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Abstract

We consider maps defined on an open set of Rnþm having a fixed point whose linear part is

the identity. We provide sufficient conditions for the existence of a stable manifold in terms of

the nonlinear part of the map.

These maps arise naturally in some problems of Celestial Mechanics. We apply the results to

prove the existence of parabolic orbits of the spatial elliptic three-body problem.
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1. Introduction

It is well known that invariant manifolds associated to invariant objects (fixed
points, periodic orbits, etc.) of a dynamical system yield essential information for the
analysis of the dynamical structure of the system. When an invariant object satisfies
some kind of hyperbolicity there are many results concerning the existence,
regularity and uniqueness of their invariant manifolds, see for instance [6,8–10].
The case of invariant objects without hyperbolic ‘‘directions’’ is more complicated.

The full neighborhood of the object is a central manifold. If we consider dynamical
systems generated by maps, the fact that a neighborhood of the fixed point is a
central manifold means that all the eigenvalues of the linear part of the map at the
fixed point have modulus one.
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The case that all eigenvalues are exactly equal to one is the most degenerate one.
In this case the set of points whose positive iterates converge to the fixed point may
have nonempty interior. This set is invariant by the map. We can call it stable
invariant set or stable invariant manifold in some generalized sense. In the analogous
way we can define the unstable invariant set.
The problem of deciding whether a parabolic fixed point of a vector field or a map

has associated stable and unstable manifolds (inside the central manifold), has not
been solved in general, but there are already some existence and uniqueness results
for these manifolds. For two-dimensional maps with fixed points with identity linear
part we mention [13,16]. For two-dimensional maps with linear part equal to:

1 1

0 1

� �

we refer to [2,7]. In this context, it may happen that both the stable and the unstable
invariant sets are open sets. See an example of such case in [7]. Some stable manifolds
theorems for a class of systems coming from problems in Celestial Mechanics can be
found in [4,15]. In all these problems the stable manifolds are one dimensional.
Maps having parabolic fixed points appear in applied problems. For example,

when studying parabolic and oscillatory orbits in some problems of Celestial
Mechanics. The most studied case has been the planar three-body problem. In the
planar three-body problem a parabolic orbit is a trajectory of a particle arriving to
infinity with zero speed, while the trajectories of the other two particles remain
bounded for all positive times. An orbit of the planar three-body problem is called
oscillatory if the upper limit (along time) of the distance between particles is infinite,
but the lower limit is finite. Thus it seems clear that the oscillatory orbits come and
go infinitely often going (somehow) to infinity. Hence a good way to look at this
problem is to look for solutions that are ‘‘homoclinic at infinity’’. Therefore it seems
natural to associate to the infinity some invariant object, through the introduction of
a special set of coordinates. This object is usually called the infinity manifold. In the
case of the planar three-body problem McGehee and Easton [5] prove that the
infinity set may be seen as a three-sphere foliated by periodic orbits. McGehee [13]
considers three problems: the restricted three-body problem, the Sitnikov problem
and the one-dimensional three-body problem, and proves, after certain changes of
variables, that infinity may be reduced to a periodic orbit. Later, Martı́nez and
Pinyol [12] prove, among other things, that in the elliptic restricted three-body
problem the infinity manifold is also foliated by periodic orbits. Using the existence
theorem of invariant manifolds given in [13], Delgado and Vidal [3], also prove the
existence of parabolic orbits in the tetrahedral four-body problem and, finally,
Álvarez and Llibre [1], consider the same question for the elliptic collision restricted
three-body problem, which consists in two bodies of equal masses in a collision
elliptic orbit, while their centre of mass is at rest and a third particle of zero mass
moving in a perpendicular line to the line of motion of the other two.
An approach to the search of oscillatory orbits is to prove that these periodic

orbits, which represent infinity in the original system, have transversely intersecting
stable and unstable manifolds. This is not a sufficient condition (see [5]), but it seems
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to be necessary to prove the existence of oscillatory orbits. In the problems treated by
McGehee in [13] and in the elliptic restricted problem in [12] the existence of these
homoclinic solutions implies the existence of oscillatory orbits.
In all these examples, the periodic orbits in the infinity manifold are degenerate in

the sense that the derivative of the Poincaré map associated to them has an
eigenvalue equal to one. Using the existence theorems proved in [4,13,15] it is
possible to prove that parabolic orbits form a smooth manifold. Robinson [15], Xia
[17], Martı́nez and Pinyol [12] and Moeckel [14] prove the existence of heteroclinic
orbits and consequently they can conclude that there exist oscillatory orbits in some
instances of the three-body problem.
Here we generalize results on existence and analyticity of invariant manifolds of

several papers starting with [13], from two-dimensional to ðn þ mÞ-dimensional
maps.
We consider maps in Rn � Rm with the origin fixed and its linear part equal to the

identity. Under suitable conditions on the nonlinear terms we establish the existence
of n-dimensional stable manifolds expressed as graphs of functions defined in
domains which have the fixed point on its boundary. In Section 3 we deal with the
Lipschitz case and in Section 4 we consider the analytic case.
The methods we use in this work are generalizations of the ones of McGehee [13]

but we need to introduce extra arguments based on degree theory that in one-
dimensional invariant manifolds reduce to elementary observations.
Section 5 contains the examples. The first one is just a simple application, and the

second one consists in looking for parabolic orbits in the spatial three-body problem.
In this problem, we prove that the parabolic orbits form an analytic manifold of
dimension two in the phase space. For this reason the known existence theorems do
not apply in this case.

2. Definitions and notation

We consider maps F :UCRnþm-Rnþm of the form

Fðx; yÞ ¼ ðx þ pðx; yÞ þ f ðx; yÞ; y þ qðx; yÞ þ gðx; yÞÞ; ð2:1Þ

where pðx; yÞ; qðx; yÞ are homogeneous polynomials of degree Np; Nq respectively

with Np; NqX2; f ðx; yÞ; gðx; yÞ are differentiable functions of orders oðjjðx; yÞjjNpÞ
and oðjjðx; yÞjjNqÞ and their derivatives Df ðx; yÞ; Dgðx; yÞ are oðjjðx; yÞjjNp�1Þ and

oðjjðx; yÞjjNq�1Þ respectively.
We introduce the projectors: p1ðx; yÞ ¼ x; and p2ðx; yÞ ¼ y: Given a subset VCRn

we define

W s
V ¼ fðx; yÞAU : p1Fkðx; yÞAV ; kX0; Fkðx; yÞ-0; as k-Ng ð2:2Þ
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and its local version

W s
V ;r ¼ fðx; yÞAU : p1F kðx; yÞAV-Bð0; rÞ; kX0; Fkðx; yÞ-0; as k-Ng: ð2:3Þ

These definitions depend on the decomposition Rnþm ¼ Rn � Rm: Particular cases
are n ¼ 1 or m ¼ 1: In the two-dimensional case, if n ¼ 1 and m ¼ 1; V can be taken
as the intervals ð0; rÞ or ð�r; 0Þ: When V ¼ ð0; rÞ the corresponding invariant

manifold is denoted by W sþ in [7].

Let jj � jj be a norm in Rk: Given VCRn; we introduce the following notation:

VðrÞ ¼ fxAV : jjxjjorg; V1ðrÞ ¼ frx=jjxjj : xAVðrÞg:

Notice that if r1or2 then Vðr1ÞCVðr2Þ:
Also we introduce the following sets:

Vðr; bÞ ¼ fðx; yÞARnþm : xAVðrÞ; jjyjjpbjjxjjg;

Vþðr; bÞ ¼ fðx; yÞARnþm : xAVðrÞ; jjyjjXbjjxjjg;

vþðr; bÞ ¼ fðx; yÞARnþm : ðx; yÞAVðr; bÞ; jjyjj ¼ bjjxjjg;

SðaÞ ¼ fðx; ZÞARnþm : jjZjjXajjxjjg:

In order to illustrate the previous definitions, we provide Figs. 1 and 2.
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Fig. 1. Example of a set VðrÞ in R2:
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3. The Lipschitz case

This section is devoted to prove, under suitable hypotheses, the existence of a
Lipschitz stable invariant manifold in the sense of definitions (2.2) and (2.3) for maps
F of the form (2.1).
We will assume that there exists a set VCU and r; r40 such that:

H1 The polynomial p satisfies supxAV1ðrÞjjIdþ Dxpðx; 0Þjjo1:

H2 The polynomial q satisfies Dxqðx; 0Þ ¼ 0 for xAV1ðrÞ and supxAV1ðrÞjjId�
Dyqðx; 0Þjjo1:

H3 There exists A40 such that for all xAVðrÞ; distðx þ pðx; 0Þ;VðrÞcÞXAjjxjjNp :

Note that H2 implies that qðx; 0Þ ¼ 0: The main theorem of this section is:

Theorem 3.1. Let F : UCRnþm-Rnþm be a map of class C1; of the form

ðx; yÞ/ðx þ pðx; yÞ þ f ðx; yÞ; y þ qðx; yÞ þ gðx; yÞÞ ð3:1Þ

where pðx; yÞ; qðx; yÞ are homogeneous polynomials of degree Np and Nq respectively

ðNp;NqX2Þ; f ðx; yÞ is of order oðjjðx; yÞjjNpÞ; Df ðx; yÞ is of order oðjjðx; yÞjjNp�1Þ;
gðx; yÞ is of order oðjjðx; yÞjjNqÞ and Dgðx; yÞ is of order oðjjðx; yÞjjNq�1Þ:

Then, if there exists a convex open set VCRn; 0A@V and r; r40 such that

hypotheses H1–H3 hold, W s
V ;r is the graph of a Lipschitz function

j : VðrÞ-Rm:

Remark 3.2. Hypotheses H1 and H2 provide, through the nonlinear terms, a kind of
weak hyperbolicity for the fixed points in a suitable domain.
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Fig. 2. A set Vðr;bÞ in R3; with the supremum norm.
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Remark 3.3. An unstable manifold theorem can be obtained immediately by
considering the inverse map.

Remark 3.4. Since V 1ðrÞ is compact, there exists a positive constant M such that

jjIdþ Dxpðx; 0Þjj � 1o� M; jjId� Dyqðx; 0Þjj � 1o� M

for all xAV1ðrÞ: This implies that if rp1 and tA½0; 1

jjIdþ tDxpðx; 0Þjj � 1o� tMjjxjjNp�1; jjId� tDyqðx; 0Þjj � 1o� tMjjxjjNq�1

for all xAVðrÞ: Indeed, the inequality jjl Idþ Dxpðx; 0Þjj � jjm Idþ Dxpðx; 0Þjjpjl�
mj implies that jjl Idþ Dxpðx; 0Þjj � l is a decreasing function of l: Then, if xAVðrÞ
and tAð0; 1;

jjIdþ tDxpðx; 0Þjj � 1 ¼ Idþ tjjxjjNp�1Dxp
x

jjxjj; 0
� �����

����
����

����� 1

¼ tjjxjjNp�1 1

tjjxjjNp�1 Idþ Dxp
x

jjxjj; 0
� ������

�����
�����

������ 1

tjjxjjNp�1

" #

p � tjjxjjNp�1M: ð3:2Þ

The second inequality follows in the same way.

The rest of this section is devoted to prove Theorem 3.1. The main idea of the
proof consists in, given x0AVðrÞ; looking for the set of points of the form ðx0; yÞ
whose all positive iterates remain in a neighborhood of the origin and converge to it.
We claim that this set reduces to a unique point ðx0; y0Þ: Hence there exists a

function y0 ¼ jðx0Þ whose graph is the stable manifold.
To prove the claim, as well as the fact that j is Lipschitz, we will consider a

sequence of nested sets defined as the sets of points whose first k iterates remain in a
neighborhood of the origin.
To control this sequence we need a series of preparatory lemmas which provide us

with some quantitative estimates of the weak hyperbolicity generated by the
nonlinear terms of the map outside the origin.
Lemma 3.6 provides bounds for the contraction and expansion of the linearized

map along the x- and y-axis, respectively. Lemmas 3.7 and 3.8 extend these estimates
from the linearization to the map itself. Lemmas 3.9 and 3.10 study how the
derivative acts on vectors of the tangent space, in particular Lemma 3.9 establishes
that there exists and invariant cone for DF : Lemma 3.13 will be applied as an
iterative lemma to control the differences of the iterates of two initial points. The
nested sets of the sequence are constructed iteratively. It is essential that they do not
become void at some level of the process. This is guaranteed by Lemma 3.15.
In all next lemmas we will assume implicitly the hypotheses of Theorem 3.1.
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Lemma 3.5. If r40 and b40 are small enough, then we have that

p1Fðx; yÞAVðrÞ; for ðx; yÞAVðr; bÞ:

Proof. It is a consequence of hypothesis H3. Note that for all ðx; yÞAVðr; bÞ

jjp1Fðx; yÞ � x � pðx; 0Þjjp jjpðx; yÞ � pðx; 0Þjj þ jj f ðx; yÞjj

p sup
jjxjjpjjyjj

jjDypðx; xÞjj jjyjj þ ZjjxjjNppðCbþ ZÞjjxjjNp

with suitable C and arbitrarily small Z; if r and b are small enough. Hence

distðp1Fðx; yÞ;VðrÞcÞX distðx þ pðx; 0Þ;VðrÞcÞ � jjp1Fðx; yÞ � x � pðx; 0Þjj

XAjjxjjNp � ðCbþ ZÞjjxjjNp40;

if ðCbþ ZÞoA which implies that p1Fðx; yÞAVðrÞ: &

Lemma 3.6. There exist constants K1 and K2 such that for ðx; yÞAVðr; bÞ and for

tA½0; 1;

(1) jjIdþ tDxpðx; yÞ þ tDxf ðx; yÞjjp1� K1tjjxjjNp�1;

(2) jjðIdþ tDyqðx; yÞ þ tDygðx; yÞÞ�1jjp1� K2tjjxjjNq�1:

Proof. (1) Since p is homogeneous there exists K40 such that

jjD2pðx; yÞjjpK jjxjjNp�2: By the conditions over f ; given Z40 there exists r40 such

that jjDxf ðx; yÞjjpZjjxjjNp�1 for ðx; yÞAVðr; bÞ: Then, using Remark 3.4,

jjIdþ tDxpðx; yÞ þ tDxf ðx; yÞjjp jjIdþ tDxpðx; 0Þjj þ tjjDxpðx; yÞ � Dxpðx; 0Þjj

þ tjjDxf ðx; yÞjj

p 1� tMjjxjjNp�1 þ tKbjjxjjNp�1 þ tZjjxjjNp�1

p 1� tK1jjxjjNp�1

with K140; if we take b and Z small enough.
(2) In the same way as in (1) we can prove that

jjId� tDyqðx; yÞ � tDygðx; yÞjjp1� tK0jjxjjNq�1 ð3:3Þ
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if we take b and r small enough. The result follows because there exists K 0
0 such that

jjðIdþ tDyqðx; yÞ þ tDygðx; yÞÞ�1 � ðId� tDyqðx; yÞ � tDygðx; yÞÞjj

pt2K 0
0jjxjj

2Nq�2: &

Lemma 3.7. There exists a constant M1 such that for ðx; yÞAVðr; bÞ and for any

tA½0; 1;

jjx þ tpðx; yÞ þ tf ðx; yÞjjpjjxjjð1� tM1jjxjjNp�1Þ:

In particular, for t ¼ 1 we have that jjp1Fðx; yÞjjojjxjj:

Proof. By the mean value theorem and (3.2) we have that

jjx þ tpðx; 0Þjjp
Z 1

0

jjIdþ tDxpðsx; 0Þjj jjxjj dsp
Z 1

0

ð1� tMjjsxjjNp�1Þjjxjj ds

¼ 1� tM
1

Np

jjxjjNp�1
� �

jjxjj:

Let M0 ¼ M=Np: Moreover, there exists K40 such that jjDypðx; yÞjjpK jjxjjNp�1 if

ðx; yÞAVðr; bÞ and, given Z40; there exists r40 such that jj f ðx; yÞjjpZjjxjjNp for
ðx; yÞAVðr; bÞ: Then

jjx þ tpðx; yÞ þ tf ðx; yÞjjp jjx þ tpðx; 0Þjj þ tjjpðx; yÞ � pðx; 0Þjj þ tjj f ðx; yÞjj

p ð1� tM0jjxjjNp�1Þjjxjj þ tbK jjxjjNp þ tZjjxjjNp

p ð1� tM1jjxjjNp�1Þjjxjj

with M140 if we take b and Z small enough. &

Lemma 3.8. There exists M240 such that for any ðx; yÞAvþðr; bÞ and for any 0ptp1
we have

jjy þ tqðx; yÞ þ tgðx; yÞjjXjjyjjð1þ tM2jjxjjNq�1Þ:

Proof. Since qðx; 0Þ ¼ 0; if we call fðyÞ ¼ y þ tqðx; yÞ then fð0Þ ¼ 0 and y ¼
f�1

3fðyÞ ¼
R 1
0 Df�1ðsfðyÞÞfðyÞ ds: This implies

jjfðyÞjjX
Z 1

0

jjDf�1ðsfðyÞÞjj ds

� ��1

jjyjj
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and since Df�1ðsfðyÞÞ ¼ ðDfðf�1ðsfðyÞÞÞÞ�1 and f�1ðsfðyÞÞAVðr; b0Þ with b0Xb;
applying (2) of Lemma 3.6 with g ¼ 0 we get jjfðyÞjjXð1� tK2jjxjjNq�1Þ�1jjyjj:
On the other hand, for all Z40; there exists r40 such that jjgðx; yÞjjpbZjjxjjNq if

ðx; yÞAVðr; bÞ: Assume that jjyjj ¼ bjjxjj: Then jjgðx; yÞjjpbZjjxjjNq ¼
Zjjyjj jjxjjNq�1: Therefore jjfðyÞ þ tgðx; yÞjjXð1�tK2jjxjjNq�1Þ�1jjyjj � Zjjyjj jjxjjNq�1

Xjjyjjð1þ tM2jjxjjNq�1Þ with M240 if we take Z and r small enough. &

Lemma 3.9. There exist r40; b40 and aAð0; 1 such that for all ðx; yÞAVðr; bÞ;
DFðx; yÞ : SðaÞ-SðaÞ: In fact we have that, for zASðaÞ

ajjp1DFðx; yÞzjjpjjp2zjj and jjp2DFðx; yÞzjjXjjp2zjj: ð3:4Þ

Proof. Let z ¼ ðx; ZÞASðaÞ and let K40 be such that jjDypðx; yÞ þ Dyf ðx; yÞjj
pK jjxjjNp�1 for ðx; yÞAVðr; bÞ: Using (1) of Lemma 3.6 it is clear that

ajjp1DFðx; yÞzjj ¼ ajjðIdþ Dxp þ Dxf Þxþ ðDyp þ Dyf ÞZjj

p ð1� K1jjxjjNp�1ÞjjZjj þ aK jjxjjNp�1jjZjj

p jjZjj

if we take apK1=K :
The second inequality in (3.4) is proved in the same way, using (2) of Lemma 3.6

and that, since Dxqðx; 0Þ ¼ 0 and Dxgðx; yÞ ¼ oðjjðx; yÞjjNq�1Þ; there exists K40 such
that

jjDxqðx; yÞ þ Dxgðx; yÞjjpKbjjxjjNq�1 ð3:5Þ

if r is small enough. &

Lemma 3.10. If r; b40 are small enough, ðx; yÞAVðr; bÞ and zASðaÞ we have that

jjp2DF�1ðx; yÞzjjpjjp2zjj:

Proof. It is clear that F is locally invertible in a neighborhood of the origin and that

F�1 is defined in a set of the form Vðr; bÞ: Moreover F�1 can be written as

F�1ðx; yÞ ¼ ðx � pðx; yÞ þ f̃ðx; yÞ; y � qðx; yÞ þ g̃ðx; yÞÞ

with f̃ðx; yÞ ¼ oðjjðx; yÞjjNpÞ; g̃ðx; yÞ ¼ oðjjðx; yÞjjNqÞ; Df̃ðx; yÞ ¼ oðjjðx; yÞjjNp�1Þ and

Dg̃ðx; yÞ ¼ oðjjðx; yÞjjNq�1Þ: Let z ¼ ðx; ZÞASðaÞ: Then, using (3.3) and (3.5) there
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exist b and r small enough such that

jjp2DF�1ðx; yÞzjjp jjðId� Dyq þ Dyg̃ÞZjj þ jjð�Dxq þ Dxg̃Þxjj

p ð1� K0jjxjjNq�1ÞjjZjj þ K
b
a
jjxjjNp�1jjZjj

p jjZjj: &

Lemma 3.11. Given lAN; zkAVðr; bÞ for all kAf1;y; lg and zASðaÞ; we have that

ð1=lÞ
Pl

k¼1 DFðzkÞzASðaÞ:

Proof. Let z ¼ ðx; ZÞASðaÞ: Applying estimate (3.4) of Lemma 3.9, we obtain that

ajjð1=lÞ
Pl

k¼1 p
1DFðzkÞzjjpð1=lÞ

Pl
k¼1 ajjp1DFðzkÞzjjpjjZjj: On the other hand, if we

denote Ql ¼ 1
l

Pl
k¼1 ðDyqðzkÞ þ DygðzkÞÞ; by (3.3)

jjId� Ql jjpð1=lÞ
Xl

k¼1
jjId� ðDyqðzkÞ þ DygðzkÞÞjjp1� ðK0=lÞ

Xl

k¼1
jjxkjjNq�1:

Therefore, jjðIdþ QlÞ�1jjp1� 1
l

K0

2

Pl
k¼1 jjxkjjNq�1; which implies that

jjðIdþ QlÞZjjXð1þ K0=ð2lÞÞ
Xl

k¼1
jjxkjjNq�1ÞjjZjj ð3:6Þ

if we take b and r small enough. Then, from (3.6) and (3.5), we obtain

1

l

Xl

k¼1
p2DFðzkÞz

�����
�����

�����
�����

XjjðIdþ QlÞZjj �
1

l

Xl

k¼1
ðDxqðzkÞ þ DxgðzkÞÞ

 !
x

�����
�����

�����
�����

X 1þ 1

l

K0

2

Xl

k¼1
jjxkjjNq�1

 !
jjZjj � K

l

b
a

Xl

k¼1
jjxkjjNq�1jjZjj

X 1þ 1

l

K0

2
� K

b
a

� Xl

k¼1
jjxkjjNp�1

 !
jjZjj

XjjZjj

if we take b small enough. &
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Lemma 3.12. Let r and b be small enough. Let z1; z2AVðr; bÞ be two different points

such that z2 � z1ASðaÞ: Then, there exists a constant cX1 such that if a4cb

z1 þ tðz2 � z1ÞAVðr; cbÞ for all tA½0; 1:

Proof. Let c1 and c2 be such that c1jjujj2pjjujjpc2jjujj2; for uARk; where jj � jj2
denotes the euclidean norm. We take c ¼ c2=c1 and we put zi ¼ ðxi; yiÞ for i ¼ 1; 2:
Since, by hypothesis, V is convex, it remains to see that

jjy1 þ tðy2 � y1Þjjpcbjjx1 þ tðx2 � x1Þjj; 8tA½0; 1:

We note that, if ac1Xbc2;

jjy1 � y2jj2X
1

c2
jjy1 � y2jjXa

1

c2
jjx1 � x2jj

X a
c1

c2
jjx1 � x2jj2Xbjjx1 � x2jj2: ð3:7Þ

By (3.7)

b2/x1; x2S�/y1; y2S ¼ 1

2
½b2ðjjx1jj22 þ jjx2jj22 � jjx1 � x2jj22Þ

� ðjjy1jj22 þ jjy2jj22 � jjy1 � y2jj22Þ

X
1

2
½jjy1 � y2jj22 � b2jjx1 � x2jj22

X 0: ð3:8Þ

Then, using (3.8), we have that for z1; z2AVðr; bÞ;

b2jjx1 þ tðx2 � x1Þjj22 � jjy1 þ tðy2 � y1Þjj22

¼ t2ðb2jjx2jj22 � jjy2jj22Þ þ ð1� tÞ2ðb2jjx1jj22 � jjy1jj22Þ

þ 2tð1� tÞðb2/x1; x2S�/y1; y2SÞX0:

Translating this condition to the original norm jj � jj we get the result. &

Lemma 3.13. Let r and b be small enough. Let z1; z2AVðr; bÞ be different points such

that z2 � z1ASðaÞ and Fðz2Þ;Fðz1ÞAVðr;bÞ: Then

(1) Fðz2Þ � Fðz1ÞASðaÞ;
(2) jjp2ðFðz2Þ � Fðz1ÞÞjjXjjp2ðz2 � z1Þjj:
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Proof. By Lemma 3.12, z1 þ tðz2 � z1ÞAVðr; cbÞ: Since DF is continuous we can
write

Fðz2Þ � Fðz1Þ ¼
Z 1

0

DFðz1 þ tðz2 � z1ÞÞðz2 � z1Þ dt

¼ lim
k-N

Xk

j¼0

1

k
DF z1 þ j

k
ðz2 � z1Þ

� �
ðz2 � z1Þ:

By Lemma 3.11, restricting b if necessary,
Pk

j¼0
1
k

DFðz1 þ j
k
ðz2 � z1ÞÞðz2 � z1ÞASðaÞ

for all kAN and hence the limit when k-N has to belong to SðaÞ ¼ SðaÞ:
For (2), using (1) and Lemma 3.12 applied to Fðz1Þ; Fðz2Þ; we get that cðtÞ ¼

ð1� tÞFðz1Þ þ tFðz2ÞAVðr; cbÞ; for tA½0; 1: Restricting b if necessary, by the mean
value theorem, Lemma 3.10 and the definition of c; we have that

jjp2ðz2 � z1Þjj ¼ jjp23F�1
3cð1Þ � p23F�1

3cð0Þjj

¼
Z 1

0

jjp2DF�1ðcðtÞÞc0ðtÞjj dt

p
Z 1

0

jjp2ðc0ðtÞÞjj dt ¼ jjp2ðFðz2Þ � Fðz1ÞÞjj

and the statement holds. &

We will use the following result from degree theory. We will denote by dð f ;D; pÞ
the degree of f at p relative to D: We recall that if dð f ;D; pÞa0; then pAf ðDÞ: See
[11] for details. We recall the following result.

Proposition 3.14. Let f ; g : DCRn-Rn be two continuous maps. If there exists a

homotopy H : ½0; 1 � %D-Rn from f to g and peHðt; @DÞ for all tA½0; 1 then

dð f ;D; pÞ ¼ dðg;D; pÞ:

Let V be an open neighborhood of Vðr; bÞ\fð0; 0Þg such that V-fx ¼ 0g ¼ |:
Below Dm

g will denote an open set of Rm; such that 0ADm
g and that Dm

g is

homeomorphic to a closed ball. Therefore @Dm
g will be homeomorphic to a sphere.

Given g : Dm
g -V we will denote by G the image of g; i.e. G ¼ gðDm

g Þ: At some places
we will identify g with G: Let

HðaÞ ¼ fg :Dm
g -V : gAC1;TzGCSðaÞ 8zAG-Vðr; bÞ; gð@Dm

g ÞCVðr; bÞcg:

We note that the condition TzGCSðaÞ implies that G-Vðr; bÞ can be expressed as

the graph of a function c : p2ðG-Vðr; bÞÞ-Rn; in the form G ¼
fðcðyÞ; yÞ : yAG-Vðr; bÞg with

jjDcðyÞjjp1=a: ð3:9Þ

ARTICLE IN PRESS
I. Baldom !a, E. Fontich / J. Differential Equations 197 (2004) 45–7256



This is easily seen because if vARm
\f0g we have that t/ðcðy þ tvÞ; y þ tvÞ is a curve

in G and hence its derivative at t ¼ 0; ðDcðyÞv; vÞ; belongs to TðcðyÞ;yÞGCSðaÞ and
then jjvjjXajjDcðyÞvjj:
Our goal is to iterate manifolds of HðaÞ by F : A subtle and delicate point is to

check that the iterates remain nonvoid. When m ¼ 1 this is a simple consequence of
Bolzano’s theorem, but if m41 we are forced to apply degree theory. This motivates
in part the definition of HðaÞ:

Lemma 3.15. If cboa; we have that if GAHðaÞ then FðGÞ-Vðr; bÞAHðaÞ:

Proof. We perform the change of variables C defined by ðx; vÞ/ðx; y ¼ vjjxjjÞ
which transforms the cone-like domain Vðr; bÞ to the cylinder-like domain

Ṽðr; bÞ ¼ fðx; vÞARnþm : xAVðrÞ; jjvjjpbg:

This change is invertible and its inverse is continuous when we restricted us to

Ṽðr; bÞ\fx ¼ 0g: Indeed if ðx; yÞAVðr; bÞ then xa0; and we can write the inverse
change explicitly as ðx; yÞ/ðx; v ¼ y=jjxjjÞ: In these new variables F is expressed as

F̃ ¼ C�1
3F3C with

p1F̃ðx; vÞ ¼ x þ pðx; vjjxjjÞ þ f ðx; vjjxjjÞ

p2F̃ðx; vÞ ¼ vjjxjj þ qðx; vjjxjjÞ þ gðx; vjjxjjÞ
jjx þ pðx; vjjxjjÞ þ f ðx; vjjxjjÞjj :

If GAHðaÞ; we denote by *G the image of G by this change of variables, i.e. *G ¼
C�1ðGÞ: We claim that *G can also be represented as a graph of a function *c: Indeed,
if G ¼ fðcðyÞ; yÞ : yADcg; then *G ¼ fðcðyÞ; y=jjcðyÞjjÞ : yADcg: Now, we are going
to check that X : y/y=jjcðyÞjj is invertible and that its inverse is continuous. First
we note that ca0 and then the map is well defined and continuous. Now we prove
that X is one to one. If y1; y2ADc and Xðy1Þ ¼ Xðy2Þ we can write y1½jjcðy2Þjj �
jjcðy1Þjj þ ðy1 � y2Þjjcðy1Þjj ¼ 0 and then, if we assume that y1ay2;

j jjcðy2Þjj � jjcðy1Þjj j
jjy1 � y2jj

¼ jjcðy1Þjj
jjy1jj

: ð3:10Þ

By (3.9)

j jjcðy2Þjj � jjcðy1Þjj j
jjy1 � y2jj

p
jjcðy2Þ � cðy1Þjj

jjy1 � y2jj
p
1

a
:

On the other hand, since ðcðy1Þ; y1ÞAVðr; bÞ; jjcðy1Þjj=jjy1jjX1=b: Putting these two
last bounds in (3.10) we obtain 1=bp1=a; which gives a contradiction.

Next we prove that X�1 is Lipschitz. Indeed, let y1; y2ADc and let Mc40

be such that for all yADc; jjcðyÞjjpMc: Such Mc exists by compactness

of Dc: Then, using that ajjcðy1Þ � cðy2Þjjpjjy1 � y2jj and jjyijjpbjjcðyiÞjj for
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i ¼ 1; 2; we get that

y1

jjcðy1Þjj
� y2

jjcðy2Þjj

����
����

����
���� ¼ 1

jjcðy1Þjj jjcðy2Þjj
jjy1ðjjcðy2Þjj � jjcðy1ÞjjÞ þ ðy1 � y2Þjjcðy1Þjj jj

X
1

jjcðy1Þjj jjcðy2Þjj
½jjy1 � y2jj jjcðy1Þjj � jjy1jj j jjcðy2Þjj � jjcðy1Þjj j 

X
1

jjcðy1Þjj jjcðy2Þjj
½jjcðy1Þjj � jjy1jj=ajjy1 � y2jj

X
1

jjcðy1Þjj jjcðy2Þjj
½jjcðy1Þjj � bjjcðy1Þjj=ajjy1 � y2jj

¼ ð1=McÞ½1� b=ajjy1 � y2jj:

Therefore we can write *G ¼ fðcðX�1ðvÞÞ; vÞ : vAXðDcÞg: We call *c ¼ c3X�1:

Now we look at the image of *G ¼ graph *c by F̃: First we prove that the image of

Bm
b ð0Þ ¼ fyARm : jjyjjpbg by p2F̃3ð *cðyÞ; yÞ covers Bm

b ð0Þ: For this we will use degree
theory. Let

Hðt; yÞ ¼ yjj *cðyÞjj þ tqð *cðyÞ; yjj *cðyÞjjÞ þ tgð *cðyÞ; yjj *cðyÞjjÞ
jj *cðyÞ þ tpð *cðyÞ; yjj *cðyÞjjÞ þ tf ð *cðyÞ; yjj *cðyÞjjÞjj

be a homotopy from the identity to p2F̃3ð *cðyÞ; yÞ and let y0ABm
b ð0Þ: If y0A@Bm

b ð0Þ;
then ð *cðy0Þ; y0ÞA@Ṽðr; bÞ and by the conclusions of Lemmas 3.7 and 3.8 translated

to F̃ we deduce that y0eHðt; @Bm
b ð0ÞÞ and hence from Proposition 3.14 we get that

dðp2F̃3ð *c; IdÞ;Bm
b ð0Þ; y0Þ ¼ dðId;Bm

b ð0Þ; y0Þ ¼ 1:

Going back to the original variables ðx; yÞ we obtain that FðGÞ is the image of

g1 ¼ F3g ¼ C3ðC�1
3F3CÞ3ðC�1

3gÞ ¼ C3F̃3ðC�1
3gÞ:

We will need to restrict the domain Dg to Dg1 in such a way that for all zADg1 ;

gðzÞAV: Therefore we also obtain that Fð@Dg1ÞCVðr; bÞc: Finally the fact that

TzðFðGÞÞCSðaÞ for all zAFðGÞ-Vðr; bÞ comes from Lemma 3.13. &

With the previous lemmas we can prove Theorem 3.1.

Proof of the Theorem 3.1. Given GAHðaÞ we define the sequence

G0 ¼ G; Gk ¼ FðGk�1Þ-Vðr; bÞ; kX1:
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By Lemma 3.15 all elements of this sequence belong to HðaÞ: We introduce Ik ¼
F�kðGkÞ:We claim that ðIkÞk is a nested sequence of nonempty compact sets. Indeed:

Ik ¼ F�kðFðGk�1Þ-Vðr; bÞÞCF�kðFðGk�1ÞÞ ¼ F�ðk�1ÞðGk�1Þ ¼ Ik�1:

The fact that Ik are nonempty comes from Lemma 3.15. Hence
T

kX0 Ika|: Next we

consider a particular sort of initial G0: For every x0AV we define G ¼ G0 ¼
fðx; yÞ : x ¼ x0; jjyjjpbjjxjjg: Let a given by Lemma 3.9. It is clear that GAHðaÞ and
that for all z1; z2AG0; z2 � z1ASðaÞ:
We will prove that

T
kX0 Ik reduces to a point. Assume that there exist

z1; z2A
T

kX0 Ik: Then Fkðz1Þ;F kðz2ÞAVðr; bÞ; 8kX0: By Lemma 3.7 we have that

jjp1ðFkðz1ÞÞjj is a strictly decreasing sequence of real numbers. Therefore it has a

limit which must be 0. Moreover, for all k; jjp2ðFkðz1ÞÞjjpbjjp1ðFkðz1ÞÞjj; thus
p2ðF kðz1ÞÞ also goes to 0: The same happens to p2ðFkðz2ÞÞ: Applying Lemma 3.13
iteratively we get

jjp2ðF kðz2Þ � F kðz1ÞÞjjXjjp2ðz1 � z2Þjj:

Taking the limit when k-N we obtain p2ðz2Þ ¼ p2ðz1Þ: Also, since z2 � z1ASðaÞ; we
have that p1ðz2Þ ¼ p1ðz1Þ and hence z2 ¼ z1: Therefore

T
kX0 Ik is a point and has the

form ðx0; y0Þ: Furthermore
\
kX0

Ik ¼ G- ðx; yÞARnþm : lim
k-N

FkðzÞ ¼ 0;FkðzÞAVðr; bÞ; kX0

� �
:

We define j by jðx0Þ ¼ y0: The graph of j is the invariant manifold we looked for.
Now it remains to be proved that j is Lipschitz. If we assume that Lip j is not

smaller than a; there would exist two different points x1; x2AVðr; bÞ such that

jjjðx2Þ � jðx1Þjj
jjx2 � x1jj Xa:

Applying Lemma 3.13 iteratively we have

jjp2ðFkðx2;jðx2ÞÞ � Fkðx1;jðx1ÞÞÞjjXjjjðx2Þ � jðx1ÞjjXajjx2 � x1jj:

Since ðx1;jðx1ÞÞ and ðx2;jðx2ÞÞ belong to the stable manifold

lim
k-N

p2ðFkðx2;jðx2ÞÞ � Fkðx1;jðx1ÞÞÞ ¼ 0

and hence we deduce that x2 ¼ x1; which is a contradiction. Therefore j is Lipschitz
with Lip joa: &

Remark 3.16. From the fact that we can take a as small as we want if we take r

small enough, we get that j has an arbitrarily small Lipschitz constant in a
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sufficiently small neighborhood of the origin. Therefore j is differentiable at 0 and
Djð0Þ ¼ 0:

4. The analytic case

In this section we shall prove that if F is analytic then j is also analytic
in a suitable complex enlargement of its domain. We consider F defined in an

open set of Cnþm: We introduce the following notation: if xACn; jjRe xjj and jjIm xjj
mean the norm of ðRe x1;y;Re xnÞ and ðIm x1;y; Im xnÞ respectively as elements
of Rn and

jjxjj ¼ maxfjjRe xjj; jjIm xjjg:

We take the norm of jjyjj in an analogous way and finally jjðx; yÞjj ¼ maxfjjxjj; jjyjjg:
Given g; r40 we define the sets

Oðr; gÞ ¼ fxACn : Re xAVðrÞ; jjIm xjjogjjRe xjjg;

Lðr; g; bÞ ¼ fðx; yÞACn � Cm : xAOðr; gÞ; jjyjjpbjjxjjg:

We will need the set Oðr; gÞ to be invariant by x/p1Fðx; yÞ for jjyjjpbjjxjj: Actually
we will need that there exists an invariant open set containing VðrÞ and contained in
Oðr; gÞ: We will see in Lemma 4.3 that a technical sufficient condition for the
invariance of Oðr; gÞ for some r; g is

H4 For all xAV 1ðrÞ; jjIdþ Dxpðx; 0Þjj þ jjId� 1
Np

Dxpðx; 0Þjjo2:

Note that if H4 holds, since V1ðrÞ is a compact set, there exists Z40 such that for

all xAV1ðrÞ we have jjIdþ Dxpðx; 0Þjj þ jjId� 1
Np

Dxpðx; 0Þjjp2� Z:

Theorem 4.1. Let F be an analytic map of the form (3.1). Assume that the hypotheses

H1–H4 hold. Then, the map j obtained in Theorem 3.1 is analytic in VðrÞ:

To prove Theorem 4.1 we will consider a suitable analytic initial function and then
the sequence of its iterates by the graph transform.
Since we are interested in the stable manifold we will consider the graph transform

associated to the inverse map F�1: This causes that when one has an iterate, next
iterate is defined implicitly. Rouché’s theorem is used to show that the graph of the
next iterate has no irregular points and the implicit function theorem implies
analyticity. Lemma 4.3 below provides the necessary estimates to apply Rouché’s
theorem.
First we state a technical lemma.
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Lemma 4.2. Let Aðx; yÞ ¼ ðaijðx; yÞÞi;j be a k � k matrix such that

(a) For all i; jAf1;y; kg; ai;j :Lðr; g; bÞ-Ck are C1 homogeneous functions of degree

N � 1:
(b) There exists a constant M40 such that the matrix Aðx; 0Þ satisfies

jjIdþ Aðx; 0Þjjp1� MjjxjjN�1; for all xAVðrÞ:

Then, there exist positive numbers r; b; g;K40 such that

jjIdþ Aðx; yÞjjp1� K jjxjjN�1; for all xALðr; g; bÞ: ð4:1Þ

Proof. We denote x ¼ x1 þ ix2 and Aðx; 0Þ ¼ A1ðx1; x2Þ þ iA2ðx1; x2Þ: If we take
go1 and xAOðr; gÞ then jjxjj ¼ jjx1jj: Moreover, it is clear that there exists

K140 such that maxjjwjjpgjjx1jjjjDx2A1ðx1;wÞjjpK1jjxjjN�2: Then, if xAOðr; gÞ; by
hypothesis (b)

jjIdþ A1ðx1; x2Þjjp jjIdþ A1ðx1; 0Þjj þ jjA1ðx1; 0Þ � A1ðx1; x2Þjj

p 1� ðM � gK1ÞjjxjjN�1

p 1� M1jjxjjN�1

with M140 if we take g small enough. Moreover, since A2ðx1; 0Þ ¼ 0; there exists

K240 such that jjA2ðx1; x2ÞjjpgK2jjxjjN�1: Let vACk be such that jjvjj ¼ 1:We write
v ¼ v1 þ iv2: Using the previous bounds, if r and g are small enough, there exists
M040 such that

jjv1 þ A1ðx1; x2Þv1 � A2ðx1; x2Þv2jjp1� M0jjxjjN�1

and

jjv2 þ A1ðx1; x2Þv2 þ A2ðx1; x2Þv1jjp1� M0jjxjjN�1:

Therefore, jjIdþ Aðx; 0Þjjp1� M0jjxjjN�1 for xAOðr; gÞ:
Finally, using again the mean value theorem

jjIdþ Aðx; yÞjjp jjIdþ Aðx; 0Þjj þ jjAðx; 0Þ � Aðx; yÞjj

p 1� ðM0 � bK3ÞjjxjjN�1

which implies the bound (4.1) if b is small enough. &
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Lemma 4.3. There exist r; g; b40 such that

(1) if ðx; yÞALðr; g; bÞ then p1Fðx; yÞAOðr; gÞ;
(2) if ðx; yÞALðr; g; bÞ and jjyjj ¼ bjjxjj then jjp2Fðx; yÞ � yjjojjyjj;
(3) if ðx; yÞALðr; g; bÞ and jjyjj ¼ bjjxjj then bjjp1Fðx; yÞjjojjp2Fðx; yÞjj:

Proof. (1) Let xAOðr; gÞ: We write x ¼ x1 þ ix2 with x1; x2ARn and pðx; 0Þ ¼
p1ðx1; x2Þ þ ip2ðx1; x2Þ with p1ðx1; x2Þ; p2ðx1; x2ÞARn: By the Cauchy–Riemann
equations, we have that

Dx1p
1 ¼ Dx2p

2; Dx2p
1 ¼ �Dx1p

2: ð4:2Þ

We observe that, since p2ðx1; 0Þ ¼ 0; by (4.2) we get

Dx2p
1ðx1; 0Þ ¼ �Dx1p

2ðx1; 0Þ ¼ 0: ð4:3Þ

We claim that there exist positive constants g0;K0 such that

jjx2 þ p2ðx1; x2Þjj � gjjx1 þ p1ðx1; x2Þjjp� gK0jjxjjNp

for all xAOðr; gÞ; gog0: ð4:4Þ

Indeed, we denote

Cðx1; x2Þ �
Z 1

0

Dx2p
2ðx1; sx2Þ ds; ð4:5Þ

Aðx1; x2Þ �
1

Np

Dx1p
1ðx1; x2Þ; ð4:6Þ

Bðx1; x2Þ �
1

Np

Dx2p
1ðx1; x2Þ ð4:7Þ

and we notice that, by (4.2) and (4.3)

Cðx1; 0Þ ¼ NpAðx1; 0Þ; Bðx1; 0Þ ¼ 0:

Let xAOðr; gÞ: Then
jjx2 þ p2ðx1; x2Þjj ¼ jjðIdþ Cðx1; x2ÞÞx2jjpjjx2jj jjIdþ Cðx1; x2Þjj

p gjjx1jj jjIdþ Cðx1; x2Þjj ð4:8Þ

and, by Euler’s theorem

jjx1 þ p1ðx1; x2Þjj ¼ jjðIdþ Aðx1; x2ÞÞx1 þ Bðx1; x2Þx2jj

X jjx1jj
1

jjðIdþ Aðx1; x2ÞÞ�1jj
� gjjBðx1; x2Þjj

 !
: ð4:9Þ

Next we will see that there exist g small enough and K1 such that for all
ðx1; x2ÞAOðr; gÞ we have that

jjIdþ Cðx1; x2Þjj þ jjðIdþ Aðx1; x2ÞÞ�1jjo2� K1jjx1jjNp�1: ð4:10Þ
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Bound (4.10) is a consequence of hypothesis H4. Indeed,

jjIdþ Cðx1; 0Þjj þ jjId� Aðx1; 0Þjj

¼ jjIdþ NpAðx1; 0Þjj þ jjId� Aðx1; 0Þjj

¼ jjIdþ Npjjx1jjNp�1Aðx1=jjx1jj; 0Þjj þ jjId� jjx1jjNp�1Aðx1=jjx1jj; 0Þjj

pjjx1jjNp�1½jjIdþ NpAðx1=jjx1jj; 0Þjj � 1þ 1=jjx1jjNp�1

þ jjId� Aðx1=jjx1jj; 0Þjj � 1þ 1=jjx1jjNp�1

¼ 2þ jjx1jjNp�1½jjIdþ NpAðx1=jjx1jj; 0Þjj þ jjId� Aðx1=jjx1jj; 0Þjj � 2

p2� Zjjx1jjNp�1: ð4:11Þ

Using (4.11), the mean value theorem and the homogeneity of the derivatives of C

and A; there exists g small enough such that

jjIdþ Cðx1; x2Þjj þ jjId� Aðx1; x2Þjj

pjjIdþ Cðx1; 0Þjj þ jjId� Aðx1; 0Þjj

þ jjCðx1; 0Þ � Cðx1; x2Þjj þ jjAðx1; 0Þ � Aðx1; x2Þjj

p2� Zjjx1jjNp�1 þ 2gK1jjx1jjNp�1

p2� ðZ=2Þjjx1jjNp�1:

This implies (4.10). Using the general simple fact that if a; bX0 and a þ bp2� Z
then abpð1� Z=2Þ2; from (4.10) we obtain the following bound for the product of

norms jjIdþ Cðx1; x2Þjj jjðIdþ Aðx1; x2ÞÞ�1jjp1� K2jjx1jjNp�1:We observe that, if g
is small enough, then, by hypothesis H1

jjðIdþ Aðx1; x2ÞÞ�1jjX
1

jjIdþ Aðx1; x2Þjj
41

and that, there exists K340 such that maxjjwjjpgjjx1jj jjBðx1;wÞjjpgK3jjx1jjNp�1:

Therefore, if g is small enough,

jjIdþ Cðx1; x2Þjjp
1� K2jjx1jjNp�1

jjðIdþ Aðx1; x2ÞÞ�1jj

p
1

jjðIdþ Aðx1; x2ÞÞ�1jj
� K2jjx1jjNp�1 � gjjBðx1; x2Þjj þ gjjBðx1; x2Þjj

p
1

jjðIdþ Aðx1; x2ÞÞ�1jj
� gjjBðx1; x2Þjj � K4jjx1jjNp�1

which together with (4.8) and (4.9) implies (4.4).
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To prove (1) we have to check that Re p1Fðx; yÞAVðr; gÞ: We have that

Re p1Fðx; yÞ ¼ ½x1 þ p1ðx1; 0Þ þ ½Re pðx; 0Þ � p1ðx1; 0Þ

þ Re ðpðx; yÞ � pðx; 0ÞÞ þRe f ðx; yÞ: ð4:12Þ

The second term in the right hand of (4.12) is less than gK jjx1jjNp�1: The third

term is bounded by maxjjwjjpbjjxjj jjDyRe pðx;wÞjj jjyjjpbK jjxjjNp and the fourth

term is oðjjxjjNpÞ: Therefore, by H3, if g and b are sufficiently small

Re p1Fðx; yÞAVðrÞ:
It remains to prove that jjIm p1Fðx; yÞjjogjjRe p1Fðx; yÞjj: We have that

jjIm ðp1Fðx; yÞÞjj � gjjRe ðp1Fðx; yÞÞjj

pjjx2 þ p2ðx1; x2Þjj � gjjx1 þ p1ðx1;x2Þjj

þ jjp2ðx1; x2Þ � Im pðx; yÞjj þ gjjp1ðx1; x2Þ �Re pðx; yÞjj

þ jjIm f ðx; yÞjj þ gjjRe f ðx; yÞjj

p� K0gjjxjjNp þ 2bK jjxjjNp þ oðjjxjjNpÞo0

if r and b are small.
(2) Let xAOðr; gÞ and y such that jjyjj ¼ bjjxjj: Let jAf1;y;mg be such that

jyjj ¼ jjyjj: Then jjp2Fðx; yÞ � yjj ¼ jjqðx; yÞ þ gðx; yÞjjpKjjxjjNq ¼ K jjxjjNq�1jjyjj=
bojjyjj if r is such that KrNq�1ob; since, as jjyjj ¼ bjjxjj; ya0:
(3) We will see that under the conditions in (3)

jjy þ qðx; yÞ þ gðx; yÞjj4jjyjj ð4:13Þ

and

jjx þ pðx; yÞ þ f ðx; yÞjjojjxjj: ð4:14Þ

From 4.13 and 4.14, (3) follows immediately. We deal with (4.13). Since Dxqðx; 0Þ ¼
0; we have that qðx; 0Þ ¼ 0: Moreover qðx; yÞ ¼ Qðx; yÞy where Qðx; yÞ ¼R 1
0 Dyqðx; syÞ ds: Clearly Qðx; 0Þ ¼ Dyqðx; 0Þ; then by (3.3) it is clear that the matrix

�Qðx; yÞ satisfies the hypotheses of Lemma 4.2, therefore, there exist b;K040 such

that, if r; g are small enough, for all ðx; yÞALðr; g; bÞ; we have jjId� Qðx; yÞjjp1�
K0jjxjjNq�1: Thus, we have that jjðIdþ Qðx; yÞÞ�1jjp1� M0jjxjjNq�1 for some
constant M0:
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If r is small enough, then maxjjwjjpjjxjj jjgðx;wÞjjpbðM0=2ÞjjxjjNq ; and since jjyjj ¼
bjjxjj;

jjy þ qðx; yÞ þ gðx; yÞjjX jjðIdþ Qðx; yÞÞyjj � jjgðx; yÞjj

X
1

jjðIdþ Qðx; yÞÞ�1jj
jjyjj � M0

2
jjyjj jjxjjNq�1

X 1þ M0

2
jjxjjNq�1

� �
jjyjj

4 jjyjj;

since, as jjyjj ¼ bjjxjj; ya0:
Using Euler’s theorem and (3.2) we can prove bound (4.14) in a similar way. &

We will also need a multidimensional version of the classical Rouché’s theorem.
First we recall the definitions of index and multiplicity.

Definition 4.4. Let DCCn be an open set and f a continuous function on %D: Let z0 be
an isolated zero of f :

(1) We define the index of z0 as ið f ; z0; 0Þ ¼ dð f ;U; 0Þ where U is any bounded
neighborhood of z0 which does not contain any zero of f different from z0 and d

stands for topological degree.
(2) We define the multiplicity of z0 as ið f ; x0; pÞ: We say that z0 is simple if its

multiplicity is one.

The following version of Rouché’s theorem can be found in [11].

Theorem 4.5. Let D be a bounded, open set in Cn: Suppose that f ; g are two

holomorphic functions on %D such that jjgðzÞjjojj f ðzÞjj for all zA@D: Then, f has

finitely many zeros in D; and, counting multiplicity, f and f þ g have the same number

of zeros in D:
In particular, if f has a unique zero in D of multiplicity one, f þ g also has a unique

zero in D:

We define the set of functions

H ¼ fh :Oðr; gÞ-Cm : h real analytic in O; jjhðxÞjjpbjjxjjg

and also the sets

L0 ¼fðx; yÞACn � Cm : xAOðr; gÞ; jjyjjobjjxjjg;

L ¼fðx; yÞACn � Cm : xAOðr; gÞ; jjyjjpbjjxjjg;

Dðx0Þ ¼ fzACn : jjzjjobjjx0jjg for x0AOðr; gÞ:
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For x0AOðr; gÞ; yADðx0Þ and hAH; we define

Hðx0; yÞ ¼ p2Fðx0; yÞ � hðp1Fðx0; yÞÞ

and we want to solve Hðx0; yÞ ¼ 0 with respect to y: The interpretation of Hðx0; yÞ ¼
0 is that, if we solve y ¼ y�ðx0Þ; graph y� is the preimage by F of graph h: Notice that

if x0AOðr; gÞ and yADðx0Þ; H is well defined and analytic in L0: Let us see that
Hðx0; yÞ ¼ 0 has a unique solution in Dðx0Þ: Indeed, by Lemma 4.3, if x0AOðr; gÞ
and jjyjj ¼ bjjx0jj then

jjp2Fðx0; yÞ � yjjojjyjj:

Therefore by Rouché’s theorem, the functions y and p2Fðx0; yÞ (as functions of y)
have the same number of zeros in Dðx0Þ: Since the first function is the identity they
have a unique zero.
On the other hand, if jjyjj ¼ bjjx0jj; by Lemma 4.3 we have that

bjjp1Fðx0; yÞjjojjp2Fðx0; yÞjj

and hence

jjHðx0; yÞ � p2Fðx0; yÞjj ¼ jjhðp1Fðx0; yÞÞjjpbjjp1Fðx0; yÞjj

o jjp2Fðx0; yÞjj

and again by Rouché’s theorem, H has a unique zero in Dðx0Þ which we denote by
y�ðx0Þ: Clearly jjy�ðx0Þjjobjjx0jj:
By the implicit function theorem, since this zero is unique, it depends analytically

with respect to x0: Hence we can define a map F : H-H by

FhðxÞ ¼ y�ðxÞ;

where y�ðxÞ such that Hðx; y�ðxÞÞ ¼ 0 for all xAOðdÞ:
Since H is real analytic and the solution yðxÞ is unique the latter must be real

analytic. Otherwise the conjugate would be another solution on DðxÞ: We have
proved that F sends H into H:
Furthermore by construction we have FðgraphðFhÞÞCgraphðhÞ and if 0pmpn

FmðgraphðFnhÞÞCgraphðFn�mhÞAL:

Given h0AH we define the sequence hn ¼ Fnh0AL: Since hnAH the sequence is
uniformly bounded and, by Montel’s theorem, it has a subsequence convergent to
some function hAH: To check that FmðgraphðhÞÞAL; we shall assume the contrary,
that is, that there exist mX0 and xAO ðr; gÞ such that F mðx; hðxÞÞeL: Since F m is
continuous there exists e40 such that if jjy � hðxÞjjoe then Fmðx; yÞeL; but for
n4m big enough jjhnðxÞ � hðxÞjjoe; and this would imply Fmðx; hnðxÞÞeL which is
a contradiction. Hence F mðgraphðhÞÞAL; 8mAN:
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If xAOðr; gÞ-Rn ¼ V we have, if b is small enough, that

graph hjVCW s
V ;r-fyARm : jjyjjpbjjxjjg ¼ graph j:

Therefore, hjV ¼ j which implies that j is a real analytic function. This ends the

proof of Theorem 4.1.

5. Examples

1. A simple example of application of the above theorem is the map

F :R2þ1-R2þ1 defined by

x1

x2

y

0
B@

1
CA/

x1 � x3
1 þ 3x1x

2
2 þ f1ðx1; x2; yÞ

x2 þ x3
2 � 3x2

1x2 þ f2ðx1; x2; yÞ
y þ qðx1; x2; yÞ þ gðx1; x2; yÞ

0
B@

1
CA

where qðx1; x2; yÞ is a homogeneous polynomial of degree 3, f1; f2 and g are analytic

functions of order 4. We will work with the supremum norm. Let ro1=
ffiffiffi
3

p
; VðrÞ ¼

fðx1; x2ÞAR2 : x1Að0; rÞ; 5jx2jojx1jg; r ¼ 1=
ffiffiffi
3

p
and V1ðrÞ ¼ fð1=

ffiffiffi
3

p
; x2Þ : jx2j

p1=ð5
ffiffiffi
3

p
Þg: We assume that qðx1; x2; yÞ ¼ yq̃ðx1; x2; yÞ and q̃ðx1; x2; 0Þ40 on

V 1ðrÞ: Below we will check that F satisfies the hypotheses of Theorem 4.1.
Therefore, if r is small there exists a stable invariant manifold of the origin given by
the graph of an analytic function j :VðrÞ-R:

We write p1ðx1; x2; yÞ ¼ �x3
1 þ 3x1x

2
2 and p2ðx1; x2; yÞ ¼ x3

2 � 3x2
1x2 and p ¼

ðp1; p2Þ: The hypothesis H1 is equivalent to 3x2
1 � 3x2

24j6x1x2j for ðx1; x2ÞAV 1ðrÞ
which is easily seen to be true. The hypothesis H2 holds by the conditions we have on
q:
To check H3, given x ¼ ðx1; x2ÞAVðrÞ we estimate the distances of x þ pðx; 0Þ to

the three parts of @VðrÞ:

fðx1; x2Þ : x1 � 5x2 ¼ 0; 0px1prg;

fðx1; x2Þ : x1 þ 5x2 ¼ 0; 0px1prg and

fðx1; x2Þ : x1 ¼ r; jx2jpr=5g:

Since x1 � 5x240 and x140 we have that

distðx þ pðx; 0Þ;X1 � 5X2 ¼ 0Þ ¼ x1 � x3
1 þ 3x1x

2
2 � 5ðx2 þ x3

2 � 3x2x
2
1Þffiffiffiffiffi

26
p

¼ x1ð1� x2
1 þ 3x2

2Þ � 5x2ð1þ x2
2 � 3x2

1Þffiffiffiffiffi
26

p

X
x1ð2x2

1 þ 2x2
2Þffiffiffiffiffi

26
p X

2ffiffiffiffiffi
26

p x3
1
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which means that x þ pðx; 0Þ stays at the same side of X1 � 5X2 ¼ 0 than ðx1; x2Þ
does and that the distance is Oðjjðx1; x2Þjj3Þ:
Analogously distðx þ pðx; 0Þ;X1 þ 5X2 ¼ 0ÞXð2=

ffiffiffiffiffi
26

p
Þx3

1: Since �x1 þ r40;
x140 and 5jx2jox1

distðx þ pðx; 0Þ;�X1 þ r ¼ 0Þ ¼ � x1 þ x3
1 � 3x1x

2
2 þ rXx1ðx2

1 � 3x2
2Þ

X
22

25
x3
140:

This proves that if xAVðrÞ; distðx þ pðx; 0Þ;VðrÞcÞ4ð2=
ffiffiffiffiffi
26

p
Þx3

1 ¼ ð2=
ffiffiffiffiffi
26

p
Þjjxjj3:

Finally, hypothesis H4 follows directly from

jjIdþ Dxpðx; 0Þjj þ Id� 1

3
Dxpðx; 0Þ

����
����

����
����o2� 2x2

1 þ 2x2
2 þ 8x1jx2jo2

for x ¼ ðx1; x2ÞAV 1ðrÞ:
2. The second example is the elliptic three-body problem. It consists in the

study of the motion of three bodies of masses 1� m; m; 0, with mAð0; 1Þ: The first
two bodies, called primaries, move on ellipses of eccentricity e and semimajor
axis a in a plane. The third body moves in the space under the effect of the attraction
of the two primaries. The formulae z1 ¼ ðz1 cos f ; z1 sin f ; 0Þ; z2 ¼ �ðz2 cos f ;
z2sinf ; 0Þ with

z1 ¼
mð1� e2Þ
1þ e cos f

; z2 ¼
ð1� mÞð1� e2Þ
1þ e cos f

and
df

dt
¼ ð1þ e cos f Þ2

ð1� e2Þ3=2
ð5:1Þ

describe the position of the primaries. The motion of the third body is governed by
the equation

.z ¼ �ð1� mÞ z� z1
R3
1

� m
z� z2

R3
2

; z ¼ ðX ;Y ;ZÞ;

where R1 ¼ jjz� z1jj and R2 ¼ jjz� z2jj: To study the behavior of the system
in a vicinity of infinity, we perform a change of coordinates, inspired in the
McGehee coordinates, to transform the infinity to a suitable manifold.
This submanifold will be foliated by periodic orbits which will be labeled by
two parameters, aN and r

N
: We are interested in the invariant manifolds of these

periodic orbits.
We introduce the new coordinates x; y; a; r; y; t given by

X ¼ 2

x2
cos a cos y; Y ¼ 2

x2
sin a cos y; Z ¼ 2

x2
sin y
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and

’X ¼ y cos a cos y� x2r sin a cos y� ty cos a sin y;

’Y ¼ y sin a cos yþ x2r cos a cos y� ty sin a sin y;

’Z ¼ y sin yþ ty cos y:

Writing the equations in these new variables we get the system

’x ¼ �1
4

x3 y; ’y ¼ �1
4

x4 þ Oðx6Þ þ Oðx2y2t2Þ;

’t ¼ �1
2

x2t2 þ Oðx8Þ; ’y ¼ 1

2
x2yt;

’a ¼ 1

2
x4 r; ’r ¼ y2tx2rþ Oðx6Þ þ Oðy4tx2rÞ;

’f ¼ ð1þ e cos f Þ2

ð1� e2Þ3=2
ð5:2Þ

if y is close to zero. We observe that the points of the form ðx; y; t; y; a; rÞ ¼
ð0; 0; 0; 0; aN; r

N
Þ for every fixed constants aN and r

N
; give place to periodic orbits.

The set

I ¼ fðx; y; a; r; y; t; f Þ : x ¼ 0g

is called the infinity manifold, and obviously, it is invariant. Moreover, the flow
extends analytically to it. The set I0 ¼ I-fy ¼ 0; t ¼ 0; y ¼ 0g is called the parabolic
infinity. It is foliated by periodic orbits which can be labeled by a and r: Our
objective is to prove that they have an analytic stable invariant manifold.
For this we perform the change of coordinates given by

a ¼ aþ 2yr� aN
x

; r ¼ rð1� y2Þ � r
N

x
;

then, we get the system

’x ¼ �1
4

x3 y; ’y ¼ �1
4

x4 þ h:o:t:;

’t ¼ �1
2

x2t2 þ h:o:t:; ’y ¼ 1

2
x2yt;

’a ¼ 1

4
x2ya þ h:o:t:; ’r ¼ 1

4
x2yr þ h:o:t:

’f ¼ ð1þ e cos f Þ2

ð1� e2Þ3=2
:

ARTICLE IN PRESS
I. Baldom !a, E. Fontich / J. Differential Equations 197 (2004) 45–72 69



Computing the Poincaré map P from f ¼ 0 to 2p we obtain

x1 ¼ x � Kx3y þ h:o:t:; y1 ¼ y � Kx4 þ h:o:t:;

t1 ¼ t� 2Kx2t2 þ h:o:t:; y1 ¼ yþ 2Kx2tyþ h:o:t:;

a1 ¼ a þ Kx2ya þ h:o:t:; r1 ¼ r þ Kx2ya þ h:o:t:;

where ðx1; y1; y1; t1; a1; r1Þ ¼ Pðx; y; y; t; a; rÞ and

K ¼ ð1� e2Þ3=2

4

Z 2p

0

1

ð1þ e cos f Þ2
df ¼ p

2
:

It is clear that the origin is a fixed point of the Poincaré map, which corresponds to
the periodic orbit with parameters aN and r

N
: This map is not yet in a suitable form.

We perform the change of variables given by u ¼ x þ y; v ¼ x � y; and then, the
Poincaré map takes the form

u1 ¼ u � Cuðu þ vÞ3 þ h:o:t:; v1 ¼ v þ Cvðu þ vÞ3 þ h:o:t:;

t1 ¼ t� 4Cðu þ vÞ2t2 þ h:o:t:; y1 ¼ yþ 4Cðu þ vÞ2tyþ h:o:t:;

a1 ¼ a þ Cðu þ vÞ2ðu � vÞa þ h:o:t:; r1 ¼ r þ Cðu þ vÞ2ðu � vÞr þ h:o:t:;

where C ¼ K=8:
This map satisfies the hypotheses H1–H4 of Theorem 4.1. It is sufficient to

consider the convex set

V ¼ ðu; tÞ : ctouot=cf g;

for some c40 fixed. To check them is a straightforward calculation. Therefore from
Theorem 4.1 we conclude that there exists a two-dimensional stable invariant
manifold of the origin, which, for r0 small enough, can be expressed as the graph of
an analytic function ðv; y; r; aÞ ¼ jðu; tÞ; ðu; tÞAVðr0Þ:
It remains to transform the invariant manifold to the originals coordinates. On the

invariant manifold, x ¼ ðu þ vÞ=2 ¼ ðu þ j1ðu; tÞÞ=2 ¼ hðu; tÞ: We observe that h is

an analytic function such that Lip hp1
2
ð1þ Lip j1Þo1; therefore, there exists an

analytic function c such that u ¼ cðx; tÞ; and then the stable invariant manifold of
the periodic orbit labeled by ðaN; r

N
Þ can be represented as the graph of
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ðy; y; r; aÞ ¼ *jðx; tÞ with

*j1ðx; tÞ ¼
cðx; tÞ � j1ðcðx; tÞ; tÞ

2
;

*j2ðx; tÞ ¼ j2ðcðx; tÞ; tÞ;

*j3ðx; tÞ ¼
1

1� j2
2ðcðx; tÞ; tÞ

ðr
N

þ xj3ðcðx; tÞ; tÞÞ;

*j4ðx; tÞ ¼ aN þ xj4ðcðx; tÞ; tÞ � 2y *j3ðx; tÞ;

where ðx; tÞ belongs to a complex neighborhood of ð0; x0Þ � ð0; t0Þ:
In order to prove the existence of an unstable invariant manifold of the periodic

orbit labeled by aN and r
N

for the system (5.2) we perform the change given by
s ¼ �t and

ð %x; %y; %t; %y; %a; %r; %fÞ ¼ ðx;�y;�t; y;�a; r;�f Þ:

In these new variables the dominant terms of system (5.2) do not change and
therefore we can make the same argument as for the stable manifold and to conclude
that there exists a two-dimensional unstable manifold associated to the periodic orbit
of the system (5.2) labeled by aN and r

N
:
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