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Abstract

The purpose of this paper is to make an explicit analysis of the nonlinear dy-
namics around a two-dimensional invariant torus of an analytic Hamiltonian system.
The study is based on normal form techniques and the computation of an approx-
imated first integral around the torus. One of the main novel aspects of the cur-
rent work is the implementation of the symplectic reducibility of the quasi-periodic
time-dependent variational equations of the torus. We illustrate the techniques in
a particular example that is a quasi-periodic perturbation of the well-known Re-
stricted Three Body Problem. The results are useful to study the neighbourhood
of the triangular points of the Sun-Jupiter system.
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1 Introduction

Let us consider a quasi-periodically perturbed Hamiltonian system with two external
frequencies,

H = H0(x, y) + εH1(x, y, θ), (1)

where (x, y) is the configuration-momenta pair, θ = (θ1, θ2) = (ω1t + θ
(0)
1 , ω2t + θ

(0)
2 ) and

ω1,2 are the external frequencies.
Let us suppose that the unperturbed Hamiltonian H0 has an elliptic equilibrium point.

If the perturbation ε is small enough and under some quite generic assumptions this elliptic
fixed point is substituted, in the perturbed Hamiltonian, by an invariant 2-D torus with
the same frequencies as the perturbation ([JS96, JV97, BHJ+03]).

In this paper, we obtain the nonlinear dynamics around this 2-D invariant torus in a
practical way, by means of perturbative methods. Once the torus has been computed, we
construct a high-order normal form of the Hamiltonian around this quasi-periodic solu-
tion to describe the nonlinear dynamics nearby. The procedure is divided in the following
steps: First, we compute the invariant torus as a Fourier series with numerical coeffi-
cients ([Jor00, CJ00]). The linear transformation that reduces the linear variational flow
around the torus to constant coefficients (the so-called Floquet change) is also obtained
as numerical Fourier series. Then, the Hamiltonian is expanded around the torus, in the
coordinates given by the Floquet transformation. This implies that the expansion does
not contain terms of degree 1 (because the torus is invariant) and the coefficients of the
terms of degree 2 do not depend on time (because of the Floquet coordinates). Then, by
means of the Lie series method, we construct the normal form of the Hamiltonian up to
high order. Finally, we compute the changes of variables that send points from the initial
phase space to the normal form coordinates, and vice versa. All these computations are
performed by a specific algebraic manipulator, written in C++. This software is based
on the code given in [Jor99].

Using the normal form we can describe the dynamics around the torus, and the changes
of variables allow to send this information to the initial system. In particular, it is possible
to compute invariant tori of dimensions 3, 4 and 5 around the initial 2-D torus. Finally,
we also compute an approximate first integral of the system to estimate the diffusion
around the invariant torus. This allows to derive a zone of effective stability (also known
as Nekhoroshev stability) by computing a bound of the drift of this approximate integral.

We want to note that the computation of a normal form around a 2-D torus of an
autonomous Hamiltonian system is different from the computations presented here. The
main difference is that, in the autonomous case, the situation is far from being per-
turbative: the actions conjugated to the angles on the torus have to be defined in a
neighbourhood of the torus, and this introduces a “semi-global” component in the con-
struction. The same situation occurs for periodic orbits; for more details compare [JV98]
with [SGJM95] or [GJ01].
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1.1 A model example

We will illustrate the techniques in a particular case, the so-called Tricircular Coherent
Problem (TCCP). This is a model for the motion of a particle under the gravitational
attraction of Sun, Jupiter, Saturn and Uranus. The model is based on a quasi-periodic
solution for the planar Four-Body problem given by these bodies, and can be written
as a quasi-periodic time-dependent perturbation, with two basic frequencies, of the Sun-
Jupiter Restricted Three-Body Problem (for more details on this model, see [GJ04]). Its
Hamiltonian is

HTCCP =
1

2
α1(θ1, θ2)(p

2
x + p2

y + p2
z) + α2(θ1, θ2)(xpx + ypy + zpz)

+α3(θ1, θ2)(ypx − xpy) + α4(θ1, θ2)x + α5(θ1, θ2)y

−α6(θ1, θ2)

[
1− µ

qS

+
µ

qJ

+
msat

qsat

+
mura

qura

]
, (2)

where q2
S = (x − µ)2 + y2 + z2, q2

J = (x − µ + 1)2 + y2 + z2, q2
sat = (x − α7(θ1, θ2))

2 +
(y−α8(θ1, θ2))

2 + z2, q2
ura = (x−α9(θ1, θ2))

2 + (y−α10(θ1, θ2))
2 + z2, θ1 = ωsatt + θ0

1 and
θ2 = ωurat + θ0

2. The concrete values of the mass parameters are µ = 9.538753600× 10−4,
msat = 2.855150174× 10−4 and mura = 4.361228581× 10−5.

The functions αi(θ1, θ2){i=1÷10} are auxiliary quasi-periodic functions that are com-
puted by a Fourier analysis of the solution of the Four Body Problem (Sun + 3 plan-
ets). The concrete values of the frequencies are ωsat = 0.597039074021947 and ωura =
0.858425538978989. For a description on the construction of this model, as well as the
concrete values of the αi(·) functions, see [GJ04] (a file with the numerical values of the
Fourier coefficients can be downloaded from http://www.maia.ub.es/~gabern/).

2 Normal form around an invariant torus

This Section discusses the details of the computation of the Floquet transformation for
the torus, and the effective computation of the normal form.

In what follows, we will use Taylor-Fourier expansions, with floating point coefficients,
to represent the functions involved in the computations. For the examples here, the Taylor
expansions are taken up to degree 16 and the truncation of the Fourier series has been
selected so that the representation error is of the order 10−9. More concretely, let us write
a generic Taylor-Fourier polynomial as

P (q, p, θ1, θ2) =
N∑

r=0

∑
|k|=r

Nf1∑
j1=−Nf1

min(Nf1
−j1,Nf2

)∑
j2=max(j1−Nf1

,−Nf2
)

P k
r,je

i(j1θ1+j2θ2)qk1

pk2

,

where P k
r,j ∈ C, j = (j1, j2) ∈ Z2 and k = (k1, k2) ∈ Z3 × Z3 is a multi-index. Then, we

have used the following truncation values: N = 16, Nf1 = 20 and Nf2 = 10. In some
places, we have used higher accuracy as it is explicitly mentioned in the text.
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Figure 1: Planar projections of the 2-D invariant torus that replaces L5: T5. Left: (x, y)-
projection. Right: (px, py)-projection.

2.1 The 2-D invariant torus that replaces the elliptic fixed point

It is known that, under general conditions, the equilibrium points of (1) for ε = 0 become
quasi-periodic solutions with the same frequencies as the perturbation if ε belongs to a
set of positive measure (for details, see [JS96, JV97, BHJ+03]). This implies that, if the
previous hypotheses hold, the triangular points L4,5 of the RTBP are replaced by 2-D tori
in the TCCP. For most of the values of ε, these tori are normally elliptic ([BHJ+03]).

To compute this 2-D invariant torus, we have used the method described in [CJ00]
adapted to the non-autonomous case. We have taken the section θ1 = 0(mod 2π) to
introduce the map

x̄ = f(x, θ),
θ̄ = θ + ω,

}
(3)

where ω = 2π
(

ω2

ω1
− 1

)
and f can be evaluated from a numerical integration of the flow

associated to (2).
Using the methods described in [Jor00, CJ00], we have computed the invariant curve of

(3) that corresponds to the 2-D invariant torus that replaces L5 in the TCCP model, with
an accuracy of 10−12. The 2-D torus is easily reconstructed using numerical integrations
starting on a mesh of points on the invariant curve. Finally, a Fourier transform allows to
compute the Fourier coefficients of a parametrization with respect to the angles (θ1, θ2).
The (x, y) and (px, py) projections of the resulting invariant torus are shown in Figure 1.
From now on, we will call this 2-D torus T5. Due to the symmetries of this problem, the
same results hold for L4 so we will only discuss the L5 case.

Applying the techniques described in [Jor01], we can see that this torus is normally
elliptic, and we can obtain the three normal modes of the invariant curve. The normal
modes are the frequencies of the three harmonic oscillators that describe the normal linear
motion around the invariant torus. In Section 2.2, we discuss in detail the computation
of these normal modes. In Table 1, the linear normal modes around the invariant curve
corresponding to T5 are shown.
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j Re (λj) ±Im (λj) |λj| ±Arg (λj)

1 0.662315481969 0.749225067883 1.0 0.846891268646

2 -0.485204809265 0.874400533546 1.0 2.077393707459

3 -0.453781923686 0.891112768249 1.0 2.041801148412

Table 1: Linear normal modes around the 2-D invariant torus T5 in the TCCP system.

2.2 Second order normal form

In the previous section, we have discussed the computation of the invariant object that
substitutes the elliptic fixed point L5 of the RTBP when the quasi-periodic perturbation
is added. By means of a quasi-periodic time-dependent translation from the origin to this
2-D invariant torus, one can cancel the first order terms in the Hamiltonian. Now, we will
derive a linear change of variables, that depends on time in a quasi-periodic way, that
puts the second degree terms of the Hamiltonian into a more convenient form. This is,
essentially, the quasi-periodic Floquet transformation for the variational flow along the
quasi-periodic orbit, but taking into account the symplectic structure of the problem. To
simplify further steps in the normalizing process, we also apply a complexifying change of
variables that puts the second degree terms of the Hamiltonian in the so-called diagonal
form.

2.2.1 The symplectic quasi-periodic Floquet change

The linear flow around the 2-D invariant torus (T5 in the example) is described by a
linear system of differential equations (the variational equations), that depends quasi-
periodically on time:

ż = Q(θ1, θ2)z,

θ̇1 = ω1, (4)

θ̇2 = ω2,

where z ∈ R6 and Q is a real 6× 6 matrix.
Our final goal is to find a real, symplectic and quasi-periodic change of variables,

z = P r(θ1, θ2)x reducing (4) to a constant system with real coefficients:

ẋ = Bx,
d

dt
B ≡ 0. (5)

We will proceed in two steps: First, we will see that such a change of variables exists
in the complex domain. As in our case the obtained complex matrix admits a real form,
the second step will be to build a real change from the complex one (see [Jor01] for a
concrete example where this real matrix does not exist).

All the process is constructive, so the implementation in a computer program will
follow easily from the explanation.
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Reducibility in the Poincaré section Let us consider the θ1 = 0(mod 2π) section of
the flow defined by (4). Then, we have the following linear quasi-periodic skew product:

z̄ = A(θ)z,
θ̄ = θ + ω,

}
(6)

where θ ≡ θ2 and ω = 2π
(

ω2

ω1
− 1

)
(here ω = 2.75080755611202) is the rotation number

of the invariant curve defined by the slice θ1 = 0(mod 2π) of the 2-D invariant torus.
Assume that (6) can be reduced to an autonomous diagonal system

ȳ = Λy, Λ = diag(λ1, . . . , λ6),

by means of a linear transformation z = C(θ)y. Let us write C(θ) as (Ψ1(θ), . . . , Ψ6(θ)),
where Ψj(θ) are the columns of C(θ). Then, it is clear that the couples (λj, Ψj) can be
obtained as the eigenvalues and eigenfunctions of the following problem,

A(θ)Ψj(θ) = λjΨj(θ + ω), j = 1, . . . , 6. (7)

This problem has been solved with an accuracy of 10−12. See [Jor01] for more details on
this computation.

Remark As A(θ) is a real matrix, if λj and Ψj(θ) satisfy (7), then λ∗j and Ψ∗
j(θ) also

satisfy (7) (λ∗j and Ψ∗
j(θ) are the complex conjugates of λj and Ψj(θ), respectively). We

construct the matrix C(θ) as C(θ) = (Ψ1(θ), Ψ2(θ), Ψ3(θ), Ψ
∗
1(θ), Ψ

∗
2(θ), Ψ

∗
3(θ)), where the

Ψj are column vectors. Then, the matrix Λ takes the form Λ = diag(λ1, λ2, λ3, λ
∗
1, λ

∗
2, λ

∗
3).

The eigenfunctions Ψj(θ) are scaled in such a way that ‖Ψj‖2 = 1, where ‖V (θ)‖2
2 =

‖
∑3

k=1(vk(θ)v
∗
k+3(θ)−v∗k(θ)vk+3(θ))‖2, for V (θ) = (v1(θ), v2(θ), . . . , v6(θ))

t and ‖α(θ)‖2
2 =∑

l |αl|2 for α(θ) =
∑

l αle
ilθ, αl ∈ C.

The change of variables for the flow The next goal is to compute a quasi-periodic
change of variables z = P c(θ1, θ2)y that transforms the flow given by (4) into

ẏ = DBy, (8)

where DB = diag(iν1, iν2, iν3,−iν1,−iν2,−iν3) and νj is such that λj = exp(iνjT1), where
T1 is the period related to the first frequency T1 = 2π

ω1
. Note that νj is defined modulus

integer multiples of 2π
T1

. In general, we select a special value of kj ∈ Z for each j = 1, 2, 3
such that the values of νj are as close as possible to the ones of the RTBP. This is the
natural choice from a perturbative point of view and it also allows to obtain a symplectic
transformation.

Proposition 2.1 The solution of

Ṗ c(θ1, θ2) = Q(θ1, θ2)P
c(θ1, θ2)− P c(θ1, θ2)DB,

θ̇1 = ω1,

θ̇2 = ω2,
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with initial conditions

P c(0) = C(θ
(0)
2 ),

θ1(0) = 0,

θ2(0) = θ
(0)
2 ,

is the linear change of variables with complex quasi-periodic coefficients that transforms
system (4) into system (8).

Proof If we insert the change z = P c(θ1, θ2)y into equation (4) and if we ask that (8) is
satisfied, then P c is such that:

Ṗ c(θ1, θ2) = Q(θ1, θ2)P
c(θ1, θ2)− P c(θ1, θ2)DB. (9)

On the other hand, if we integrate equation (4) from t = 0 to t = T1 with the initial

condition
[
z(0) = Ψj(θ

(0)
2 ), θ1(0) = 0, θ2(0) = θ

(0)
2

]
(note that this is equivalent to apply

A(θ
(0)
2 ) to the vector Ψj(θ

(0)
2 )), the solution (that we denote by x̄(t)) accomplishes

x̄(T1) = A(θ
(0)
2 )Ψj(θ

(0)
2 ) = λjΨj(θ

(0)
2 + ω),

where we have used equation (7).
An elementary result in the theory of ordinary differential equations states that if x̃1(t)

is a solution of ẋ1 = Q(t)x1, then x̃2(t) = exp(at)x̃1(t) is a solution of ẋ1 = (Q(t)+aI)x1,
being a any complex number. Thus, x̂(t) = exp(−iνjt)x̄(t) is a solution of

Ṗ c
j = (Q− iνjI6)P

c
j ,

(note that it corresponds to the first three columns of equation (9)) with the same initial

condition (x̂(0) = Ψj(θ
(0)
2 )) and it satisfies the following relation:

x̂(T1) = exp(−iνjTnu)x̄(T1) = (λj)
−1λjΨj(θ

(0)
2 + ω) = Ψj(θ

(0)
2 + ω).

q.e.d.

Realification In order to actually implement the Floquet change, we are interested in
computing the real change of variables.

Proposition 2.2 Let us define the (real) matrix R by taking the real and imaginary parts
of the columns of matrix C (recall that, due to the particular construction of C, the last
three columns are the conjugate values of the first three ones),

R(θ) =
1

2
C(θ)

(
I3 −iI3

I3 iI3

)
.
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Then, the solution of

Ṗ r(θ1, θ2) = Q(θ1, θ2)P
r(θ1, θ2)− P r(θ1, θ2)B,

θ̇1 = ω1, (10)

θ̇2 = ω2,

with initial conditions

P r(0) = R(θ
(0)
2 ),

θ1(0) = 0,

θ2(0) = θ
(0)
2 ,

defines a (real) linear quasi-periodic change of variables (z = P r(θ1, θ2)x) that transforms
system (4) into system (5). Moreover, this change of variables is canonical.

The (real) matrix B is defined as B = R−1CDBC−1R and takes the form

B =


0 0 0 ν1 0 0
0 0 0 0 ν2 0
0 0 0 0 0 ν3

−ν1 0 0 0 0 0
0 −ν2 0 0 0 0
0 0 −ν3 0 0 0

 .

Proof Let us define the matrix P r in the following way,

P r(θ1, θ2) = P c(θ1, θ2)C
−1(θ1, θ2)R(θ1, θ2), (11)

where R(θ1, θ2) and C(θ1, θ2) are, respectively, the extensions of the matrices R(θ) and
C(θ). Then, we have:

• P r(0) is a real matrix: P r(0) = P c(0)C−1(θ
(0)
2 )R(θ

(0)
2 ) = C(θ

(0)
2 )C−1(θ

(0)
2 )R(θ

(0)
2 ) =

R(θ
(0)
2 ).

• If we integrate Ṗ r = QP r − P rB with P r(0) = R(θ
(0)
2 ) as initial condition, then

P r(θ1, θ2) is real ∀(θ1, θ2) ∈ T2.

• If we insert the relation (11) into the differential equation (10), we obtain

Ṗ cC−1R + P c ˙(C−1)R + P cC−1Ṙ = QP cC−1R− P cC−1RB.

By multiplying this equation (in the right hand side) by the matrix R−1C, we get

Ṗ c + P ˙(C−1)C + P cC−1ṘR−1C = QP c − P cDB.

This equation holds (it corresponds to (9)) provided that

P c ˙(C−1)C + P cC−1ṘR−1C = 0.

9



It is easy to see, by using the definition of R, that this equality is true:

P c ˙(C−1)C + P cC−1ṘR−1C = 0 ⇐⇒
˙(C−1)R + C−1Ṙ = 0 ⇐⇒

d

dt
(C−1R) = 0

Finally, to ensure that the transformation is canonical, we only need to check that
P r(θ1, θ2) is a symplectic matrix. This can be proved (see [GJMS01b]) by extending
the matrix P r to the phase space of the autonomous Hamiltonian

Hext(x, y, θ1, θ2, pθ1 , pθ2) = ω1pθ1 + ω2pθ2 + H(x, y, θ1, θ2),

where (x, y) ∈ R3×R3, pθk
is the conjugate momenta of θk and H(·) is given by equation

(1).

q.e.d.

In our example, to check the correctness of the software, we have tested numerically
that P r(θ1, θ2) is symplectic on a mesh of values of (θ1, θ2), with an agreement of the order
of the truncation of the Fourier series.

If we apply this quasi-periodic change of variables, the second degree terms of the
Hamiltonian become:

Hr
2(x, y) =

1

2
ν1(x

2
1 + y2

1) +
1

2
ν2(x

2
2 + y2

2) +
1

2
ν3(x

2
3 + y2

3), (12)

where the frequencies νj are the normal frequencies of the torus T5. In the TCCP system,
they take the values: ν1 = −0.080473064872369, ν2 = 0.996680625156409 and ν3 =
1.00006269133083.

2.2.2 Complexification

As it is usual in these kind of computations, we use a complexifying change of variables to
bring (12) into a diagonal form. The equations of this linear and symplectic transformation
are

xj =
qj + ipj√

2
, yj =

iqj + pj√
2

, j = 1, 2, 3.

Thus, after composing the three linear symplectic changes of variables (translation
of the origin to the 2-D invariant torus, quasi-periodic symplectic transformation and
complexification), the second order of the Hamiltonian takes the form:

H2(q, p) = Hc
2(q, p) = iν1q1p1 + iν2q2p2 + iν3q3p3, (q, p) ∈ C6. (13)
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2.3 Expansion of the Hamiltonian

To proceed with the algorithm that constructs the normal form, we need to produce a
convergent Taylor-Fourier expansion of Hamiltonian (1), in the complex coordinates used
to derive (13),

H =
N∑

n=2

Hn(q, p, θ) + RN+1(q, p, θ),

where Hn, n ≥ 2, denotes an homogeneous polynomial of degree n in the variables q and
p, H2(q, p, θ) = H2(q, p) is given by (13) and θ = (θ1, θ2) ∈ T2.

To produce the expansion in our particular example, we only need to expand the terms
of the potential of the TCCP Hamiltonian (2). They are of the form

1

sl

=
1√

(x− xl(θ))2 + (y − yl(θ))2 + z2
,

where (x, y, z) ∈ R3 and l stands for S (the Sun), J (Jupiter), sat (Saturn) or ura
(Uranus). It is possible to write these terms as

1

sl

=
∑
n≥0

Al
n(x, y, z, θ),

where Al
n denotes an homogeneous polynomial of degree n, whose coefficients are quasi-

periodic functions of θ = (θ1, θ2) ∈ T2, and can be recurrently computed using

Al
n+1 =

1

x2
l (θ) + y2

l (θ)

[
2n + 1

n + 1
(xl(θ)x + yl(θ)y)Al

n

− n

n + 1
(x2 + y2 + z2)Al

n−1

]
, (14)

for n ≥ 1. The recurrence can be started using the values

Al
0 =

1√
x2

l (θ) + y2
l (θ)

, Al
1 =

xl(θ)x + yl(θ)y

(x2
l (θ) + y2

l (θ))
3/2

,

and can be derived easily from the recurrence of the Legendre polynomials.
Then, the expansion of the Hamiltonian is implemented as follows: First, the transla-

tion to the torus T5 is composed with the Floquet transformation and the resulting affine
transformation is substituted in (14). Then, it is not difficult to use these recurrences
to obtain the expansion up to a given order. The remaining terms of the Hamiltonian
(monomials of degrees 1 and 2 in (2)) are easily added by simply inserting the above-
mentioned affine transformation This strategy for the expansions has already been used
in several places (see, for instance, [SGJM95, GJMS01a, GJMS01b, GJ01]).

On the other hand, it is also convenient to add the momenta corresponding to the
angular variables. If we denote it as pθ = (pθ1 , pθ2) ∈ C2, it is possible to write the
expanded Hamiltonian (in complex variables) as

H(q, p, θ, pθ) = 〈$, pθ〉+ H2(q, p) +
∑
n≥3

Hn(q, p, θ), (15)

11



where (q, p) ∈ C6, θ ∈ T2, H2(q, p) is given by (13), $ = (ω1, ω2) and 〈·, ·〉 is the Euclidean
scalar product.

2.4 Normal form of order higher than 2

The previous expansion has been obtained in coordinates such that the Hamiltonian starts
at degree 2 for the spatial variables, and that degree 2 is already in complex normal form
(13).

The goal of the normalizing transformation is to eliminate the maximum number of
terms of the expansion of the Hamiltonian. We use, basically, the Lie series method
implemented as described in [Jor99], but introducing the necessary modifications in order
to deal with quasi-periodic coefficients.

For completeness, we describe one step of the normalizing process. Let us suppose
that the Hamiltonian is already in normal form up to degree r − 1,

H = 〈$, pθ〉+ H2(q, p) +
r−1∑
j=3

Hj(q, p) + Hr(q, p, θ) + Hr+1(q, p, θ) + · · ·

where Hr(q, p, θ) =
∑

|k|=r hk
r(θ1, θ2)q

k1
pk2

, hk
r(θ1, θ2) =

∑
j=(j1,j2) hk

r,je
i(j1θ1+j2θ2) and k =

(k1, k2) ∈ Z3 × Z3 is a multi-index.
We will make a change of variables that suppress the maximum number of monomials

and removes the dependence in θ1 and in θ2 in the terms of order r, Hr, of the Hamiltonian
expansion. The canonical transformation that accomplishes this purpose is given by the
following generating function:

Gr = Gr(q, p, θ) =
∑
|k|=r

gk
r (θ1, θ2)q

k1

pk2

,

where the coefficients are given by

gk
r (θ1, θ2) =


∑

j=(j1,j2)

hk
r,je

i(j1θ1+j2θ2)

i(j1ω1 + j2ω2 − 〈ν, k2 − k1〉)
if k1 6= k2,

∑
j=(j1,j2) 6=(0,0)

hk
r,je

i(j1θ1+j2θ2)

i(j1ω1 + j2ω2)
if k1 = k2,

In general, one should check that all the frequencies ν1, ν2, ν3, ω1, ω2 are not in reso-
nance up to the order of the computations. Otherwise, we will have a zero divisor that
implies that this (resonant) term cannot be eliminated.

In our example, the frequencies of the normal linear oscillations around the 2-D in-
variant torus T5, ν = (ν1, ν2, ν3), and the intrinsic frequencies of the system, ω1 = ωsat

and ω2 = ωura, are not in resonance up to order N . That is, we check at every step of the
process that j1ω1 + j2ω2 − 〈ν, k〉 6= 0, j = (j1, j2) ∈ Z2, k ∈ Z3\{0}, with |j| and |k| up to
the orders we have worked with.

12



Now, the H ′ obtained with such a generating function,

H ′ = H + {H, Gr}+
1

2!
{{H, Gr} , Gr}+ · · · ,

does not depend on the variables θ1 and θ2 up to degree r (here, {·, ·} denotes the canonical
Poisson bracket), that is, H ′ is in normal form up to degree r,

H ′ = 〈$, pθ〉+ H2(q, p) +
r−1∑
j=3

Hj(q, p) + H ′
r(q, p) + H ′

r+1(q, p, θ) + · · · .

After performing all this changes up to a suitable degree n = N , the Hamiltonian
takes the form

H = 〈$, pθ〉+N (q1p1, q2p2, q3p3) +R(q1, q2, q3, p1, p2, p3, θ1, θ2), (16)

where N denotes the normal form (that only depends on the products qjpj) and R is the
remainder (of order greater than N).

Finally, we write the normal form N in real action-angle coordinates. This can be
easily achieved by using the (canonical) transformation,

qj = I
1/2
j exp(iϕj), pj = −iI

1/2
j exp(−iϕj), j = 1, 2, 3.

It is not difficult to see that N , in these coordinates, does not depend on the angles ϕj

but only on the actions Ij,

N =

[N/2]∑
|k|=1

hkI
k1
1 Ik2

2 Ik3
3 , k ∈ Z3, hk ∈ R. (17)

Values for the coefficients hk up to order N = 6 for our particular case of the TCCP
system can be found in Table 2. As it has been mentioned before, these computations
have been performed up to order N = 16.

2.5 Changes of variables

We have also computed explicit expressions for the transformation from the initial vari-
ables of (1) to the normal form variables and its inverse one. As usual, these changes
of variables can be written as truncated Taylor-Fourier series, with the same truncation
values as the Hamiltonian. They will be used to send information from the normal form
coordinates to the initial ones, and vice versa.

2.6 Local nonlinear dynamics

If we are close enough to the 2-D invariant torus that replaces the equilibrium point, the
(nonlinear) dynamics can be described accurately by the truncated normal form Hamil-
tonian (17). As this is an integrable normal form, the dynamics is very simple: the phase

13



k1 k2 k3 Re (hk) Im (hk)
1 0 0 -8.0473064872368966e-02 0.0000000000000000e+00
0 1 0 9.9668062515640865e-01 0.0000000000000000e+00
0 0 1 1.0000626913308270e+00 0.0000000000000000e+00
2 0 0 5.6008074695424814e-01 9.9022635266146223e-14
1 1 0 -1.5539627415430354e-01 1.9737284347219547e-14
0 2 0 5.5093985824138381e-03 -3.4515403004164990e-16
1 0 1 5.4161903856716140e-02 2.6837558280952768e-15
0 1 1 6.6103538676104013e-03 -2.3704452239135327e-16
0 0 2 -3.4144388415478051e-04 1.3980906058550924e-20
3 0 0 1.7078141909448842e+01 7.0030369427282057e-09
2 1 0 2.5316327595194634e+00 5.6348897124143457e-09
1 2 0 1.2040309679987733e+00 2.4234795726771734e-10
0 3 0 -1.7159208395247699e-03 8.2745567480971449e-12
2 0 1 -2.0884357984263224e-01 2.7145888846396389e-10
1 1 1 1.3097591687221137e+00 8.5687025776165656e-11
0 2 1 -8.7878491487452266e-03 1.1230163355821964e-12
1 0 2 -3.8394291301547680e-02 4.9155879462758908e-12
0 1 2 -8.1852662066825860e-03 2.9493958070531223e-13
0 0 3 4.8084373364571027e-04 4.1626694220605631e-14

Table 2: Coefficients of the normal form, up to degree 3 in the actions for the TCCP
case. The first three columns contain the exponents of the actions, and the fourth and
fifth columns are the real and imaginary parts of the coefficients. Imaginary parts must
be zero, but they are not due to the different accumulation errors (basically, the one that
comes from the truncation of the Fourier series).
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space is completely foliated by a 3-parametric family of invariant tori, parameterized by
the actions I. On each torus I = I0, there is a linear flow with a given frequency Ω(I0).
If these frequencies are linearly independent over the rationals then the torus I = I0 is
filled densely by any trajectory starting on it. If the frequencies are linearly dependent
over the rationals, then the orbits on this torus are not dense: if there are `i independent
frequencies, the torus I = I0 contains a (3− `i)-parametric family of `i dimensional tori,
being each one densely filled by any trajectory starting on it. These tori of dimension `i

are the lower dimensional tori, while the tori of dimension 3 are the maximal dimensional
ones.

The effect of the remainder on these tori has been widely studied in the literature so we
will skip further discussions on this topic. Here, as we want to use the tori of the normal
form as approximations to invariant tori for the complete system, we need a procedure
to estimate their accuracy. A possibility is to estimate the size of the remainder (see, for
instance, [JV98] or [GJ01]), but here we have chosen a more straightforward approach
(see Section 4.7 in [Jor99]): given a torus on the normal form, we can tabulate an orbit
on it, send this table to the coordinates of the initial Hamiltonian (2) and check if each
point is obtained from a numerical integration of the previous one. For tori sufficiently
close to the origin of the normal form, this test is passed within an accuracy of the same
order as the truncation of the Fourier series. All the tori displayed in this section have
passed this test.

Therefore, we can easily compute lower and maximal invariant tori using the truncated
normal form and send them, via the change of variables, to the initial coordinates of the
system. This change of variables adds two additional frequencies (the system’s intrinsic
frequencies, ω1 and ω2) to the invariant tori. Thus, the invariant tori seen in the initial
phase space are of dimensions three, four and five.

Figures 2, 3, 4, 5, 6 and 7 are examples of these computations for the TCCP system.
More concretely, Figures 2 and 3 are obtained by setting I1 = I2 = 0 and I3 = I

(0)
3 in (17),

for some (small) value I
(0)
3 > 0. This is a periodic Lyapunov orbit of the autonomous

normal form N in (16), that corresponds to a three-dimensional torus for the initial
Hamiltonian (2). This 3-D torus belongs to the Lyapunov family of the 2-D torus T5

(see [JV97]), and their normal frequencies are ∂N
∂Ij

(0, 0, I
(0)
3 ), j = 1, 2, where N is taken

from (17). Figures 4 and 5 have been obtained in a similar way, but setting I2 = I3 = 0,

I1 = I
(0)
1 and I1 = I3 = 0, I2 = I

(0)
2 respectively. In the coordinates of the initial

Hamiltonian (2), these two tori are contained in the plane z = pz = 0. Figure 6 displays
two projections of a four-dimensional invariant torus near T5. Finally, in Figure 7 two
different projections of a five-dimensional invariant torus are shown. All these graphics
have been obtained computing 10,000 points on a single orbit on the torus, with a time
step of 0.1 units. See the captions for more details.

We note that, in this way, it is also possible to compute quasi-periodic orbits with
a prescribed set of frequencies Ω0, provided that Ω0 belongs to the domain where the
normal form is accurate. The procedure is based on solving the equation ∇N (I) = Ω0 by
means of, for instance, a Newton method.
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Figure 2: Projection on the (x, y) (left) and on the (z, pz) (right) planes of an elliptic
three-dimensional invariant torus near T5. The intrinsic frequencies are ωsat, ωura and
ν3 = 1.000062350. The normal ones are ν1 = −0.08044599352 and ν2 = 0.9966839283.
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Figure 3: Projection on the configuration space of the three-dimensional invariant torus
shown in Figure 2.
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Figure 4: Projections on the (x, y) (left) and (y, px) (right) planes of an elliptic
three-dimensional invariant torus. The intrinsic frequencies are ωsat, ωura and ν1 =
−0.08046185813, and the normal ones are ν2 = 0.9966790714 and ν3 = 1.000063233.
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Figure 5: Projections on the (x, y) (left) and (px, py) (right) planes of an elliptic three-
dimensional torus. The intrinsic frequencies are ωsat, ωura and ν2 = 0.9966811761, and
the normal ones are ν1 = −0.08048083167 and ν3 = 1.000063022.
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Figure 6: Projections on the (x, y, z) (left) and (px, py, pz) (right) spaces of a four-
dimensional torus near T5. The intrinsic frequencies are ωsat, ωura, ν2 = 0.9966811761
and ν3 = 1.000063022, and the normal one is ν1 = −0.08048083168.
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Figure 7: Projections on the (x, y) (left) and (z, pz) (right) planes of a five-dimensional
torus near T5. The frequencies are ωsat, ωura, ν1 = −0.08046420047, ν2 = 0.9966802858
and ν3 = 1.000063496.

3 Approximate first integral of the initial Hamilto-

nian

A first integral of a Hamiltonian system H(q, p, θ) is a function F (q, p, θ) that is constant
on each orbit of the system. Functions having a small drift along the orbits are usually
called approximate first integrals or quasi-integrals ([GG78, Mar80]). One of the main
applications of approximate first integrals is to bound the rate of diffusion on certain
regions of the phase space ([CG91, GJ01]).

3.1 Computing a quasi-integral

It is not difficult to see that, if F (q, p, θ) is a first integral, then

{H, F} = 0. (18)

Here we will try to solve this equation by expanding H and F in Taylor-Fourier series,
in the same coordinates used to obtain (15). That is, we suppose that H is expanded in
complex coordinates, as in normal form up to degree 2. Let us write F as a truncated
Fourier-Taylor expansion,

F (q, p, θ1, θ2) =
N∑

n=2

Fn(q, p, θ1, θ2),

where, as usual, Fn stands for an homogeneous polynomial of degree n in the variables
(q, p), with coefficients that are (truncated) Fourier series in the angles θ1 and θ2:

Fn(q, p, θ1, θ2) =
∑
|k|=n

∑
j=(j1,j2)

(
fk

n,je
i(j1θ1+j2θ2)

)
qk1

pk2

.
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To compute the coefficients of this expansion, fk
n,j ∈ C, we solve equation (18) order

by order. It is easy to see that there is some freedom while selecting the degree 2 of F ,
F2. As our final goal is to bound the diffusion using this quasi-integral, a good choice is
(see [GJ01])

F2 = i

3∑
j=1

qjpj.

For what concerns to higher degrees, n > 2, it is possible to obtain fk
n,j recurrently,

fk
n,j =

ick
n,j

j1ω1 + j2ω2 − 〈k2 − k1, ν〉
,

where ν = (ν1, ν2, ν3) and ck
n,j can be computed from the expansion of the Hamiltonian

and the previously computed coefficients of F .
During the computations, two conditions must be verified at every step of the process:

a) ω1, ω2 and ν must satisfy that

j1ω1 + j2ω2 − 〈k, ν〉 6= 0,

∀ (j1, j2) ∈ Z2, ∀ k ∈ Z3 such that |j|+ |k| 6= 0,

b) if j1 = j2 = 0 and k1 = k2, the value ck
n,j must vanish.

The first is the same non-resonance condition needed for the normal form computation
and it only depends on the normal and internal frequencies of the torus. The second
condition have to be checked before the computation of each Fj. In our example, this
second condition is satisfied in all the cases. For a discussion on condition b), see [CG91].

In the model example, we have used the recurrence to compute the approximate first
integral truncated at order N = 16.

3.2 Bounding the diffusion

As F is not an exact first integral, the variation of the values of F on a given trajectory
of the Hamiltonian is not exactly zero. Its variation can be written, in terms of the
Hamiltonian expanded in real coordinates H(x, y, θ, pθ) and in terms of the realified quasi-
integral F (x, y, θ), as

Ḟ = {F (x, y, θ), H(x, y, θ, pθ)} ,

where (x, y) ∈ R3 × R3 and, as usual, pθ = (pθ1 , pθ2) are the momenta corresponding to
the angles θ = (θ1, θ2) ∈ T2. Then, it is easy to see that the diffusion can be estimated
by bounding the following expansion:

Ḟ =
∑
n>N

N∑
l=3

{Fl, Hn−l+2}+
∑
n>N

{F2, Hn} .
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We will use the same procedure as in [GJ01]. Thus, we use Lemmas in [GJ01] and
[CG91] (the norms should be modified in order to deal with two angles, but the lemmas
are still valid) to estimate the size of the terms of the Hamiltonian that have not been
numerically computed (those homogeneous polynomials with degree greater than N). A
bound for the drift of the formal first integral F is obtained by means of the following

Lemma 3.1 Let N and N̂ be integers such that 3 ≤ N ≤ N̂ and

‖Hk‖ ≤ Sk 3 ≤ k ≤ N̂ ,

‖Hk‖ ≤ hk−N̂+1E k > N̂,

‖Fk‖ ≤ Qk 3 ≤ k ≤ N.

Then, if hρ < 1,
‖Ḟ‖ρ ≤ R(ρ),

where

R(ρ) =
N−2∑
j=1

(j + 2)ρjQj+2

∑
N−j<l≤N̂

lρlSl

+
N−2∑
j=1

(j + 2)ρjQj+2
E

hN̂
h

(N̂ + 1)(hρ)N̂+1 − N̂(hρ)N̂+2

(1− hρ)2
+

+
∑

N<l≤N̂

lρlSl +
E

hN̂
h

(N̂ + 1)(hρ)N̂+1 − N̂(hρ)N̂+2

(1− hρ)2
.

Proof See [CG91] and [GJ01].

Then, in order to find a region of effective stability, we define the following compact
domain of the phase space:

Dρ = {(x, y) ∈ R6 ; (x2
1 + y2

1) + (x2
2 + y2

2) + (x2
3 + y2

3) ≤ ρ2}.

Assume that we have an initial condition (x(0), y(0)) inside the domain Dρ0 . We are
interested in values ρ > ρ0 such that the orbit (x(t), y(t)) is contained in Dρ for all
t ∈ [0, TS], where TS is the (finite) lifetime of the considered physical system. A sufficient
condition to achieve this is that

|F2(x(t), y(t))− F2(x(0), y(0))| ≤ 1

2
(ρ2 − ρ2

0), 0 ≤ t ≤ TS, (19)

where F2(x, y) = 1
2

∑3
j=1(x

2
j + y2

j ).
Let us now define

∆N(ρ0, ρ) =
1

2
(ρ2 − ρ2

0)−
N∑

j=3

‖Fj‖(ρj + ρj
0)
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It is easy to see that, if ∆N(ρ0, ρ) ≥ 0 and

|F (x(t), y(t), θ(t))− F (x(0), y(0), θ(0))| ≤ ∆N(ρ0, ρ),

then, (19) holds. The function ∆N(ρ0, ρ) is used to bound the maximum variation of
F (x, y, θ) on the interval of time [0, TS] because (19) is a sufficient condition for the
trajectory to be inside the domain Dρ. Note that, due to the particular form of ∆N ,
the values ρ0 and ρ have to be sufficiently small to achieve ∆N(ρ0, ρ) ≥ 0 but, on the
other hand, we want ∆N to be as large as possible, to allow a large variation of F with a
controlled variation of ρ. Hence, we will carefully select the values ρ0 and ρ to obtain the
largest region of effective stability for time TS.

So, if ∆N(ρ0, ρ) ≥ 0, we can bound the escaping time as a function of the initial radius,

T (ρ0) = sup
ρ

∆N(ρ0, ρ)

R(ρ)
, (20)

where R(ρ) is given in Lemma 3.1.
In the TCCP system, we have solved equation (20) for different ρ0’s and, using inverse

interpolation we have found the initial radius ρ0 for which an orbit does not leave the
domain Dρ in a time span of length TS = 3× 109 (the estimated age of the Solar System
in adimensional units). The result obtained here is ρ0 = 1.7565× 10−4 and the maximal
final radius is ρ = 4.9666 × 10−4. We want to mention that this region Dρ0 (seen in the
physical space of the TCCP) is qualitatively different from (it is not contained neither
contains) the effective stability zones obtained with other models, such as the RTBP one
(for example, in [Sim89, CG91, SD00]), the BCCP in [GJ01] and the ERTBP in [Gab03].
It can be seen as the subset of the phase space when a ball of radius ρ0 “travels” along
the invariant torus T5. The projection of this region of effective stability into the Jupiter’s
plane of motion is shown in Figure 8.
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