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The purpose of this paper is to develop a methodology to generate simplified

models suitable for the analysis of the motion of a small particle, such as
a spacecraft or an asteroid, in the Solar System. The procedure is based on

applying refined Fourier analysis methods to the time–dependent functions

that appear in the differential equations of the problem. The equations of the
models obtained are quasi–periodic perturbations of the Restricted Three Body

Problem that depend explicitly on natural frequencies of the Solar System.

Some examples of these new models are given and compared with other ones
found in the literature. For two of these new models, close to the Earth–Moon

system, we have computed the dynamical substitutes of the collinear libration
points.

1. Introduction

The main goal of this paper is the construction of quasi–periodic analytic

models suitable for the study of the motion of a small particle in the Solar
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System. Without any simplification, the equations of the general problem

form a set of 60 first order differential equations difficult to analyze. It is

well known that very simple models, such as the Two Body Problem or the

Restricted Three Body Problem (RTBP), are suitable for many purposes,

since they give a good insight of dynamics in large regions of the phase space

of the problem. Some of these models are restricted, which means that the

small particle does not have any influence in the motion of the remaining

bodies. The models introduced in this paper will be also restricted but not

so simple as the ones already mentioned. We will try to keep within them

the behavior of the dynamics related to the resonances between natural and

excitation frequencies.

Most of the well known restricted problems take as starting point the

RTBP. In our approach, instead of taking as starting equations those of the

RTBP, we will consider Newton’s equation for the motion of an infinitesimal

body in the force field created by the bodies of the Solar System. Following

the ideas of 1, in Sect. 2 we introduce suitable reference systems and units

such that, after selecting two bodies of the Solar System as primaries, the

previously mentioned equations are set as a perturbation of the RTBP.

In Sect. 3, and for two particular choices of primaries, we perform the

Fourier analysis of all the time periodic functions that appear in the new

equations. In this way we are able to introduce a graded set of models

with an increasing number of frequencies, that can be considered between

the RTBP and the true equations. This is done in Sect. 4. Finally, in the

last section we compute the dynamical substitutes of the collinear equi-

librium points for two of the intermediate models introduced, close to the

Earth–Moon system. The computation of the dynamical substitutes of the

libration points in models different from the ones developed here can be

found in 2,3,4,5

Most of the results to be developed in this paper can be also found in 6.

This reference includes additional details about the development of models

for the Earth–Moon system, which are not be given here.
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2. General equations of motion

Through the full paper, the set of bodies of the Solar System will be denoted

by

S = {P1, . . . , P11} (1)

where P1,. . . ,P11 are the nine planets, the Moon and the Sun, respectively.

The mass of P ∈ S will be denoted by mP .

Let us consider, in an intertial reference frame, Newton’s equations for

the motion of an infinitesimal body in the force field created by the bodies

of the Solar System,

R′′ = G
∑

i

mi
(Ri −R)

‖R−Ri‖3
, (2)

were G is the gravitational constant, R is the position of the infinitesimal

body, Ri is the position of the Solar System body i in the inertial system

chosen and mi its mass. The associated Lagrangian is

L(R,R′, t∗) =
1

2
〈R′,R′〉+

∑

i∈S

Gmi

‖R−Ri‖
,

where R = (X,Y, Z)T is the position of Q, the prime denotes the derivative

with respect to time, t∗, 〈R′,R′〉 is the dot product between R′ and R′,

G is the gravitational constant, Ri is the position of the body i ∈ S and

‖ · ‖ denotes the Euclidean norm. In practice, it is convenient that the

reference frame and units, both in space and time, are consistent with the

ephemerides data files used for the determination of Ri.

Since we are interested in writing the equations of motion for Q as a

perturbation of the RTBP equations, we must select two bodies I, J ∈ S

with mI > mJ , which will play the role of primaries. In this way, the

mass parameter, µ, is defined as µ = mJ/(mI + mJ), and so 1 − µ =

mI/(mI+mJ ). Next, we must introduce the synodic reference frame. Recall

that the origin of this system is set at the barycenter of I, J and that the

positions of the primaries are fixed at (µ, 0, 0) and (µ− 1, 0, 0) 7.

Following Gómez et al.1, the transformation from synodical coordinates,

r = (x, y, z)T , to sidereal ones, R, is defined by

R = B+ kCr, (3)
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where

– The translation, B, is given by

B =
mIRI +mJRJ

mI +mJ
,

that clearly puts the barycenter of the primaries at the origin,

– The orthogonal matrix C = (e1, e2, e3), sets the primaries on the x–

axis and turns the instantaneous plane of motion of the primaries into

the xy plane (by requiring that the relative velocity of one primary

with respect to the other has its third component equal to zero). The

columns of C are

e1 =
RJI

‖RJI‖
, e3 =

RJI ×R′
JI

‖RJI ×R′
JI‖

, e2 = e3 × e1,

being RJI = RI −RJ .

– k = ‖RJI‖ is a scaling factor which makes the distance between the

primaries to be constant and equal to 1.

It is important to remark that this change of variables is non–autonomous,

since B, k and C depend on time through the components of RI and RJ .

The change of coordinates given by Eq. (3) is checked to preserve the

Lagrangian form of the equations and the new Lagrangian becomes

L(r, r′, t∗) =
1

2
〈B′,B′〉+ k′〈B′, s〉+ k〈B′, s′〉

+
GmI

k[(x− µ)2 + y2 + z2]1/2
+

GmJ

k[(x− µ+ 1)2 + y2 + z2]1/2

+
∑

i∈S∗

Gmi

k‖r− ri‖
+

1

2
k′2〈r, r〉+ kk′〈s, s′〉+

1

2
k2〈s′, s′〉,

where s = Cr, ri is the position of the body i in dimensionless coordi-

nates and S∗ represents the set of Solar System bodies without the two

primaries I, J . To get the above expression of L, we use that C defines an

orthogonal transformation and, hence, it preserves the scalar product and

the Euclidean norm.

Finally, we want to use the same time units as those usual for the RTBP,

where 2π time units correspond to one revolution of the primaries. If t∗ is
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some dynamical time and n is the mean motion of J with respect to I, then

we perform the change of independent variable through

t = n(t∗ − t∗0), (4)

where t∗0 is a fixed epoch. From now on, t will be called dimensionless

time. In Table 2 we give the values of n for the Earth–Moon and the

Sun–(Earth+Moon) systems. In this second case, Earth+Moon means the

Earth–Moon barycenter and, for this system, the Earth and the Moon are

substituted in S by a fictitious body of mass mE +mM behaving as their

barycenter. The values in Table 2 are averaged values through the 6000

years covered by the JPL ephemerides file DE406 8, and have been com-

puted from this file. Using Kepler’s third law, G(mI +mJ) = n2a3, we can

also define the mean semi–major axis of the orbit of one primary around

the other; these values are also given in Table 2.

Table 1. Values for the mean motion and mean
semi–major axis used in the Earth–Moon and Sun–
(Earth+Moon) cases. The units are (Julian Days)−1 and
km.

Earth–Moon Sun–(Earth+Moon)

n 0.22997154619514 0.01720209883844

a 384601.25606767 149598058.09228115

If we denote with a dot the derivative with respect to t, remove those

terms independent of r and ṙ and multiply by the scaling factor a/(G(mI+

mJ)) = 1/(n2a2), the new Lagrangian can be written as

L(r, ṙ, t) =
1

a2

(

k̇〈Ḃ, s〉+ k〈Ḃ, ṡ〉+
1

2
k̇2〈r, r〉+ kk̇〈s, ṡ〉+

1

2
k2〈ṡ, ṡ〉

)

+
a

k

(

1− µ

[(x− µ)2 + y2 + z2]1/2
+

µ

[(x− µ+ 1)2 + y2 + z2]1/2

+
∑

i∈S∗

µi
‖r− ri‖

)

,

where µi = mi/(mI +mJ).

Since e1, e2, e3 form an orthogonal basis, we have that 〈ei, ej〉 = δij ,

〈ėi, ej〉 = −〈ei, ėj〉 and 〈ėi, ei〉 = 0 for i, j = 1, 2, 3. It can be further

shown that 〈ė1, ė2〉 = 0, 〈ė2, ė3〉 = 0 and 〈ė1, e3〉 = 0. Recalling that

r = (x, y, z)T , writing s = Cr = e1x + e2y + e3z and using the previous
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relations, we get

L(r, ṙ, t) = a1(ẋ
2 + ẏ2 + ż2) + a2(xẋ+ yẏ + zż) + a3(xẏ − ẋy)

+a4(yż − ẏz) + a5x
2 + a6y

2 + a7z
2 + a8xz

+a9ẋ+ a10ẏ + a11ż + a12x+ a13y + a14z

+a15

(

1− µ

[(x− µ)2 + y2 + z2]1/2
+

µ

[(x− µ+ 1)2 + y2 + z2]1/2

+
∑

i∈S∗

µi
[(x− xi)2 + (y − yi)2 + (z − zi)2]1/2

)

,

where the ai are time dependent functions that can be computed in terms

of the positions, velocities, accelerations and over–accelerations of the two

primaries. Using Lagrange equations (d(∂L/∂ ṙ)/dt = ∂L/∂r) we get the

second–order differential equations






















ẍ = b1 + b4ẋ+ b5ẏ + b7x+ b8y + b9z + b13
∂Ω

∂x
,

ÿ = b2 − b5ẋ+ b4ẏ + b6ż − b8x+ b10y + b11z + b13
∂Ω

∂y
,

z̈ = b3 − b6ẏ + b4ż + b9x− b11y + b12z + b13
∂Ω

∂z
,

(5)

being

Ω =
1− µI,J

√

(x− µI,J )2 + y2 + z2
+

µI,J
√

(x− µI,J + 1)2 + y2 + z2

+
∑

j∈S

j 6=I,J

µI,J,j
√

(x− xj)2 + (y − yj)2 + (z − zj)2
(6)

where µI,J,j =
mj

mI+mJ
and the bi time–dependent functions are defined as

b1 =
−1

k
(B̈e1), b6 = 2(ė2e3), b11 =

2k̇

k
(ė2e3) + (ë2e3),

b2 =
−1

k
(B̈e2), b7 = (ė1ė1)−

k̈

k
, b12 = (ė3ė3)−

k̈

k
,

b3 =
−1

k
(B̈ė3) b8 =

2k̇

k
(ė1e2) + (ë1e2), b13 =

a3

k3
,

b4 =
−2k̇

k
b9 = (ė1ė3),

b5 = 2(ė1e2), b10 = (ė2ė2)−
k̈

k
.



Dynamical Substitutes of Libration Points 379

We note that setting bi = 0 for i 6= 5, 7, 10, 13, b5 = 2, b7 = b10 = b13 = 1

and skipping the sum over S∗ in Eq. (6), the Eqs. (5) become the usual

RTBP equations with mass parameter µ. Therefore, we can see Eqs. (5)

as a perturbation of the RTBP equations. Once the primaries have been

fixed, we will get an idea of the order of magnitude of the perturbation, by

looking at the first coefficient of the Fourier expansions of the bi functions.

The Fourier analysis of this functions will be done in the next sections for

two different systems.

If we we introduce momenta as

px =
∂L

∂ẋ
, py =

∂L

∂ẏ
, pz =

∂L

∂ż
, (7)

we have

px = 2a1ẋ+ a2x− a3y + a9,

py = 2a1ẏ + a2y + a3x− a4z + a10,

pz = 2a1ż + a2z + a4y + a11.

(8)

It is known that, in this case, the Hamiltonian of the model is given in

terms of the Lagrangian as H(r,p, t) = ẋpx + ẏpy + żpz − L(r, ṙ, t), where

p = (px, py, pz)
T and ẋ, ẏ, ż can be written in terms of px, py, pz from (8).

After expanding the previous expression of H, skipping terms that do not

depend on r,p and collecting we obtain

H(r,p, t) = c1(p
2
x + p2

y + p2
z) + c2(xpx + ypy + zpz) + c3(ypx − xpy) +

+c4(zpy − ypz) + c5x
2 + c6y

2 + c7z
2 + c8xz +

+c9px + c10py + c11pz + c12x+ c13y + c14z +

+c15

(

1− µ

[(x− µ)2 + y2 + z2]1/2
+

µ

[(x− µ+ 1)2 + y2 + z2]1/2
+

+
∑

i∈S∗

µi
[(x− xi)2 + (y − yi)2 + (z − zi)2]1/2

)

, (9)
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where

c1 =
a2

2k2
, c9 =

−1

k
Ḃe1,

c2 =
−k̇

k
, c10 =

−1

k
Ḃe2,

c3 = ė1e2, c11 =
−1

k
Ḃe3,

c4 = ė2e3, c12 =
k

a2

(

(ė1e2)(Ḃe2)− Ḃė1

)

,

c5 =
k2

2a2

(

(ė1e2)
2 − ė1ė1)

)

, c13 =
k

a2

(

(ė2e3)(Ḃe3)

c6 =
k2

2a2

(

(ė1e2)
2 + (ė2e3)

2 − ė2ė2

)

, − (ė1e2)(Ḃe1)− Ḃė2

)

,

c7 =
k2

2a2

(

(ė2e3)
2 − ė3ė3

)

, c14 =
−k

a2

(

(ė2e3)(Ḃe2) + Ḃė3

)

,

c8 =
k2

a2

(

−(ė1e2)(ė2e3)− ė1ė3

)

, c15 =
−a

k

Note that setting c1 = 1/2, c3 = 1, c15 = 1, the rest of ci equal to zero, and

skipping the sum over S∗, we recover the Hamiltonian of the RTBP 7. The

Hamiltonian of the bicircular coherent models 2,4 can also be recovered by

setting c1 = α1/2, c2 = α2, c3 = α3, c12 = α4, c13 = α5, c15 = −α6, the

rest of ci equal to zero, and letting the sum over S∗ run only over the Sun,

with xS = α7, yS = α8 and zS = 0.

3. Fourier analysis

This section is devoted to the results of the Fourier analysis applied to all the

time–dependent functions appearing in Eqs. (5), (6), this is: the bj functions

and the coordinates, xi, yi, zi, of the bodies of the Solar System included

in S∗. The Fourier analysis follows the methodology developed in Gḿez et

al.9, which is a refined procedure that allows a very accurate determination

of frequencies and amplitudes for analytic quasi–periodic functions. Here

we will discuss the selection of the main parameters used in the method

as well as the results obtained. Although the analysis can be done for any

set of primaries, we have selected two different couples —the Earth and
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the Moon and the Sun and the Earth–Moon barycenter— because of their

relevance in many spacecraft mission analysis simulations.

3.1. Fourier analysis of the bi functions

Using the algorithm described in 9, we have performed Fourier analysis

of the {bi}i=1,...,13 functions, both for the Earth–Moon case and the Sun–

(Earth+Moon) case. This means that for each bi function we have obtained

a set of frequencies and amplitudes that define its quasi–periodic approxi-

mation as a trigonometric polynomial, Qbi
(t). As for any Fourier procedure,

the most relevant parameters to be specified are the size, T , of the time

(sampling) interval and the number, N , of equally spaced sampling points

chosen in the interval. These parameters define, for instance, the Nyquist

critical frequency, ωc = N/(2T ), that fixes the window within we will find

all the frequencies (true or aliased) of our time series. So, the first thing

that we need is some criteria to choose properly T and N .

Due to our implementation of the Fourier analysis procedure, the pa-

rameter N must range over powers of two. For consistency, the length, T ,

of the time–interval has also been chosen to range over a geometric progres-

sion, and the time–interval has always started at January 1st, 2001. The

smallest time–interval length, Tmin, has been taken of 95 years (34698.75

Julian days) and the greatest time–interval length, Tmax, has been chosen

as the maximum time–interval covered by the JPL DE406 ephemerides af-

ter Jan 1st 2001, which is 364938 Julian days (999.15 years). Therefore, we

have let T range over the set {δnTmin}
10
n=0 where δ = (Tmax/Tmin)

1/10. The

time units used are revolutions of the secondary (J) around the primary

(I) or, equivalently, dimensionless time divided by 2π. The reason for this

is that, in this way, the frequency 1.0 corresponds to one revolution of J

around I, which has a more intuitive meaning (one lunar month in the

Earth–Moon case, one sidereal year in the Sun–(Earth+Moon) case) that

will help in the elaboration of the intermediate models of motion. Moreover,

in order to evaluate the trigonometric approximations of the bi functions,

we only have to multiply the frequencies found by the dimensionless time,

without the need of an additional 2π factor.

The maximum number of samples Nmax has been chosen to be 220, in

order to allow for “comfortable” runs on machines with 64MB of memory
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(or, equivalently, bi–processor machines with 128MB). For each value of T ,

the minimum number of samples has been chosen such that N
2T ≥ 1.5, in

order to make the maximum detectable frequency to be at least 1.5.

Assume that, for certain fixed values of T and N , we have performed

Fourier analysis of a given function bi(t) obtaining the trigonometric poly-

nomial Qbi
(t). Then, we can easily compute the maximum difference be-

tween the analyzed function and its quasi–periodic approximation at the

sampling points, that is,

dmax = max
l=0,...,N−1

∣

∣bi(tl)−Qbi
(tl)
∣

∣, (10)

where tl = l (T/N), l = 0, . . . , N − 1 are the sampling epochs. In Figure 1

(Sun–(Earth+Moon) case, see 6 for the Earth–Moon one) we have repre-

sented, for all the bi functions, the minimum of dmax with respect to the

different values of N explored, when varying T according to the preceding

discussion.

To reduce the leakage effect, in all the computations we have multiplied

our data by a Hanning function of order two

H2
T (t) =

2

3

(

1− cos

(

2π
t

T

))2

.

The advantages of the Hanning function with respect to other well–known

window functions 10 are its simplicity and its degree of differentiability.

For instance, Hn
T (t) has degree 2n, whereas a general “triangle window

function” TnT (t) has degree just n. This higher degree of regularity implies

a faster decay of the Fourier coefficients (see 9 for more details).

In order to control aliasing, two different strategies have been followed.

The first one is based on time–domain, and consists in computing the max-

imum difference between the initial function and its quasi–periodic approx-

imation, over a refinement of the initial grid of data used for the Fourier

analysis. This difference will be denoted as α1. If it increases significantly

when increasing the number of points of the grid, then aliasing is very likely

to occur. For this test, we have used a refinement with 16N equally spaced

points in [0, T ].

The second anti–aliasing strategy is based on frequency–domain. It con-

sists in computing the number of rightmost consecutive harmonics of the

residual Discrete Fourier Transform (DFT) that have modulus less than a
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Fig. 1. Error results of the Fourier analysis of the bi functions in the Sun–(Earth+Moon)

case. For each value of T explored, we have represented the minimum value of dmax with

respect to N . The values of T are given in sidereal years (revolutions of the Earth around
the Sun).
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fraction of the maximum modulus of the residual DFT. Then, we divide

this number by N/2, the total number of harmonics, and this defines the

parameter α2. That is, if Ei(t) = bi(t)−Qbi
(t) is the error of the trigono-

metric approximation of bi(t) and cEi,T,N (j), sEi,T,N (j), j = 0, . . . , N/2,

are the cosine and sine coefficients of its DFT, we compute

pEi,T,N (j) = ((cEi,T,N (j))2 + (sEi,T,N (j))2)1/2,

pmax = max
j=0,...,N/2

pEi,T,N (j),

α2 =
min{j : pEi,T,N (l) ≤ pmax/25 for l = j, . . . , N/2}

N/2

Then, for instance, a value of 0.2 for α2 means that there are no frequencies

greater than 0.8 · ωmax = 0.8 · (N/2T ), with amplitude greater than 1/25

times the modulus of the residual DFT, so we do not expect aliasing in

the corresponding Fourier analysis. We are assuming here that amplitudes

decrease as frequencies increase, which is ensured by the Cauchy estimates

of the Fourier coefficients for an analytic quasi–periodic function.

As an example of aliasing and how the two previously–described strate-

gies detect it, we have represented in Figure 2 the residual DFT of some

of the Fourier analysis of the b1 function in the Earth–Moon case. Some

numerical values of these analysis are given in Table 3.1. In the left plot,

we see that for N = 16384 there are frequencies of high amplitude near

ωmax = 4.02903. As we increase N , the amplitude of the frequencies near

ωmax decrease and the values of dmax as well as the parameter α1 of the

first anti–aliasing strategy become closer.
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Fig. 2. Modulus of the residual DFT some of the Fourier analysis of the b1 function

in the Earth–Moon case. The values of the parameters of these analysis are given in

Table 3.1.

According to this, for the results displayed in Figure 1 only those anal-

yses with α1 < 1.2dmax and α2 ≥ 0.2 have been taken into account.
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For the generation of simplified models for the Solar System, among all

the analysis performed we have selected the best ones in terms of minimum

dmax. The corresponding parameters of these “best” analysis are given in

Tables 3.1 (Earth–Moon) and 3.1 (Sun–(Earth+Moon)).

Table 2. Parameters associated to the Fourier analysis of Fig. 2. From left to

right: day0, initial Julian day since Jan 1st, 2001; dayf , final Julian day (same

units); T , time interval in J–revolutions; N , number of points used; ωmax, maxi-

mum detectable frequency; pmax, maximum modulus of the residual DFT; dmax,

maximum difference between b1 and its quasi–periodic approximation over the

samples; α1, α2, values of the two anti–aliasing parameters.

day0 dayf T N ωmax pmax dmax α1 α2

366 55917.4 2033.24 16384 4.02903 2.66E–05 4.90E–04 2.29E–03 0.0007
366 55917.4 2033.24 32768 8.05806 2.66E–05 5.30E–04 5.67E–04 0.1633
366 55917.4 2033.24 65536 16.1161 2.66E–05 5.63E–04 5.67E–04 0.5816

Table 3. Values of the parameters for the best Fourier analyses of the

bi functions for the Earth–Moon case.

function T (days) T (J–rev.) N pmax dmax

b1 55551.4 2033.24 65536 2.66E–05 5.63E–04
b2 55551.4 2033.24 65536 2.67E–05 5.49E–04
b3 55551.4 2033.24 32768 3.30E–06 5.58E–05
b4 55551.4 2033.24 65536 2.31E–06 5.01E–05

b5 43904.0 1606.94 32768 4.85E–06 9.16E–05
b6 70288.7 2572.64 32768 3.92E–08 1.13E–06

b7 55551.4 2033.24 65536 3.51E–06 7.81E–05
b8 55551.4 2033.24 524288 1.96E–07 5.94E–06

b9 70288.7 2572.64 65536 1.97E–08 5.69E–07
b10 55551.4 2033.24 65536 3.51E–06 7.83E–05

b11 70288.7 2572.64 65536 1.67E–08 5.05E–07
b12 43904.0 1606.94 32768 1.58E–06 3.29E–05

b13 55551.4 2033.24 65536 3.51E–06 7.99E–05

3.2. Fourier analysis of the positions of the planets

In order to complete the quasi–periodic approximation of all the time–

dependent part in the vector–field given by Eqs. (5), we have performed

Fourier analysis of each coordinate xi, yi, zi of the Solar System bodies in

dimensionless coordinates, using the same procedure as for the analysis of

the bi functions. Plots of the minimum value of dmax with respect to N ,

for fixed values of T , as well as tables with the values of the parameters for

best analyses, can be found in 6.
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Table 4. Values of the parameters for the best Fourier analyses of the

bi functions for the Sun–(Earth+Moon) case. Note that, in this case,

J–revolutions are sidereal years.

function T (days) T (J–rev) N pmax dmax

b1 142382.6 389.815 65536 4.95E–08 4.40E–07

b2 142382.6 389.815 65536 4.95E–08 4.33E–07

b3 112529.5 308.083 131072 2.28E–09 2.68E–08

b4 34698.8 94.998 4096 8.34E–06 6.74E–05

b5 34698.8 94.998 4096 1.75E–05 1.26E–04

b6 88935.7 243.488 262144 1.76E–08 5.71E–07

b7 34698.8 94.998 4096 1.36E–05 9.17E–05

b8 288422.1 789.642 524288 9.65E–08 1.67E–06

b9 88935.7 243.488 131072 9.71E–09 3.19E–07

b10 34698.8 94.998 4096 1.36E–05 9.17E–05
b11 70288.7 192.436 524288 2.35E–08 2.38E–06
b12 34698.8 94.998 4096 3.92E–06 4.06E–05
b13 34698.8 94.998 4096 1.34E–05 9.47E–05

4. Generation of simplified Solar System models

In this section we will generate several simplified Solar System models us-

ing the Fourier approximations computed according to the previous section.

The models obtained will be compared with other ones through the com-

putation of residual accelerations.

4.1. Adjustment using linear combinations of basic

frequencies

In order to give a more physical meaning to the results obtained from the

Fourier analysis, we will write the computed frequencies as linear combina-

tions, with integer coefficients, of basic ones. These basic frequencies can

be identified as “natural” frequencies of the planetary and lunar theories.

The introduction in the Fourier expansions of the basic frequencies will

be the key point for the construction of models of motion with increasing

dynamical complexity.

In principle, the basic frequencies will be extracted from the list of

frequencies computed in the Fourier analysis and using the procedure ex-

plained below. Nevertheless, in some cases it can be convenient to introduce

a fixed set of basic frequencies obtained by other means, for instance from

an analytical lunar theory, and then write all the computed frequencies as
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linear combinations of the ones in this fixed set. Both approaches will be

considered in what follows.

In order to better describe the procedure, we need two definitions. As-

sume that ω1, . . . , ωn is a set of basic frequencies and that a frequency f can

be written as f = k1ω1+. . .+knωn with k1, . . . , kn integer numbers, then we

say that f is a linear combination of ω1, . . . , ωn of order k = |k1|+ · · ·+ |kn|.

We say that f is a linear combination of ω1, . . . , ωn of order k within tol-

erance ε > 0 if, for some k1, . . . , kn such that k = |k1| + · · · + |kn|, we

have

|f − (k1ω1 + k2ω2 + . . .+ knωn)| < ε.

A simple approach for the determination of basic frequencies is:

(1) Choose a maximum order of the linear combinations to be found.

(2) Choose a tolerance for the adjustment of frequencies as linear combi-

nation of basic ones.

(3) For each frequency, try out all the linear combinations of the current

set of basic frequencies up the chosen maximum order.

(4) If any of the linear combinations fulfills the tolerance requirements, add

the current frequency to the set of basic ones.

This procedure may add extra basic frequencies (and thus end up with

a rationally dependent set) in some cases, for instance, if the current fre-

quency is an integer divisor of one of the basic frequencies. To avoid this,

instead of trying to adjust the current frequency as linear combination of

the basic ones, we will try to adjust zero as linear combination of the cur-

rent frequency and the basic ones. If we succeed to do this and the current

frequency gets a coefficient different from ±1, it may be necessary to divide

some basic frequencies by this coefficient.

4.2. Simplified models for the Sun–(Earth+Moon) system

For the models to be developed in this section, and leaving aside the two

primaries —Sun and Earth–Moon barycenter—, we will not consider any

perturbing body in S∗ As it will be shown, this provides rather accurate

models and, at the same time, avoids the introduction of additional basic
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frequencies. In this way, in the equations of motion (5), we will only use

the Fourier expansions of b1, . . . , b13, and its general expression for the

equations of motion will be
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1− µE,M

√

(x− µE,M )2 + y2 + z2
+

µE,M
√

(x− µE,M + 1)2 + y2 + z2

The super–index (i) that we have used for the b
(i)
j , j = 1, . . . , 13, and

Ω(i) functions will be used as a label for the different intermediate mod-

els, according to the number of basic frequencies retained in the Fourier

expansions.

The numerical data obtained (see 11 or contact the authors) suggests

to take into consideration only the b4, b5, b7, b10, b12 and b13 functions.

In addition to this simplification, we will not consider any Solar System

body in Eq. (6), since, just using the bi, we are already taking the Sun

into account. Applying the procedure of Sect. 4.1 to the b13 function, with

tolerance 10−5 and maximum order 20, we get the following four basic

frequencies: ν1 = 0.999992616, ν2 = 0.6255242728, ν3 = 0.9147445983,

ν4 = 1.8313395538. These four frequencies allow to adjust the frequencies

of the Fourier analysis of the b4, b5, b7, b10 and b12 functions. The results

are given in Table 4.2.

According to this, for i = 1, . . . , 4 we define the model SSSMi as the one

given by Eq. (11), taking as b
(i)
j the Fourier expansion of bj computed in

Sect. 3.1, but keeping only the independent term and the frequencies that

can be written as a linear combination of ν1, . . . , νi.

Once the different models have been produced, it is desirable to see if

they are close or not the the “real” one, that is: the full equations of motion

(Eqs. (5) and (6)) in which the time periodic functions, bi and xi, yi, zi, are

computed using the JPL ephemeris files. For these purposes we first select
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Table 5. Fourier analysis results of the dominant bi functions in the

Earth–Sun system. The frequencies have been adjusted as linear combina-

tions,
∑

kiνi, of the four basic frequencies. The order of the linear combina-

tion, k, and the corresponding error are also displayed.

Func Frequency Amplitude Error k1 k2 k3 k4 k

b4 0.00000000000 1.30000E–09 0.00000E+00 0 0 0 0 0

0.99999261980 3.33720E–02 3.38800E–09 1 0 0 0 1

1.99998564390 8.35280E–04 4.11070E–07 2 0 0 0 2

1.25103997640 3.93800E–05 –8.56920E–06 0 2 0 0 2

1.83134352170 3.40050E–05 3.96790E–06 0 0 0 1 1

0.91473091670 2.84920E–05 –1.36820E–05 0 0 1 0 1

2.99997409570 1.97160E–05 –3.75350E–06 3 0 0 0 3

b5 0.00000000000 2.00000E+00 0.00000E+00 0 0 0 0 0

0.99999261700 6.67490E–02 5.51530E–10 1 0 0 0 1
1.99998563790 1.39230E–03 4.05090E–07 2 0 0 0 2
1.25103998380 6.69550E–05 –8.56180E–06 0 2 0 0 2
0.91475203530 6.12480E–05 7.43700E–06 0 0 1 0 1
1.83134663800 4.85690E–05 7.08420E–06 0 0 0 1 1
2.99997541480 3.01690E–05 –2.43440E–06 3 0 0 0 3

b7 0.00000000000 1.00042E+00 0.00000E+00 0 0 0 0 0
0.99999261500 5.00800E–02 –1.41660E–09 1 0 0 0 1

1.99998562010 1.25350E–03 3.87270E–07 2 0 0 0 2
0.91475953220 4.82370E–05 1.49340E–05 0 0 1 0 1
1.25103999430 4.22440E–05 –8.55130E–06 0 2 0 0 2
2.99998010500 3.08040E–05 2.25580E–06 3 0 0 0 3

0.62552269280 2.71900E–05 –1.58000E–06 0 1 0 0 1

b10 0.00000000000 1.00042E+00 0.00000E+00 0 0 0 0 0

0.99999261500 5.00800E–02 –1.41650E–09 1 0 0 0 1
1.99998562010 1.25350E–03 3.87270E–07 2 0 0 0 2

0.91475953220 4.82370E–05 1.49340E–05 0 0 1 0 1
1.25103999430 4.22440E–05 –8.55130E–06 0 2 0 0 2

2.99998010500 3.08040E–05 2.25580E–06 3 0 0 0 3
0.62552269280 2.71900E–05 –1.58000E–06 0 1 0 0 1

b12 0.00000000000 –1.39300E–04 0.00000E+00 0 0 0 0 0

0.99999262330 1.66930E–02 6.87550E–09 1 0 0 0 1

1.99998564990 6.96230E–04 4.17110E–07 2 0 0 0 2

1.83134558880 3.11050E–05 6.03500E–06 0 0 0 1 1
1.25103987210 2.46550E–05 –8.67350E–06 0 2 0 0 2

2.99997235010 2.26070E–05 –5.49910E–06 3 0 0 0 3
0.91470513360 1.30450E–05 –3.94650E–05 0 0 1 0 1

b13 0.00000000000 1.00042E+00 0.00000E+00 0 0 0 0 0
0.99999261640 5.00800E–02 5.35290E–12 1 0 0 0 1

1.99998562580 1.25340E–03 3.93030E–07 2 0 0 0 2

1.25104010020 4.71180E–05 –8.44540E–06 0 2 0 0 2

0.91474459830 4.67440E–05 –4.82540E–11 0 0 1 0 1

2.99997729050 3.07760E–05 –5.58700E–07 3 0 0 0 3

1.83133955380 2.81230E–05 –9.85990E–12 0 0 0 1 1
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a set of trajectories,

γz : R −→ R6

t −→ (r(t), ṙ(t)),

along which the position, r(t), and velocity, ṙ(t), are known. We have done

two kinds of selections. In the first one we have chosen for γz a family

of periodic halo orbits with different z–amplitudes; these orbits are true

solutions of the RTBP (see 1 for their computation) and cover a large set of

solutions with very different sizes. Then, given two models to be compared,

with differential equations r̈ = f(r, ṙ, t) and r̈ = g(r, ṙ, t), respectively, and

given a trajectory, γz, which does not need to be a true solution of any of

the two models, we compute the “mean relative residual acceleration over

γ” as

1

L

∫ T

0

‖f
(

γz(s), t
)

− g
(

γz(s), t
)

‖

‖g
(

γz(s), t
)

‖
‖ṙ(s)‖ds, (12)

where t is a fixed epoch (in dimensionless units) and L is the length of the

trajectory γz (in configuration space).

For the second test the computations are similar except that we have

taken instead of γz(t) a set of points uniformly distributed around a large

neighborhood of the equilibrium points. We have also required to their

energy (Jacobi constant) to be in a certain interval around the value asso-

ciated to the equilibrium points. The results obtained are analogous to the

ones obtained for the halo orbits, and will not be given here.

In Table 4.2, we compare the models RTBP, SSSM1 and SSSM4 with

the real Solar System using the residual acceleration test introduced above.

We note that the SSSM4 model gives worse results than SSSM1. This is not

a contradiction. Looking closer to Table 4.2 we can see that the maximum

amplitude of the frequencies of b4, b5, b7, b10 and b12 that are not multiple

of ν1 is 6.695E–05. Because of that, adding frequencies does not improve

significantly the approximation of the bi functions, and in this way the

structure of Eqs. (5) takes over the fact that the bi terms of SSSM4 are

closer to the ones of the real Solar System than the corresponding terms of

SSSM1.

Therefore, for the Sun–(Earth+Moon) case, we will give SSSM1 as sim-

plified Solar System model. Note that this is a model with very few fre-

quencies (just one) that significantly improves the RTBP.
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Table 6. Mean relative residual accelerations between several mod-

els and the real Solar System over selected halo orbits of the RTBP

around L2 in the Sun–(Earth+Moon) case.

z-a. RTBP SSSM1 SSSM4

0.020000 3.446497E–02 9.901526E–05 8.905454E–04

0.024838 3.411184E–02 9.779360E–05 8.768670E–04

0.030846 3.366579E–02 9.616913E–05 8.589500E–04
0.038308 3.313580E–02 9.416327E–05 8.364166E–04

0.047575 3.254789E–02 9.175134E–05 8.092527E–04

0.059084 3.194355E–02 8.895610E–05 7.776813E–04

0.073376 3.137381E–02 8.582841E–05 7.420444E–04

0.091126 3.089082E–02 8.236183E–05 7.026421E–04

0.113169 3.053770E–02 7.859979E–05 6.597243E–04

0.140545 3.033772E–02 7.450252E–05 6.135638E–04

0.174543 3.028516E–02 7.020714E–05 5.643885E–04
0.216766 3.034115E–02 6.579492E–05 5.127031E–04
0.300000 3.047577E–02 5.898080E–05 4.323859E–04

4.3. Simplified models for the Sun–(Earth+Moon) system

For the Earth–Moon models to be developed in this section, and leaving

aside the two primaries —Earth and Moon— the Sun will be the only

perturbing body in S∗. As it will be shown, this provides rather accurate

models and, at the same time, avoids the introduction of additional basic

frequencies.

In a rather accurate theory for the lunar motion, as the simplified Brown

theory given in 12, the fundamental parameters can be expressed in terms

of five basic frequencies. In terms of cycles per lunar revolution, their nu-

merical values are

• The mean longitude of the Moon, which is set equal to ω1 = 1.0.

• The mean elongation of the Moon from the Sun, ω2 =

0.925195997455093. This is the frequency of the time–dependent part

of the Bicircular Problem (BCP) and the Quasi–Bicircular Problem

(QBCP) mentioned in the Introduction.

• The mean longitude of the lunar perigee, ω3 = 8.45477852931292·10−3.

• The longitude of the mean ascending node of the lunar orbit on the

ecliptic, ω4 = 4.01883841204748 · 10−3.

• The Sun’s mean longitude of perigee, ω5 = 3.57408131981537 · 10−6.
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The value of ω5 is close to the lower frequencies computed in our Fourier

expansions and, at the same time, is close to the precision we can expect in

the determination of frequencies with the data used 9. By these reasons and

in order to have also a set of basic frequencies with astronomical meaning,

we have adopted for the Earth–Moon models these frequencies as the basic

set, instead of the ones provided by the procedure of Sect. 4.1.

This basic set of frequencies needs to be modified in order to give a se-

quence of models that successively improve the RTBP. The Fourier analysis

results 6 suggest to consider a new frequency basis ν1, . . . , ν5, defined as:

• ν1 = ω2, which is the main frequency of b1, b2, xS and yS , so it can

be considered the “main planar frequency”, which is coherent with the

fact that that it is also the frequency of the BCP and QBCP models

(see 13,1).

• ν2 = ω1 − ω3, which allows to complete a first approximation of the

largest functions among the bi and xS , yS , zS .

• ν3 = ω1 − ω2 + ω4, which is the main frequency of b3.

• ν4 = ω1 − ω5, which is the first frequency of xS which cannot be ex-

pressed in terms of ν1, ν2, and

• ν5 = ω5−ω2, which is the first frequency of b3 that cannot be expressed

in terms of ν1, ν2, ν3, ν4.

In order to check all the above statements, the full Fourier expansions can

be found in 11 or provided by the authors. The new basis verifies
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Since the matrix in the above transformation is unimodular, {νi}i=1,...,5 is

a valid basic set of frequencies.

The results for the residual accelerations are given in Table 4.3, using as

test paths several halo orbits around the collinear equilibrium point L2. As

it has already been mentioned, the results with other trajectories, or other

equilibrium points, give the same qualitative information. From this table,

it becomes clear that the best one–frequency models that we can be used,
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Table 7. Mean residual accelerations between several models and the real Solar System

over selected halo orbits of the RTBP around L2 in the Earth–Moon case. The first column

displays the z–amplitude of the halo orbit used as test orbit. The remaining columns show

the mean residual acceleration between the corresponding model and the real Solar System

over the test orbit.

z-a. RTBP BCP QBCP SSSM1 SSSM2 SSSM3 SSSM4 SSSM5

0.020 0.140126 0.146459 0.138580 0.365299 0.095769 0.010674 0.001374 0.000727

0.025 0.136603 0.142856 0.135174 0.353302 0.093293 0.010388 0.001346 0.000720

0.031 0.132882 0.139025 0.131578 0.340305 0.090590 0.010076 0.001315 0.000711

0.038 0.129087 0.135080 0.127914 0.326550 0.087699 0.009744 0.001282 0.000702

0.048 0.125352 0.131141 0.124312 0.312235 0.084643 0.009393 0.001247 0.000691

0.059 0.121813 0.127324 0.120905 0.297505 0.081429 0.009024 0.001210 0.000678

0.073 0.118614 0.123757 0.117835 0.282462 0.078045 0.008637 0.001171 0.000664

0.091 0.115905 0.120571 0.115249 0.267173 0.074461 0.008229 0.001128 0.000646
0.113 0.113823 0.117895 0.113283 0.251690 0.070634 0.007796 0.001081 0.000625

0.141 0.112471 0.115836 0.112037 0.236056 0.066510 0.007331 0.001030 0.000598
0.175 0.111872 0.114443 0.111533 0.220325 0.062042 0.006831 0.000973 0.000566

0.217 0.111928 0.113663 0.111672 0.204551 0.057196 0.006292 0.000910 0.000526
0.269 0.112400 0.113311 0.112201 0.188782 0.051978 0.005716 0.000840 0.000481
0.300 0.112678 0.113200 0.112492 0.180899 0.049240 0.005417 0.000802 0.000456

according to the residual acceleration criteria, are the BCP and the QBCP.

But, when we allow two or more frequencies, the models we get fit the JPL

one much better. As it has been said, only the Sun has been taken into

account in all the intermediate models. By adding additional Solar System

bodies, the residual accelerations are of the same order of magnitude than

the ones obtained just using the Sun. It is also clear that, from this point

of view, there is not a significant improvement between the RTBP and the

non–autonomous Bicircular and Quasi Bicircular models.

5. Dynamical substitutes of the collinear libration points

As it is well known, the RTBP has five equilibrium points: three of them

(L1, L2, L3) are collinear with the primaries and the other two (L4 and L5)

form an equilateral triangle with them. Although the intermediate mod-

els introduced in the preceding section are close to the RTBP, they are

non autonomous, so they do not have any critical point. If we consider the

SSSM1 model, since it depends on only one frequency, it can be seen as a

periodic perturbation of the RTBP so, under very general non–resonance

conditions between the natural modes around the equilibrium points and

the perturbing frequency, the libration points can be continued to periodic
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orbits of the model. These periodic orbits, which have the same period as

the perturbation, are the dynamical substitutes of the equilibrium points.

In this section we will show these substitutes for the three collinear equilib-

rium points for SSSM1, in the Earth–Moon system. For the other models,

SSSM2,. . . ,SSSM5, as the perturbation is quasi–periodic, the corresponding

substitutes will be also quasi–periodic solutions. The methodology for their

efficient computation, as well as the results obtained, will appear elsewhere.

The dynamical substitutes of the triangular points in the Earth–Moon sys-

tem, for models close to the ones of this paper, have been studied in 14, 13

and 15 and will not be considered here.
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Fig. 3. Dynamical substitutes for the SSSM1 model of the three collinear equilibrium

points.

The numerical computation of the periodic orbits of SSSM1 that sub-

stitute L1 and L3 has no problem and the results obtained are shown in

Figure 3. We can see that L1 is replaced by a very small size periodic orbit

and that the substitute of L3 is also almost planar but rather large in the

(x, y)–plane. The computation of the substitute of L2, also displayed in

Figure 3, requires more care. Mainly, we need to introduce a continuation

parameter between the RTBP and SSSM1, so we consider the 1–parameter
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family of vector–fields which can be formally written as

(1− ε)RTBP + εSSSM1.

If ε = 0 we get the RTBP and when ε = 1 we get the desired final model

SSSM1.

The dynamical substitutes of L1,2,3 in SSSM2 are two–dimensional in-

variant tori. They can be computed as follows 5,16: the SSSM2 model can

be written as

ẋ = f(x, νt)

where ν = (ν1, ν2) and f is 2π–periodic in νt. We do not actually compute

a 2D invariant torus but an invariant curve inside it. For that, we solve

numerically for ϕ the equation

ϕ(ξ +
2π

ν1
) = φ

(0,ξ)
2π/ν1

(

ϕ(ξ)
)

, ∀ξ ∈ [0, 2π)

where φθt (x) is the flow from time 0 to time t of

ẋ = f(x, θ + νt)

(which is not SSSM2 if θ 6= 0). The geometrical torus is then

{φ
(0,θ2)
θ1/ν1

(ϕ(θ2))}θ1,θ2∈[0,2π)

(see Fig. 4).

(0,ξ)+νt φ      (ϕ(ξ))

ξ

ξ+ρ

ϕ(ξ+ρ) ϕ(ξ) (0,θ)
t

Fig. 4. Computation of two–dimensional invariant tori.

Using continuation techniques 17, we can reach the substitutes of the

collinear libration points in SSSM2 along the homothopy of models (1 −

ε)SSSM1 + εSSSM2. As an example, we display in Figure 5 the results for

the L1 point of the Earth–Moon case.
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ε = 0
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Fig. 5. Continuation from the dynamical substitute of L1 in SSSM1 (a periodic orbit)

to the dynamical substitute of L1 in SSSM2 (a 2–dimensional torus), in the Earth–Moon
case. The continuation is performed with respect to the parameter ε along the family of

models (1− ε)SSSM1 + εSSSM2.
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13. C. Simó, G. Gómez, À. Jorba, and J. Masdemont. The Bicircular Model

Near the Triangular Libration Points of the RTBP. In A. Roy and B. Steves,
editors, From Newton to Chaos, pages 343–370. Plenum Press, 1995.
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