||TXE||L1”°°('w) < C(u7p07p)w(E)1/p

for every w € A\p.
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Reaching weak-type (1,1) esti via Extrapolation Theory

From restricted weak-type to weak-type

Looking at this result, we have that if an operator 7" is of restricted
weak-type (pg,po) for every weight in A, then it is of restricted
weak-type (1, 1) for every weight in A;.



Reaching weak-type (1,1) esti via Extrapolation Theory

From restricted weak-type to weak-type

Looking at this result, we have that if an operator 7" is of restricted
weak-type (pg,po) for every weight in A, then it is of restricted
weak-type (1, 1) for every weight in A;.

However, it can be proved that for a wide range of operators (called

(e, 6)—atomic (approximable) operators), the restricted weak-type (1,1)
is equivalent to the weak-type (1,1)!!



Reaching weak-type (1,1) esti via Extrapolation Theory

From restricted weak-type to weak-type

Looking at this result, we have that if an operator 7" is of restricted

weak-type (pg,po) for every weight in A, then it is of restricted
weak-type (1, 1) for every weight in A;.

However, it can be proved that for a wide range of operators (called

(e, 6)—atomic (approximable) operators), the restricted weak-type (1,1)
is equivalent to the weak-type (1,1)!!

For instance, it can be checked that if

Tf(z) = K * f(x),

with K € LP(R™) for some 1 < p < o0, then T is (g, §)—atomic,



Reaching weak-type (1,1) esti via Extrapolation Theory

From restricted weak-type to weak-type

Looking at this result, we have that if an operator 7" is of restricted
weak-type (pg,po) for every weight in A, then it is of restricted
weak-type (1, 1) for every weight in A;.

However, it can be proved that for a wide range of operators (called
(e, 6)—atomic (approximable) operators), the restricted weak-type (1,1)
is equivalent to the weak-type (1,1)!!

For instance, it can be checked that if

Tf(z) = K * f(x),

with K € LP(R™) for some 1 < p < oo, then T is (g, §)—atomic, and if
{T}n is a sequence of (&, §)—atomic operators, then both

1/q
T*f(w)=sglp\Tnf(w)\7 and Tf(x)=<ZITnf(w)q> :

are (e, )—atomic approximable, for every ¢ > 1.



Reaching weak-type (1,1) esti via Extrapolation Theory

Applications

Some examples of operators to which one can apply this new
extrapolation are:

(i) If u(x,t) = Py % f(x) is the Poisson integral of f, the Lusin area
integral is defined by

dydt e
Y
Saf(m) = <£ () |Vu(y,t)|2tn_1> ’

where I'o(z) = {(y,t) € RT™" : |y — 2| < at}.




Reaching weak-type (1,1) esti via Extrapolation Theory

Applications

Some examples of operators to which one can apply this new
extrapolation are:

(i) If u(x,t) = Py % f(x) is the Poisson integral of f, the Lusin area
integral is defined by

dydt e
Y
Saf(m) = <£ () |Vu(y,t)|2tn_1> ’

where I'o(z) = {(y,t) € RT™" : |y — 2| < at}.
(i) The Littlewood-Paley g-function

1/2

g(f)(z) = (/Ooot|Vu(x,t)|2dt>



Reaching weak-type (1,1) esti via Extrapolation Theory

Applications

Some examples of operators to which one can apply this new
extrapolation are:

(i) If u(x,t) = Py % f(x) is the Poisson integral of f, the Lusin area
integral is defined by

dydt e
Y
Saf(m) = <£ () |Vu(y,t)|2tn_1> ’

where I'o(z) = {(y,t) € RT™" : |y — 2| < at}.
(i) The Littlewood-Paley g-function

s = ([ OotIVU(x,t)|2dt>1/2.

(iii) The intrinsic square function G, (introduced by M. Wilson), Haar
shift operators, averages of operators satisfying the hypothesis...



Reaching weak-type (1,1) esti via Extrapolation Theory

Bochner-Riesz

Normally, if one has the proof of the strong-type (p,p) for A, weights for
some operator and it does not rely on the 1 + ¢ property of the weights,
it can be adapted to prove the corresponding restricted weak-type for the

A, class...



Reaching weak-type (1,1) esti via Extrapolation Theory

Bochner-Riesz

Normally, if one has the proof of the strong-type (p,p) for A, weights for
some operator and it does not rely on the 1 + ¢ property of the weights,
it can be adapted to prove the corresponding restricted weak-type for the
A, class...but sometimes...

(T F)(€) = FE)(1 = g2

The Bochner-Riesz operator at the critical index A = (n —1)/2 !l



classes.

e The proofs of the strong-type (p, p) for A, weights (the first one due to
X. Shi and Q. Sun) strongly use the 1 + & property of the Muckenhoupt

«O> «4F»r «=)»

«E)»

DA



Reaching weak-type (1,1) esti via Extrapolation Theory

We are almost therel

e The proofs of the strong-type (p, p) for A, weights (the first one due to

X. Shi and Q. Sun) strongly use the 1 + & property of the Muckenhoupt
classes.

e We can reduce to proving that, for every measurable set E and every
u € Aq:

ITA(XE) | 2.0 (M) -20) < Clu)u(E)/2.
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We are almost therel

e The proofs of the strong-type (p, p) for A, weights (the first one due to
X. Shi and Q. Sun) strongly use the 1 + & property of the Muckenhoupt
classes.

e We can reduce to proving that, for every measurable set E and every
u € Aq:

ITA(XE) | 2.0 (M) -20) < Clu)u(E)/2.

e It would yield a new proof of A. Vargas’ result showing that T is of
weak-type (1, 1) for every weight in A; and hopefully, a new technique to
be applied to other operators!
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We are almost therel

e The proofs of the strong-type (p, p) for A, weights (the first one due to
X. Shi and Q. Sun) strongly use the 1 + & property of the Muckenhoupt
classes.

e We can reduce to proving that, for every measurable set E and every
u € Aq:
1T ()2 (Mrxyi-2a) < Clw)u(B)2,

e It would yield a new proof of A. Vargas’ result showing that T is of
weak-type (1, 1) for every weight in A; and hopefully, a new technique to
be applied to other operators!

e The good thing of this approach is that one deals with Banach spaces
(whereas in proving a weak-type (1, 1) estimate directly forces you to put
up with the L1°° quasinorm). However, the main drawback is that the

A, class does not have the 1 + ¢ property which has turned out to be
really useful when proving A, estimates.



Reaching weak-type (1,1) esti via Extrapolation Theory

Gracies per la vostra atencid!
Gracias por vuestra atencion!

Thank you for your attention!



