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Reaching weak-type (1,1) estimates via Extrapolation Theory

Ap weights

It is well-known (Muckenhoupt, 1972) that the Hardy-Littlewood
maximal operator M satisfies, for 1 ≤ p <∞:

‖Mf‖Lp,∞(w) ≤ C‖f‖Lp(w) ⇐⇒ w ∈ Ap

where, for 1 < p <∞, w ∈ Ap if

‖w‖Ap = sup
Q

w(Q)

|Q|

(
w−p

′/p(Q)

|Q|

)p/p′
<∞,

and w ∈ A1 if
Mw(x) ≤ Cw(x) a. e. x ∈ Rn,

with ‖w‖A1 being the least constant C > 0 in the previous expression.
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Reaching weak-type (1,1) estimates via Extrapolation Theory

Factorization

One of the most important properties of Ap weights is that they can be
characterized in terms of A1 weights in the following way:

w ∈ Ap ⇐⇒ w = u1−pv, for some u, v ∈ A1.

Also,

u ∈ A1 ⇐⇒ u ≈ (Mf)δ, for some f ∈ L1
loc(Rn) and 0 ≤ δ < 1.

Therefore, we can think of Ap weights as those of the form:

(Mf)δ(1−p)u,

with f ∈ L1
loc(Rn), 0 < δ < 1 and u ∈ A1.
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Rubio de Francia

In this setting, we have the Rubio de Francia extrapolation theorem:

Theorem (Rubio de Francia’s Extrapolation Theorem)

Given a sublinear operator T such that for some 1 ≤ p0 <∞ we have

‖Tf‖Lp0,∞(w) ≤ C(w, p0)‖f‖Lp0 (w) for every w ∈ Ap0 ,

then, for every 1 < p <∞,

‖Tf‖Lp,∞(w) ≤ C(w, p0, p)‖f‖Lp(w) for every w ∈ Ap.
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Restricted weak-type

It is also known (Kerman and Torchinsky, 1982) that the
Hardy-Littlewood maximal operator M satisfies, for 1 ≤ p <∞:

‖MχE‖Lp,∞(w) ≤ Cw(E)1/p ⇐⇒ w ∈ ARp

where, for 1 ≤ p <∞, w ∈ ARp if

‖w‖ARp = sup
F⊆Q

|F |
|Q|

(
w(Q)

w(F )

)1/p

<∞.

It holds that Ap ⊆ ARp ⊆ Ap+ε for every ε > 0 and AR1 = A1.
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A new class of weights

It can be proved that given a locally integrable function f and an A1

weight u, then
(Mf)1−pu ∈ ARp ,

with
‖(Mf)1−pu‖ARp . ‖u‖1/pA1

.

However, we do not know if all ARp weights are of this form! Therefore,
the class we want to define is exactly

Âp =
{
w = (Mf)1−pu, where f ∈ L1

loc, u ∈ A1

}
⊆ ARp ,

with
‖w‖Âp = inf ‖u‖1/pA1

.
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The extrapolation result

Theorem (Carro-Grafakos-Soria)

Given a sublinear operator T such that for some 1 ≤ p0 <∞ we have

‖TχE‖Lp0,∞(w) ≤ C(w, p0)w(E)1/p0 for every w ∈ Âp0 ,

then, for every 1 ≤ p <∞,

‖TχE‖Lp,∞(w) ≤ C(u, p0, p)w(E)1/p for every w ∈ Âp.
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From restricted weak-type to weak-type

Looking at this result, we have that if an operator T is of restricted
weak-type (p0, p0) for every weight in Âp0 , then it is of restricted
weak-type (1, 1) for every weight in A1.

However, it can be proved that for a wide range of operators (called
(ε, δ)−atomic (approximable) operators), the restricted weak-type (1, 1)
is equivalent to the weak-type (1, 1)!!

For instance, it can be checked that if

Tf(x) = K ∗ f(x),

with K ∈ Lp(Rn) for some 1 ≤ p <∞, then T is (ε, δ)−atomic, and if
{Tn}n is a sequence of (ε, δ)−atomic operators, then both

T ∗f(x) = sup
n
|Tnf(x)|, and Tf(x) =

(∑
n

|Tnf(x)|q
)1/q

,

are (ε, δ)−atomic approximable, for every q ≥ 1.
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Applications

Some examples of operators to which one can apply this new
extrapolation are:
(i) If u(x, t) = Pt ∗ f(x) is the Poisson integral of f , the Lusin area

integral is defined by

Sαf(x) =

(∫
Γα(x)

|∇u(y, t)|2 dydt
tn−1

)1/2

,

where Γα(x) = {(y, t) ∈ Rn+1
+ : |y − x| < αt}.

(ii) The Littlewood-Paley g-function

g(f)(x) =

(∫ ∞
0

t|∇u(x, t)|2dt
)1/2

.

(iii) The intrinsic square function Gα (introduced by M. Wilson), Haar
shift operators, averages of operators satisfying the hypothesis...
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Bochner-Riesz

Normally, if one has the proof of the strong-type (p, p) for Ap weights for
some operator and it does not rely on the 1 + ε property of the weights,
it can be adapted to prove the corresponding restricted weak-type for the
Âp class...

but sometimes...

̂(Tλf)(ξ) = f̂(ξ)(1− |ξ|2)λ+.

The Bochner-Riesz operator at the critical index λ = (n− 1)/2 !!!
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Âp class...but sometimes...

̂(Tλf)(ξ) = f̂(ξ)(1− |ξ|2)λ+.

The Bochner-Riesz operator at the critical index λ = (n− 1)/2 !!!



Reaching weak-type (1,1) estimates via Extrapolation Theory

We are almost there!

• The proofs of the strong-type (p, p) for Ap weights (the first one due to
X. Shi and Q. Sun) strongly use the 1 + ε property of the Muckenhoupt
classes.

• We can reduce to proving that, for every measurable set E and every
u ∈ A1:

‖Tλ(χE)‖L2,∞((MχE)1−2u) ≤ C(u)u(E)1/2.

• It would yield a new proof of A. Vargas’ result showing that Tλ is of
weak-type (1, 1) for every weight in A1 and hopefully, a new technique to
be applied to other operators!

• The good thing of this approach is that one deals with Banach spaces
(whereas in proving a weak-type (1, 1) estimate directly forces you to put
up with the L1,∞ quasinorm). However, the main drawback is that the
Âp class does not have the 1 + ε property which has turned out to be
really useful when proving Ap estimates.
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Gràcies per la vostra atenció!

Gracias por vuestra atención!

Thank you for your attention!


