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Abstract

We focus on the continuation with respect to parameters of smooth invariant
curves of quasi-periodically forced 1-D systems. In particular, we are interested in
mechanisms leading to the destruction of the curve. One of these mechanisms is the
so-called fractalization: the curve gets increasingly wrinkled until it stops being a
smooth curve.

Here we show that this situation can appear when the Lyapunov exponent of
a smooth non reducible curve (a curve whose linear normal behaviour cannot be
reduced to constant coefficients) goes from a strictly negative value to zero. More
concretely, using the Implicit Function Theorem (IFT) we show that an attracting
curve can always be locally continued w.r.t. parameters inside its differentiability
class, and that a zero Lyapunov exponent implies a failure of the IFT. In our
scenario, the curve can only become fractal when the Lyapunov exponent vanishes.
We illustrate these phenomena with some examples, including the quasi-periodically
forced logistic map and an example based on the one used by G. Keller to prove the
existence of Strange Non-chaotic Attractors.
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1 Introduction

The continuation of invariant objects (fixed points, periodic orbits, invariant curves, higher
dimensional tori, etc.) is an essential procedure to understand the geometrical structures
that organise the phase space of a dynamical system. Here we will focus on the continu-
ation of invariant curves of quasi-periodically forced one-dimensional dynamical systems,

x̄ = fµ(x, θ),
θ̄ = θ + ω,

}
(1)

where x ∈ R, θ ∈ T1, µ ∈ R is a parameter and fµ is a smooth function. The value
ω belongs to the set (0, 2π) \ 2πQ. To facilitate the reading we will abuse the language
and refer to these numbers simply as irrationals (conversely, if ω ∈ 2πQ, we will call it
rational). As ω is irrational, this system has neither fixed nor periodic points. Therefore,
the simplest invariant objects are curves, that can be seen as the natural extension of the
fixed or periodic points of f when f does not depend on θ.

Due to the rotation θ 7→ θ + ω, any orbit or invariant curve of (1) has zero as one
of its two Lyapunov exponents. Therefore, we will ignore this zero exponent and we will
focus on the remaining one that is related to the dynamics in the x direction. The curve
is said to be attracting when this Lyapunov exponent is negative.

In this work we focus on the continuation w.r.t. parameters of a smooth and attracting
invariant curve. More concretely, we are interested in the mechanisms that can lead to a
destruction of the curve. One of these mechanisms is the so-called fractalization, that can
be shortly descibed as a process in which the curve gets increasingly wrinkled until it stops
being a smooth curve. There are numerical experiments in the literature claiming that
the fractalization and the destruction of the curve take place when it is still attracting
(for a survey, see [PNR01]). In this case the curve seems to be replaced by a Strange Non-
chaotic Attractor (SNA): an attracting set with fractal dimension strictly larger than 1
and negative Lyapunov exponent.

In this paper we focus on a certain kind of failure for the continuation process of an
attracting curve, that results in a fractalization phenomena when the Lyapunov exponent
goes to zero. It is remarkable that, although the curve gets highly twisted, it keeps being
a smooth curve as long as the Lyapunov exponent is strictly negative. We do not claim
that this is the only scenario giving rise to fractalization (see Section 4.2), but we believe
that some of the SNAs reported in the literature belong to the class considered here and,
therefore, they are not “strange sets” but simply smooth (but highly wrinkled) curves.

More concretely, let us consider an attracting invariant curve whose linear normal
behaviour is not reducible (see Definition 2.1). Then, we look at the continuation of this
curve w.r.t. a parameter µ by applying the Implicit Function Theorem (IFT). It is well
known that, when the spectrum of a suitable operator (3) does not contain 0, the IFT
implies that the curve can be locally continued and, when 0 belongs to this spectrum, a
bifurcation may take place. Here we prove that 0 does not belong to this spectrum as long
as the curve is attracting, which implies that an attracting curve can always be locally
continued inside its smoothness class. The fact that the curve is not reducible implies
that the spectrum of the operator in the IFT does not contain eigenvalues. Therefore,
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when 0 enters in the spectrum we have a bifurcation that cannot be studied with standard
methods (for instance, as 0 is not an eigenvalue we do not have centre manifold). We
study this situation and we prove, in a concrete model, that the curve fractalizes for
µ→ µ∗, but it keeps being a smooth curve as long as µ has not reached the critical value
µ∗. The Lyapunov exponent of the curve is negative and goes to zero when µ→ µ∗. It is
interesting to note that the numerical simulation seems to show the existence of a SNA
when µ is close (but not equal) to µ∗, although we rigorously prove in our example that
it is a C∞ curve.

With this in mind, we give a close look to a well known example: the quasi-periodically
forced logistic map. There we select a set of parameters for which it seems that this model
has a SNA, and we try to numerically detect whether it is a smooth curve or not. The
result is that, after a magnification of the order 1010 (using extended precision), it looks
like a smooth curve. Of course, if one moves the parameters a bit such that the curve is
more and more twisted, it becomes impossible to know numerically if it is still a curve
or not. Our point is that, in this example, there is the same numerical evidence to claim
that there is a SNA, than to claim the opposite.

We also prove that, for non-invertible quasi-periodically forced 1-D maps, repelling non
reducible curves are not persistent under perturbations. This implies that one cannot
expect to find them in a given system. This also implies that, when a non reducible
attracting invariant curve becomes repelling, it should disappear.

In the proofs we take advantage of the low dimensionality of the system. In particular,
we have been able to write normal forms for non reducible linear skew-products, including
a normal form for the transition from reducibility to non reducibility. This allows, among
other things, to prove that the dependence on parameters of the Lyapunov exponent is
only C0 at the point when the reducibility is lost. We illustrate this phenomenon in the
quasi-periodically forced logistic map.

A preliminary version of these results can be found in [JT05].

1.1 The continuation of invariant curves

Let us assume that, for a given value of µ = µ0, (1) has an invariant curve x = uµ0(θ)
with rotation number ω. For the moment being, we will assume that the curve is of class
Cr, r ≥ 0, but to speak about fractalization we will require more regularity than C0. At
this point we recall that, if a map of class Cr has a C0 attracting invariant curve, the
curve must be of class Cr (see [Sta97, HL05b]). Going back to the notation, and without
loss of generality, we take µ0 = 0. Then, the invariant curve u0(θ) satisfies the functional
equation F (u0, 0) = 0, where F : Cr(T1,R)×R → Cr(T1,R) and, if (u, µ) ∈ Cr(T1,R)×R,
we have

F (u, µ)(θ) = fµ(u(θ), θ)− u(θ + ω). (2)

We are interested in the continuation of this curve w.r.t. the parameter µ, i.e., we look
for a regular function µ 7→ uµ, defined for |µ| small enough, such that F (uµ, µ) = 0.

We will work on the Banach space Cr(T1,R), endowed with the standard Cr norm.
To apply the Implicit Function Theorem (IFT) to (2) we have to check that F is differ-
entiable and that DuF (u0, 0) is an invertible bounded operator acting on Cr(T1,R). The
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differentiability of F w.r.t. u follows from the smoothness of f and that u(θ) 7→ u(θ+ω) is
a linear bounded operator w.r.t. u. It is easy to check that, for any (u, µ) ∈ Cr(T1,R)×R,
and for any v ∈ Cr(T1,R), we have that the function DuF (u, µ)v ∈ Cr(T1,R) is given by

[DuF (u, µ)v](θ) = Dxfµ(u(θ), θ)v(θ)− v(θ + ω). (3)

It is immediate to verify that DuF (u, µ) is a bounded operator. Therefore, our main
concern will be the existence of a bounded inverse for DuF (u0, 0) or, in other words, if
zero belongs to the spectrum of DuF (u0, 0). One of the main results of this paper is that
zero does not belong to the spectrum of DuF (u0, 0) if and only if the Lyapunov exponent
of the invariant curve is negative. This implies that smooth and attracting invariant
curves can always be locally continued inside the same smoothness class.

As we are dealing with infinite dimensional operators, the spectral values do not need
to be eigenvalues. As we will see, this difference is very important because bifurcations due
to an spectral value which is not an eigenvalue are completely different from bifurcations
due to eigenvalues.

If zero is an eigenvalue, the possible bifurcations are the same ones as for the bi-
furcations of autonomous 1–D maps. The proof is based on showing that if zero is an
eigenvalue, the linearization of the dynamics around the invariant curve can be reduced to
constant coefficients (i.e., the invariant curve is reducible, see Section 2.1) which allows to
use the standard normal form machinery (see, for instance, [BHTB90, BHJ+03]). If zero
belongs to the spectrum of DuF (u0, 0) but it is not an eigenvalue, the situation is more
complicated, and the standard normal form techniques cannot be used (for an example
of this situation, see [BTW99]).

The paper is organised as follows. Section 2 focuses on general properties of lineal
skew products (mainly reducibility, Lyapunov exponents and normal forms), Section 3 is
devoted to the fractalization phenomena in affine systems and Section 4 is devoted to the
examples and applications. We have also included some extra comments in Section 5.

2 Linear skew-products

If x = u0(θ) is an invariant curve of class Cr, r ≥ 0, its linearised normal behaviour is
described by the following linear skew-product:

x̄ = a(θ)x,
θ̄ = θ + ω,

}
(4)

where a(θ) = Dxf0(u0(θ), θ) is also of class Cr, x ∈ R and θ ∈ T1. We will assume that
the invariant curve is not degenerate, in the sense that the function a(θ) is not identically
zero. The goal of this section is to derive several important properties of (4) that will
enable us to connect the attracting character of the curve with its continuation w.r.t.
parameters.
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2.1 Reducibility

Definition 2.1 The system (4) is called reducible iff there exists a (may be complex)
change of variables x = c(θ)y, continuous w.r.t. θ, such that (4) becomes

ȳ = by,
θ̄ = θ + ω,

}
(5)

where b does not depend on θ.

Note that, if (4) is reducible with b 6= 0, the identity b = a(θ)c(θ)/c(θ + ω) implies
that a(θ) never vanishes. In particular, this implies that if a has zeros, the skew-product
cannot be reducible. Moreover, if the transformation x = c1(θ)y reduces (4) to (5) with
a complex b = b1, then the real change x = |c1(θ)|y reduces (4) to b = sign (a)|b1| ∈ R.

Proposition 2.1 Given the skew-product (4), consider a linear skew-product

ȳ = b(θ)y,
θ̄ = θ + ω,

}
(6)

and assume that a and b are C∞ functions. If there exists γ > 0 and τ ≥ 1 such that

|qω − 2πp| ≥ γ

|q|τ
, for all (p, q) ∈ Z× (Z \ {0}), (7)

then there exists a C∞ strictly positive function c such that the change x = c(θ)y trans-
forms (4) into (6) if and only if the following two conditions are met:

1.
a(θ)

b(θ)
can be extended to a C∞ strictly positive function for all θ,

2. ∫ 2π

0

ln
a(θ)

b(θ)
dθ = 0.

Proof: Let c : θ ∈ T1 7→ R be a strictly positive function. The transformation x = c(θ)y
brings (4) into the form

ȳ = a(θ)
c(θ)

c(θ + ω)
y.

Now, let us consider the equation

a(θ)

b(θ)
=
c(θ + ω)

c(θ)
, for all θ ∈ T. (8)

Assume that conditions 1. and 2. hold. Then, taking logarithms we obtain

ln
a(θ)

b(θ)
= ln c(θ + ω)− ln c(θ). (9)
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If we denote as αk and ck the Fourier coefficients of ln a(θ)
b(θ)

and ln c(θ), we find that c0 is

undefined (this is expected since the reduced transformation is defined modulus products
by scalars). If k 6= 0 we have

ck =
αk

exp(i kω)− 1
. (10)

Using the Diophantine condition (7) and the smoothness of ln a(θ)
b(θ)

(which implies a suitable

decay on the values |αk| when |k| grows) we can also show a suitable decay on the values
|ck|, which shows the smoothness of ln c(θ).

Now assume that there exists a C∞ change x = c(θ)y that transforms (4) into (6).
Then, condition 1. follows from (8) and condition 2. follows from (9).

Corollary 2.1 Assume that ω satisfies the Diophantine condition (7) and that a is C∞.
Then, (4) is reducible if and only if a has no zeros.

Proof: Assume first that (4) is reducible. If a has zeros, then the reduced system (5)
must have b = 0, which in turn implies that a ≡ 0. This contradicts our assumption that
a is not the null function.

Assume now that a has no zeros. Let us define the value

b = sign (a) exp

[
1

2π

∫ 2π

0

ln |a(θ)| dθ
]
6= 0,

where sign (a) denotes the sign of the function a, which is well defined since a does not
have zeros. With this definition of b it is immediate to see that conditions 1 and 2 in
Proposition 2.1 hold. Therefore, (4) is reducible to (6) with b(θ) ≡ b.

Proposition 2.1 and Corollary 2.1 also hold if a and b are Cr functions, for r big
enough. In this case, note that the effect of the small divisors in (10) does not allow to
show that the reducing transformation x = c(θ)y is also Cr w.r.t. θ. The next result
shows that this loss of differentiability for c is unavoidable.

Proposition 2.2 Assume that ω is irrational. Then, there exist a strictly positive func-
tion a ∈ Cr(T1,R) such that (4) is not reducible by means of a Cr transformation.

Proof: Let a ∈ Cr(T1,R) be a strictly positive function. Assume that there exists a
transformation x = c(θ)y casting (4) into (5). Then, b and c satisfy the equation

c(θ + ω)

c(θ)
=
a(θ)

b

Taking logarithms and defining α = ln a, λ = ln b and d = ln c, we have

d(θ + ω)− d(θ) = α(θ)− λ

As the left hand side has zero average, λ has to be the average of α, namely

λ =
1

2π

∫ 2π

0

ln a(θ) dθ.
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To complete the proof, we will show that there exist functions β ∈ Cr(T1,R), with zero
average, for which there is no d ∈ Cr(T1,R) such that d(θ + ω)− d(θ) = β(θ).

Let us define Cr
0 = {ϕ ∈ Cr(T1,R) such that

∫ 2π

0
ϕ(θ) dθ = 0}, and let us denote

by Tω the automorphism of Cr
0 defined by (Tωϕ)(θ) = ϕ(θ + ω). As Tω is isometric,

Spec (Tω) ⊂ S1. Moreover, for all k ∈ Z, Tω(exp(i kθ)) = exp(i kω) exp(i kθ) which implies
that, if k 6= 0, exp(i kω) is an eigenvalue (the eigenfunction for k = 0 does not belong to
Cr

0). Hence, Spec (Tω) = S1.
As the spectral value 1 is not an eigenvalue, the range of the operator Tω − Id is

not Cr
0 . Hence, there exist functions β ∈ Cr

0 for which there is no d ∈ Cr
0 such that

d(θ + ω)− d(θ) = β(θ).

In particular, this result implies that there exist strictly positive functions a ∈ C0

for which (4) is not reducible to constant coefficients, since the reducing transformation
cannot be continuous.

2.2 Normal forms and Lyapunov exponents

Proposition 2.1 can be used to derive a normal form for 1-D skew products.

Proposition 2.3 Assume that ω satisfies the Diophantine condition (7) and that a is a
C∞ function with finitely many zeros, each with finite multiplicity. If n0 is the total num-
ber of zeros –including multiplicities–, then there exists a unique trigonometric polynomial
of degree n0 such that the linear skew product (4) can be transformed into

x̄ = p(θ)x,
θ̄ = θ + ω,

}
The transformation also belongs to the C∞ class.

Proof: Let q a non-zero polynomial of degree n0 with the same zeros, including multi-
plicities, as a. Note that all the polynomials with these properties can be written as λq,
for λ 6= 0. Note that q can be selected such that q(θ)a(θ) ≥ 0, for all θ. Therefore, for
any λ > 0, the quotient

a(θ)

λq(θ)

can be extended to a strictly positive C∞ function for all θ and, hence, condition 1 in
Proposition 2.1 holds. Note that the value

λ = exp

[
1

2π

∫ 2π

0

log
a(θ)

q(θ)
dθ

]
,

is the only choice to satisfy condition 2 in Proposition 2.1.

As the right-hand side of (4) is a linear function of x, the Lyapunov exponent of an
orbit starting at (θ, x) only depends, in principle, of θ. This is the reason of the following
definition.
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Definition 2.2 If θ ∈ T1, we define the Lyapunov exponent of (4) at θ as

λ(θ) = lim sup
n→∞

1

n
ln

∣∣∣∣∣
n−1∏
j=0

a(θ + jω)

∣∣∣∣∣ . (11)

We also define the Lyapunov exponent of the skew product (4) as

Λ =
1

2π

∫ 2π

0

ln |a(θ)| dθ.

If Λ is finite then the Birkhoff Ergodic Theorem says that, for Lebesgue-a.e. θ ∈ T1,
the lim sup in (11) is in fact a lim and λ(θ) = Λ. If a(θ) never vanishes, the lim sup in
(11) is again a lim and coincides with Λ but now for all θ ∈ T1. In this last case, (11)
converges uniformly. This follows from Proposition 4.1.13 in [KH95] using that irrational
rotations on T1 are uniquely ergodic.

We have shown, in Proposition 2.1, that the zeroes of a are preserved by linear changes
of variables so that they can be seen as an invariant of the cocycle. Now we will assume
that a depends on a parameter µ, and we will focus on the regularity of the Lyapunov
exponent Λµ w.r.t. µ. Roughly speaking, next result shows that Λµ depends smoothly on
µ, except when the number of zeroes of a changes. In this last case, Λµ is only C0.

Theorem 2.1 Let us consider a one-parametric family of linear skew-products

x̄ = a(θ, µ)x,
θ̄ = θ + ω,

}
(12)

where ω is Diophantine (see(7)) and µ belongs to an open subset of R and a is a C∞

function of θ and µ. We assume that:

1. For each µ, a(·, µ) has finitely many zeros, each of them are simple except maybe
one of multiplicity 2.

Let us call M the (open) set of values of µ for which all the zeros of a(·, µ) are
simple.

2. If a(·, µ) has a zero of multiplicity 2 at θ = θ0 for µ = µ0, then

∂a

∂µ
(θ0, µ0) 6= 0.

Then, the Lyapunov exponent Λ(µ) of (12) is a continuous function of µ such that:

1. Λ is C∞ on M .

2. If µ0 /∈M , then

(a) If the function “number of zeros of a(·, µ)” is increasing at µ0, then

lim
µ→µ−0

Λ′(µ) = −∞, and lim
µ→µ+

0

Λ′(µ) exists and is finite.
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(b) If the function “number of zeros of a(·, µ)” is decreasing at µ0, then

lim
µ→µ−0

Λ′(µ) exists and is finite, and lim
µ→µ+

0

Λ′(µ) = +∞.

Moreover, for µ→ µ−0 in (a) and for µ→ µ+
0 in (b), we have the asymptotic expression

Λ(µ) = Λ(µ0) + A
√
|µ− µ0|+O(|µ− µ0|), (13)

where A > 0.

The proof is based on transforming a in a suitable way. To this end, we give the
following lemmas.

Lemma 2.1 Assume µ0 ∈ M . Then, there exists δ > 0 such that, for |µ − µ0| < δ, we
have

a(θ, µ) = b(θ, µ)
n∏

j=1

[νj(µ) + cos(θ − φj(µ))],

where 2n is the total number of zeros of a(·, µ0) and, if µ ∈ (µ0 − δ, µ0 + δ), then

1. the functions νj and φj, j = 1, . . . , n, are C∞,

2. |νj(µ)| < 1,

3. b is C∞ w.r.t. µ and θ ∈ T1,

4. b(·, µ) has no zeros.

Proof: Note that, for any couple of values θ1 and θ2 in T1, θ1 6= θ2, there exist values
ν0 and φ0 such that the function ν0 + cos(θ − φ0) vanishes on θ1,2 (these values are, in
fact, ν0 = cos(1

2
(θ1− θ2)) and φ0 = 1

2
(θ1 + θ2)− π). This also shows that if the values θ1,2

depend smoothly on a parameter, ν0 and φ0 also depend on the parameter with the same
kind of smoothness.

Now, let us select δ > 0 such that (µ0 − δ, µ0 + δ) ⊂ M . Then, for each µ in this
interval, the number of zeros of a must be constant and equal to an even number, 2n.
Moreover, these zeros are C∞ functions of µ. Let us group these 2n zeros of a(·, µ) in n
couples (the concrete selection is irrelevant), where each couple depends on µ in a C∞

way. For each couple we can obtain the values νj(µ) and φj(µ) as above. This implies
that the function

d(θ, µ) =
n∏

j=1

[νj(µ) + cos(θ − φj(µ))],

has the same zeros as a and is also C∞ w.r.t. µ. If we define the function b as

b(θ, µ) =
a(θ, µ)

d(θ, µ)
,

it is clear that all the statements of the lemma are satisfied.
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Lemma 2.2 Assume µ0 /∈ M . Under the hypotheses of Theorem 2.1, there exists δ > 0
such that, for |µ− µ0| < δ, we have

a(θ, µ) = b(θ, µ)(ν(µ) + cos(θ − φ(µ))),

where, if µ ∈ (µ0 − δ, µ0 + δ), the following statements are satisfied:

1. b is a C∞ function of µ and θ with simple zeros,

2. the functions ν and φ are C∞,

3. ν(µ0) = 1, dν
dµ

(µ0) 6= 0.

Proof: As µ0 /∈ M , a(·, µ0) has a double zero at, say, θ = θ0. Then, the Malgrange
Preparation Theorem ([CH82]) implies that there exists a C∞ function q defined on an
open neighbourhood of (θ0, µ0) such that q(θ0, µ0) 6= 0, and C∞ functions d0 and d1 such
that d0(µ0) = d1(µ0) = 0 and

a(θ, µ) = q(θ, µ)
(
d0(µ) + d1(µ)(θ − θ0) + (θ − θ0)

2
)
.

Note that, for each µ, the function q(·, µ) can be trivially extended to all T1, but this
extension is not periodic in θ.

If we define

ν(µ) = cos

(
1

2

√
d1(µ)2 − 4d0(µ)

)
,

φ(µ) = −1

2
d1(µ)− π,

it is trivial to check that, for fixed µ, the function ν(µ)+cos(θ−φ(µ)) has the same zeros
as d0(µ) + d1(µ)(θ − θ0) + (θ − θ0)

2. Moreover, it is also easy to check that the functions
ν and φ are C∞.

Then, defining

b(θ, µ) =
a(θ, µ)

ν(µ) + cos(θ − φ(µ))

it is clear that the statements of the lemma hold.

Proof of Theorem 2.1: Let µ0 be an element of M . Lemma 2.1 implies that a can be
written as

a(θ, µ) = b(θ, µ)
n∏

j=1

[νj(µ) + cos(θ − φj(µ))],

for µ close enough to µ0. The Lyapunov exponent of the cocycle is given by

Λ(µ) =
1

2π

∫ 2π

0

ln |b(θ, µ)| dθ +
n∑

j=1

1

2π

∫ 2π

0

ln |νj(µ) + cos(θ − φj(µ))| dθ.

Note that, for any τ2, we have

1

2π

∫ 2π

0

ln |τ1 + cos(θ − τ2)| dθ =

{
− ln 2 if |τ1| ≤ 1,
− ln 2 + arccosh |τ1| if |τ1| ≥ 1.

(14)
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Now, using that
∫ 2π

0
ln |b(θ, µ)| dθ depends smoothly on µ (because b(θ, µ) is always dif-

ferent from zero), the statement 1 follows.
Assume now that µ0 /∈M . For µ close enough to µ0, Lemma 2.2 implies that

Λ(µ) =
1

2π

∫ 2π

0

ln |b(θ, µ)| dθ +
1

2π

∫ 2π

0

ln |ν(µ) + cos(θ − φ(µ))| dθ. (15)

We have shown above that the term
∫ 2π

0
ln |b(θ, µ)| dθ depends smoothly on µ. As |ν(µ)|

crosses the value 1 when µ goes through µ0, (14) implies that Λ is only continuous at µ0.
Moreover, d

dν
Λ goes to +∞ when ν goes to 1 from above, while it goes to a finite value

when it goes to 1 from below. To finish the proof, note that Λ′ = dΛ
dν

dν
dµ

and that ν is

increasing when the number of zeros of a decreases at µ0 (and vice-versa). The asymptotic
expression (13) follows easily from (14) and (15).

It is remarkable that the behaviour given by (13) has also been observed numerically
in a two dimensional example ([HL05a]).

Corollary 2.2 (Normal form near a reducibility loss) Let us consider the family
of skew products (12). We assume that

1. a(·, µ) is reducible for µ < µ0,

2. a(·, µ) has a double zero at θ0 for µ = µ0,

3. d
dµ
a(θ0, µ0) 6= 0.

Then, there exists a neighbourhood of µ0 and a C∞ conjugacy,

y = c(θ, µ)x

ϕ = θ − φ(µ)

ν = ν(µ),

with ν(µ0) = 1 and φ(µ0) = θ0, that puts the family (12) into the form

ȳ = h(ν)(ν + cosϕ)y,
ϕ̄ = ϕ+ ω,

}
(16)

where h is a smooth function that never vanishes.

Proof: Applying Lemma 2.2 and using the transformation θ = ϕ+φ(µ) the cocycle takes
the form

x̄ = b(ϕ, µ)(ν(µ) + cosϕ)x,
ϕ̄ = ϕ+ ω,

}
(17)

where the function b(·, µ) has no zeros for µ close to µ0. Condition 3 of Lemma 2.2 implies
that we can use the Inverse Function Theorem to use ν as a parameter by means of a
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transformation ν = ν(µ) (we recall that ν(µ0) = 1). Finally, we use Proposition 2.1 to
transform (17) into (16), where

h(ν) = sign (b) exp

[
1

2π

∫ 2π

0

ln |b(ϕ, ν)| dϕ
]
.

The smoothness of h follows immediately from the previous expression. The smoothness
of the transformation that goes from (17) to (16) is the same as for Proposition 2.1, but
keeping track of the parameter ν.

Remark 2.1 These techniques allow to construct a normal form –local w.r.t. µ but global
w.r.t. θ– near any change of the number of zeros of a.

2.3 The transfer operator

Definition 2.3 If a ∈ Cr(T1,R), the transfer operator L : Cr → Cr is defined as

(Lψ)(θ) = a(θ − ω)ψ(θ − ω) ∀ θ ∈ T1. (18)

One of the main reasons to introduce this operator here is its relation with the operator
(3). It is easy to check that 0 belongs to the spectrum of (3) if and only if 1 belongs to
the spectrum of (18), where a(θ) = Dxf0(u0(θ), θ). Therefore, we can apply the IFT if
and only if 1 does not belong to the spectrum of the transfer operator.

It is known that the spectrum of L is invariant by rotations ([Mat68, HL05d]), and
that if λ is an eigenvalue of L then, for all k ∈ Z, exp(i kω)λ is also an eigenvalue
([Jor01, HL05d]). It is also easy to see that Spec (L) is invariant by changes of variables
x = c(θ)y in the skew-product.

Proposition 2.4 If there exists a nontrivial closed interval I such that a|I ≡ 0, then 0
is an eigenvalue of L and Spec (L) = {0}. If 0 is an eigenvalue of L, then there exists a
nontrivial closed interval I such that a|I ≡ 0 and, therefore, Spec (L) = {0}.

Proof: Assume that a vanishes on a nontrivial interval I. If ψ is a non-zero Cr function
that vanishes outside I, then Lψ = 0 and therefore ψ is an eigenfunction of eigenvalue
0. To see that the spectrum is only this value note that L is a nilpotent operator and,
hence, its spectral radius is 0.

Assume that the spectrum of L reduces to the eigenvalue 0. Let ψ be a eigenfunction
of eigenvalue 0, and let I be a nontrivial closed interval contained in the support of ψ.
Then, a must vanish on I.

The reducibility of (4) can be characterised in terms of the spectrum of L ([Jor01]).

Proposition 2.5 The linear skew product (4) is reducible if and only if the spectrum of
L does not contain 0 and coincides with the closure of the set of eigenvalues.
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Proof: Assume that (4) is reducible to (5). Then, it is easy to check that the spectrum of
the transfer operator for (5) is a circle of radius |b| > 0, and that this circle is the closure
of the set of eigenvalues. To finish with this part of the proof, note that the spectrum of
L is invariant by changes x = c(θ)y in the cocycle.

Now assume that the spectrum of L does not contain 0 and coincides with the clo-
sure of the set of eigenvalues. As the spectrum cannot be empty, there exists an eigen-
value/eigenfunction couple (b, c(θ)), with b 6= 0, such that a(θ−ω)c(θ−ω) = bc(θ). From
this equation it is clear that c(θ) 6= 0 for all θ and, therefore, x = c(θ)y is a change of
variables that transforms (4) into the reduced form (5).

Remark 2.2 It can be shown ([HL05d]) that, if a is of class Cr′, the spectrum of L in
the Cr topology, r ≤ r′, does not depend on r.

2.4 Lyapunov exponents and the spectrum of transfer operators

Now we want to relate the Lyapunov exponent of a skew product with the spectral radius
of its transfer operator L. The goal is to show that if the Lyapunov exponent is negative,
the hypotheses of the Implicit Function Theorem are satisfied. These properties can
also be derived from the results in [CL99], that are valid in a more general context. In
our particular situation their proofs become very simple, so we have included them for
completeness. We stress that, in this section, ω does not need to be Diophantine but only
irrational.

We note that, if {θn}n is a sequence in T1 and a ∈ C0(T,R) has no zeros, then

lim
n→∞

1

n

n∑
j=1

ln |a(θn − jω)| = 1

2π

∫ 2π

0

ln |a(θ)| dθ.

For the general case we only have the following inequality.

Lemma 2.3 Let {θn}n be a sequence in T1. Then,

lim sup
n→∞

1

n

n∑
j=1

ln |a(θn − jω)| ≤ 1

2π

∫ 2π

0

ln |a(θ)| dθ.

Proof: We define

Sn =
1

n

n∑
j=1

ln |a(θn − jω)|, S(N)
n =

1

n

n∑
j=1

max {ln |a(θn − jω)|, −N}

and

Λ =
1

2π

∫ 2π

0

ln |a(θ)| dθ, Λ(N) =
1

2π

∫ 2π

0

max{ln |a(θ)|, −N} dθ.

for N ∈ N.
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It is easy to see that the triangular scheme {θn − jω}1≤j≤n,n≥1 is equidistributed
([Dav75], pp. 354–357). Therefore, as max{ln |a(θ)|, −N} is a continuous function of θ,
we have that

lim
n→∞

S(N)
n = Λ(N) ∀N ∈ N. (19)

Now we define

M = max
θ∈T1

{ln |a(θ)|}, F (θ) = M − ln |a(θ)|, FN(θ) = M −max{ln |a(θ)|, −N}.

Note that, for each θ we have FN(θ) ≥ 0 and FN(θ) ↗ F (θ). Then, the Lebesgue’s
Monotone Convergence Theorem ensures that

lim
N→∞

∫ 2π

0

FN(θ) dθ =

∫ 2π

0

F (θ) dθ,

which implies that

lim
N→∞

Λ(N) = Λ. (20)

We stress that the case Λ = −∞ is included. If Λ > −∞, eqs. (19) and (20) imply

∀ε > 0 ∃N0 > 0 s.t. ∀N ≥ N0 we have that lim sup
n→∞

Sn ≤ lim
n→∞

S(N)
n ≤ Λ + ε.

This proves the lemma for the case Λ > −∞.
If Λ = −∞, eqs. (19) and (20) imply

∀E > 0 ∃N0 > 0 s.t. ∀N ≥ N0 we have that lim sup
n→∞

Sn ≤ lim
n→∞

S(N)
n ≤ −E.

This proves the lemma for Λ = −∞.

Theorem 2.2 Let L : C0 → C0 and Λ denote, respectively, the transfer operator and the
Lyapunov exponent of (4). Then,

ρ(L) = exp(Λ).

Proof: As ρ(L) = lim
n→∞

‖Ln‖
1
n∞, we have that

ρ(L) = lim
n→∞

(
max
θ∈T1

n∏
j=1

|a(θ − jω)|

) 1
n

= lim
n→∞

(
n∏

j=1

|a(θn − jω)|

) 1
n

, (21)

where θn is a value for which the maximum is attained. Now Lemma 2.3 implies

lim
n→∞

1

n

n∑
j=1

ln |a(θ − jω)| ≤ lim
n→∞

1

n

n∑
j=1

ln |a(θn − jω)| ≤ Λ, for all θ ∈ T1,
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If Λ = −∞, the previous “≤” become “=” and the proof is finished. If Λ > −∞, the
Birkhoff Ergodic Theorem implies that there exists a set of values of θ, with total Lebesgue
measure, such that

lim
n→∞

1

n

n∑
j=1

ln |a(θ − jω)| = Λ.

Therefore,

lim
n→∞

1

n

n∑
j=1

ln |a(θn − jω)| = Λ.

Taking exponentials at both sides, we obtain the desired result.

Corollary 2.3 If Λ = −∞, then SpecL = {0}. Moreover, if a vanishes on a non-
degenerate interval, 0 is an eigenvalue of L; otherwise 0 is an spectral value but not an
eigenvalue.

Proof: Use Proposition 2.4 and Theorem 2.2.

Next result can also be derived from the more general results in [HL05c]. We have
included a different proof, taking advantage of the particularities of our case.

Theorem 2.3 Assume that the function a in (4) has zeros and that L acts on C0. Then,

Spec (L) = {z ∈ C such that |z| ≤ exp(Λ)}.

Proof: We will assume that Spec (L) 6= {0} (otherwise the result is trivial). As the
spectrum is invariant by rotations, it is enough to consider resolvents L − λ Id for λ real
and positive.

We will proceed by contradiction: Let us take a fixed value 0 < λ < exp(Λ) (the
case λ = exp(Λ) follows immediately from Theorem 2.2), and assume that λ /∈ Spec (L).
Then, the Open Mapping Theorem implies that the operator L−λ Id, acting on the space
of continuous functions endowed with the sup norm, has a bounded inverse.

Let A ⊂ T1 be the set of values of θ for which the Birkhoff Ergodic Theorem applies,
that is,

lim
n→∞

1

n

n∑
j=1

ln |a(θ + jω)| = 1

2π

∫ 2π

0

ln |a(θ)| dθ = Λ, for all θ ∈ A.

In particular, the zeroes of a are excluded from A.
Let b ∈ C0(T1,R) such that ‖b‖ ≤ 1, and let us define ψb = (L − λ Id)−1b. Note that

‖ψb‖ ≤ ‖(L − λ Id)−1‖. This implies that ψb satisfies the equation

ψb(θ + ω) =
1

λ
(a(θ)ψb(θ)− b(θ + ω)), for all θ ∈ T1.
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Therefore,

ψb(θ + nω) =
1

λn
a(θ + (n− 1)ω) · · · a(θ)ψb(θ)

− 1

λn
a(θ + (n− 1)ω) · · · a(θ + ω)b(θ + ω)

...

− 1

λ2
a(θ + (n− 1)ω)b(θ + (n− 1)ω)− 1

λ
b(θ + nω).

For any θ ∈ A, we can rewrite the previous expression as

ψb(θ) =
b(θ + ω)

a(θ)
+ λ

b(θ + 2ω)

a(θ)a(θ + ω)
+ · · ·+ λn−1 b(θ + nω)

a(θ) · · · a(θ + (n− 1)ω)

+λn ψb(θ + nω)

a(θ) · · · a(θ + (n− 1)ω)
. (22)

Note that, for all θ ∈ A,

lim
n→∞

λn

a(θ)a(θ + ω) · · · a(θ + (n− 1)ω)
= 0. (23)

Let θ∗ be a zero of a. Let {θk}k be a sequence of elements of A that converges to θ∗,
and that |a(θk)| < 1

k
. We consider (22) for θ = θk and, for each k, (23) implies that we

can select n = nk such that

|a(θk) · · · a(θk + (nk − 1)ω)|
λnk

> ‖(L − λ Id)−1‖.

Besides, for each k, we take bk ∈ C0(T1,R) such that ‖b‖ = 1 and that the following
conditions are met:

bk(θk + ω) = sign (a(θk)),

bk(θk + 2ω) = sign (a(θk)a(θk + ω)),
...

bk(θk + nkω) = sign (a(θk)a(θk + ω) · · · a(θk + (nk − 1)ω)),

where sign (x) is 1 if x > 0 and −1 if x < 0. Obviously, such functions bk exist although
the sequence {bk}k does not need to have limit in C0. Now observe that∣∣∣∣ λnkψbk

(θ + nkω)

a(θk) · · · a(θk + (nk − 1)ω)

∣∣∣∣ ≤ 1.

Using (22) for θ = θk, we have that

1

|a(θk)|
− 1 ≤ |ψbk

(θk)| ≤ ‖(L − λ Id)−1‖.

If k is large enough, the previous formula implies that ‖(L−λ Id)−1‖ is unbounded, which
contradicts a previous statement.
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Corollary 2.4 Assume a ∈ Cr and consider L : Cr → Cr, for 0 ≤ r < ∞. Then,
Theorem 2.3 still holds.

Proof: Use that the spectrum does not depend on the considered value of r (see [HL05d]).

Remark 2.3 In Theorem 2.3 we cannot substitute the hypothesis on the existence of
zeros of the function a by the hypothesis of non reducibility. Indeed, as we proved in
Proposition 2.2 there exist functions a without zeros for which the associated skew product
is not reducible. It is easy to prove that in this case

Spec (L) = {z ∈ C such that |z| = exp(Λ)}

and there are not eigenvalues in the spectrum.

In summary, we have shown that if a Cr invariant curve is attracting, it can be locally
continued with respect to the parameter µ. We have also shown that the IFT cannot be
applied to a repelling and non reducible invariant curve.

3 Fractalization in affine systems

In this section we will focus on dynamical systems of the form

x̄ = α a(θ)x+ b(θ),
θ̄ = θ + ω,

}
(24)

where a and b are Cr functions and α is a real positive parameter. We are interested in
knowing the range of values of α for which there exists an attracting invariant curve, and
in the behaviour of this curve when α approaches the boundary of this range.

It is clear that the linearised normal behaviour around an invariant curve of (24) is
described by

x̄ = α a(θ)x,
θ̄ = θ + ω.

}
(25)

Although the main results of this section are for the non reducible case, some of them are
valid when (25) is reducible. Therefore, we will write explicitly the concrete assumptions
for each result. The Lyapunov exponent of (25) is given by

Λ = lnα+
1

2π

∫ 2π

0

ln |a(θ)| dθ.

If the integral above exists (and it is finite), then the Lyapunov exponent is negative for
sufficiently small values of α, namely,

α < α0 = exp

(
− 1

2π

∫ 2π

0

ln |a(θ)| dθ
)
.
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In particular this implies that, for α < α0, any invariant curve of (24) is globally attracting
and, therefore, the invariant curve must be unique.

The goal of this section is to discuss the behaviour of this curve w.r.t. α. The existence
of the curve is shown in Section 3.1. If the curve is not reducible (and under some extra
hypotheses) we will prove in Section 3.2 that, when α↗ α0 (i.e., the Lyapunov exponent
goes to zero from below), the curve undergoes a fractalization process. On the other
hand, for α > α0, Section 3.3 shows that there is no continuous repelling curve. These
results will be used in Section 4.1 to show an example of attracting curve that looks like
a strange set.

3.1 On the existence of attracting curve

For the moment being, assume that there exists an invariant curve of (24), that we will
denote as xα(θ). Let us focus on the formal expression

xα(θ) = b(θ − ω) + α a(θ − ω)b(θ − 2ω) + α2 a(θ − ω) a(θ − 2ω)b(θ − 3ω)

+α3 a(θ − ω) a(θ − 2ω) a(θ − 3ω)b(θ − 4ω) + · · ·

= b(θ − ω) +
∞∑

n=1

αn

(
n∏

j=1

a(θ − jω)

)
b(θ − (n+ 1)ω). (26)

A simple calculation shows that this formal expression satisfies equation (24) so it is clear
that if it converges, it defines an invariant curve. The convergence can be discussed by
using the root criterion: as b is bounded, a necessary and sufficient condition to have
point-wise convergence is

lim sup
n→∞

(
max
θ∈T1

n∏
j=1

|a(θ − jω)|

) 1
n

<
1

α
. (27)

A crude estimate of the convergence radius comes from bounding |a(θ)| by its sup norm:

lim sup
n→∞

(
max
θ∈T1

n∏
j=1

|a(θ − jω)|

) 1
n

≤ lim sup
n→∞

(‖a‖n
∞)

1
n = ‖a‖∞.

Therefore, for α < ‖a‖∞, the series converges uniformly to a continuous invariant curve
of (24).

In this case, the transfer operator Lα : Cr → Cr (see (18)) is given by

(Lαψ)(θ) = αa(θ − ω)ψ(θ − ω). (28)

Note that if (26) defines a function x(θ), then this function must satisfy (Lα − Id)x(θ) =
−b(θ − ω). In fact, the series in (26) is the result of applying to −b(θ − ω) the Neumann
series that (formally) defines the inverse of the operator Lα − Id.

As before, if we denote by ρ(Lα) the spectral radius of Lα, it is clear that

ρ(Lα) = αρ(L1). (29)
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Moreover, Theorem 2.2 implies that

ρ(L1) = exp

(
1

2π

∫ 2π

0

ln |a(θ)| dθ
)

=
1

α0

. (30)

Proposition 3.1 If a and b are of class Cr and α < α0, then the series (26) converges
to the unique attracting invariant curve of class Cr of (24).

Proof: As α < α0, 1 /∈ Spec (Lα) and, therefore, there exists a unique function x of class
Cr such that (Lα − Id)x(θ) = −b(θ − ω). To show the convergence, note that (27) holds
due to (21).

These results are true regardless of the reducibility of (25). If we assume that (25) is
reducible (which implies that a has no zeroes) and that α > α0, we can apply the previous
results to the inverse of the map (24) to show that, in this case, there exists a unique
repelling invariant curve of class Cr. As we will see in Section 3.3, repelling curves does
not need to exist if we remove the reducibility condition. This is an important difference
between reducible and non reducible cases.

3.2 The fractalization mechanism

Now we need a rigorous definition for the word “fractalization”. We note that the com-
putation of the Hausdorff dimension cannot detect that a smooth curve is “becoming
fractal” (because it takes the value 1 as long as the object is a curve). A better option
is to consider that a curve is undergoing a fractalization process for α → α0 when the
curve keeps bounded while the lim sup of the derivatives is unbounded. In this section,
as we are dealing with an affine system and the sup norm of a curve does not need to be
bounded, we will say that a curve is fractalizing when its C1 norm –taken on any closed
nontrivial interval for θ– goes to infinity much faster than its C0 norm, that is, when

lim sup
α→α0

‖x′α‖I,∞

‖xα‖∞
= +∞, (31)

where ‖ · ‖I,∞ denotes the sup norm on a nontrivial closed interval I. As we will see later,
this definition is very suitable to explain the results of the numerical simulations as well
as to derive rigorous proofs.

Let us start by introducing some notations. For α < α0, and for a given continuous
function b(θ), let us denote by xα(θ) the solution of (24). We recall that a residual set is
defined as the countable intersection of dense open sets. Next result does not depend on
reducibility.

Proposition 3.2 Assume that a ∈ Cr(T,R) for a given r ≥ 0. Then, there exists a
residual set Dr ⊂ Cr(T,R) such that, if b ∈ Dr, we have

lim sup
α→α−0

‖xα‖Cr = +∞. (32)
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Proof: Note that the map α→ (Lα− Id)−1 is continuous for 0 < α < α0 and, hence, the
map α→ ‖xα‖Cr is also continuous. This implies that (32) is equivalent to

sup
α∈[α1,α0)

‖xα‖Cr = +∞, for any α1 > 0. (33)

As (Lα − Id)−1 = 1
α
(L1 − 1

α
Id)−1, we can apply the Representation Theorem for the

Resolvent ([Kre78]) to obtain

‖(Lα − Id)−1‖ ≥ 1

α

∣∣∣∣ 1

α0

− 1

α

∣∣∣∣−1

, for all α ∈ [α1, α0).

This implies that ‖(Lα − Id)−1‖ is not bounded for α ∈ [α1, α0). Therefore, using the
Banach-Steinhaus Theorem (also called principle of uniform boundedness; see [Rud74]) it
follows that (33) holds for b belonging to a suitable residual set.

If x ∈ Cr(T,R) and I ⊂ T is a closed interval, we define ‖x‖I,Cr as the usual Cr-norm
of x restricted to the subset I.

Corollary 3.1 For any nontrivial closed interval I ⊂ T, if b ∈ Dr then

lim sup
α→α−0

‖xα‖I,Cr = +∞ (34)

Proof: As before, the map α → ‖xα‖I,Cr is continuous for 0 < α < α0 and, hence, (34)
is equivalent to

sup
α∈[α1,α0)

‖xα‖I,Cr = +∞, for any α1 > 0. (35)

Assume that there exists b ∈ Dr and a nontrivial closed interval I ⊂ T such that the
sup in (35) is finite. As ω is irrational, any value θ ∈ T can be obtained from a value in
I by adding a (bounded) multiple of ω. This implies that there exists constants K1 and
K2, depending on ω, a, b and I such that

‖xα‖Cr ≤ K1‖xα‖I,Cr +K2. (36)

This contradicts the assumption b ∈ Dr.

Next result is the key result of this section.

Theorem 3.1 Assume that a, b ∈ C1(T,R) and that (25) is not reducible. Then,

a) If
lim sup
α→α−0

‖xα‖∞ < +∞,

and b ∈ D1 (D1 is the residual set introduced in Proposition 3.2), we have

lim sup
α→α−0

‖x′α‖I,∞ = +∞,

for any nontrivial closed interval I ⊂ T.
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b) If
lim sup
α→α−0

‖xα‖∞ = +∞,

then, for any nontrivial closed interval I ⊂ T, we have

lim sup
α→α−0

‖xα‖I,∞ = +∞, and lim sup
α→α−0

‖x′α‖I,∞

‖xα‖∞
= +∞.

Proof: Assume that lim supα→α−0
‖xα‖∞ < +∞. Therefore, for any closed interval I ⊂ T,

we have lim supα→α−0
‖xα‖I,∞ < +∞. Then, using k = 1 in Corollary 3.1 we obtain

lim supα→α−0
‖x′α‖I,∞ = +∞. On the other hand, if lim supα→α−0

‖xα‖∞ = +∞, we can use

(36) for k = 0 to show that lim supα→α−0
‖xα‖I,∞ = +∞.

Now, for α < α0, we apply the change of variables x = ‖xα‖∞y to (24) to obtain

ȳ = α a(θ) y +
b(θ)

‖xα‖∞
,

θ̄ = θ + ω,

 (37)

Note that (37) has the invariant curve yα(θ) = xα(θ)
‖xα‖∞ . Now we proceed by contradiction:

if we assume that there exists I ⊂ T1 such that lim supα→α0
‖y′α‖I,∞ < +∞ then, as

there exist positive constants K1,2 such that ‖y′α‖∞ ≤ K1‖y′α‖I,∞ + K2, we have that
lim supα→α0

‖y′α‖∞ < +∞. By the Ascoli theorem, there exists a sequence {yαn}n>0

(with αn → α0) that converges uniformly to a continuous function yα0 with ‖yα0‖∞ = 1.
Therefore, yα0(θ+ω) = α0a(θ)yα0(θ), which means that α0 is an eigenvalue of the transfer
operator (28). This contradicts the fact that the invariant curve is not reducible.

Note that, if b ∈ D1, this proposition implies (no matter if we are in the first or second
case) that (31) holds and, therefore, that the curve is undergoing a fractalization process.
A numerical example will be shown in Section 4.1.

If we assume in Theorem 3.1 that (25) is reducible, the situation is different. For
instance, if we add the assumptions that ω is Diophantine and that a, b are Cr for r large
enough, neither a) nor b) are true. In this case, it is not difficult to see that

a) If lim sup
α→α−0

‖xα‖∞ < +∞ then lim sup
α→α−0

‖x′α‖∞ < +∞.

b) If lim sup
α→α−0

‖xα‖∞ = +∞ then lim sup
α→α−0

‖x′α‖∞
‖xα‖∞

< +∞.

3.3 Non-existence of repelling continuous curves

In this section we assume that α > α0 which implies that the origin of (25) is a repellor.
This also implies that a(θ) has to be different from 0 a.e. (with respect to the Lebesgue
measure). As before, we are assuming that (25) has a zero (so it is not reducible) and we
are interested in the existence of a repelling invariant curve for (24). We stress that the
results in this section are false if (25) is reducible.
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Proposition 3.3 Assume, for all θ ∈ T1, that a(θ) ≥ 0 and that there exists a value θ0

such that a(θ0) = 0. Then the operator

x(θ) 7→ x(θ + ω)− αa(θ)x(θ),

defined on C0(T1,R), is not surjective. In particular, there is no x ∈ C0(T1,R) such that
x(θ + ω) = αa(θ)x(θ) + 1.

Proof: Let us select b(θ) ≡ 1 and assume that there exist a continuous function x(θ)
such that x(θ + ω) = αa(θ)x(θ) + 1. Note that a(θ0) = 0 implies x(θ0 + ω) = 1. On the
other hand, let θ1 be a value for which the Ergodic Theorem applies to ln(a(θ)). Then,
the fact that the Lyapunov exponent is positive implies that, if x(θ1) > 0, the sequence
{x(θ1 + nω)}n is not bounded which contradicts the continuity of x. Therefore, we must
assume that x(θ1) ≤ 0. Note that the Ergodic Theorem is valid for a dense set of values
θ1 which implies that x(θ) ≤ 0 for all θ. This contradicts the existence of θ0 such that
x(θ0 + ω) = 1.

Proposition 3.4 Assume, in the hypothesis of Proposition 3.3, that a(θ) is not always
positive. Moreover, let us assume that a ∈ Cr(T1,R) for a given r ≥ 0. Then, there exists
b ∈ Cr(T1,R) for which there is no x ∈ Cr(T1,R) such that x(θ+ ω) = αa(θ)x(θ) + b(θ).

Proof: The equation x(θ + ω) = αa(θ)x(θ) + b(θ) can be rewritten as

(Lα − Id)x(θ) = −b(θ − ω), (38)

where we recall that Lαx(θ) ≡ αa(θ−ω)x(θ−ω) is the so-called transfer operator. Using
(29) and (30) we have that

ρ(Lα) =
α

α0

> 1,

and then, Theorem 2.3 implies that 1 ∈ Spec (Lα). Therefore, there exist functions b such
that (38) cannot be solved.

These results show that, when a has zeros, the repelling situation is very different from
the attracting one: while attracting curves are “robust” and can be locally continued w.r.t.
parameters, repelling curves are “isolated” and do not survive generic perturbations.

3.4 A particular situation

In this section we focus on the fractalization phenomena for the affine system (24), but
assuming that a is a positive function with at least a zero, so that the skew product is
still not reducible. As before, if (24) has an invariant curve for a given value of α, it will
be denoted by xα.

Proposition 3.5 Assume, in (24), that a, b ∈ C1(T,R), a(θ) ≥ 0 for all θ ∈ T1 and
there exists a value θ0 such that a(θ0) = 0. We also assume that b never vanishes. Then,
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a) If a, b ∈ Cr(T,R), r ≥ 1, then xα ∈ Cr(T,R) for 0 < α < α0.

b) For any nontrivial closed interval I ⊂ T, we have

lim
α→α−0

‖xα‖I,∞ = +∞, and lim
α→α−0

‖x′α‖I,∞

‖xα‖∞
= +∞.

c) For α > α0, there is no x ∈ C0(T,R) such that x(θ + ω) = αa(θ)x(θ) + b(θ).

Proof: Item a) follows from Proposition 3.1. To see item b), we denote by θn a value of
θ such that

max
θ∈T1

n∏
j=1

a(θ − jω) =
n∏

j=1

a(θn − jω).

Then,

‖(Lα0 − Id)−1‖ ≤
∞∑

n=0

αn
0

n∏
j=1

a(θn − jω),

and using that 1 ∈ SpecLα0 , we have

∞∑
n=0

αn
0

n∏
j=1

a(θn − jω) = +∞.

On the other hand, for 0 < α < α0 we have that

xα(θ) = b(θ − ω) +
∞∑

n=1

αn

(
n∏

j=1

a(θ − jω)

)
b(θ − (n+ 1)ω),

where we note that, as a is positive and b has constant sign, all the terms in these sums
have the same sign. Therefore, using that |b(θ)| ≥ β > 0, we have

‖xα‖∞ ≥ β +
∞∑

n=1

αn

(
n∏

j=1

a(θn − jω)

)
β,

which goes to infinity when α goes to α0. Let us select a nontrivial interval I ⊂ T1. Then,
Theorem 3.1 implies that

lim sup
α→α−0

‖x′α‖I,∞

‖xα‖∞
= +∞.

Following the proof of Theorem 3.1, it is not difficult to check that, in this case (we have
a lim for the norms of xα), this lim sup can be replaced by a lim.

Finally, to prove item c), we apply x = b(θ − ω)y to (24) to obtain

ȳ = α
b(θ − ω)

b(θ)
a(θ)y + 1,

θ̄ = θ + ω.
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Then, from Proposition 3.3 we know that this system does not have any continuous
invariant curve. This finishes the proof.

We have seen in Theorem 3.1 that fractalization occurs for b in a suitable residual
set. In the last proposition, we have shown that for any a ≥ 0 (but with at least a zero),
fractalization appears for any nonvanishing b. We note that the set of nonvanishing
function b is open and can be much larger than a residual set. Therefore, we believe
that fractalization is a common phenomenon in several contexts. We have included some
examples in the next section.

4 Applications

Here we have included some numerical examples. One of the main issues of this section
is to show that fractalization is a process that needs a careful numerical treatment. As
we will see, there are examples of smooth curves that look like fractal sets.

4.1 Fractalization in affine systems

We will focus in two examples. The first one is

x̄ = α (1 + cos θ)x+ 1,
θ̄ = θ + ω,

}
where ω is the golden mean. This example satisfies the hypotheses of Proposition 3.5 and
from (14) we immediately obtain that the Lyapunov exponent of the linear skew product
is Λ = lnα − ln 2 and, therefore, the critical value α0 is 2. Then, there exists a unique
invariant attracting curve for 0 < α < 2, that undergoes a fractalization process when
α → 2−. Figure 1 shows this curve, for α equal to 1.99 and 1.999, where it is seen that
the derivative goes to infinity faster than the curve. We stress that, although it looks very
twisted, the curve is of class C∞ as long as α < 2. We have also proved that, for α > 2,
there is no invariant (and repelling) curve of class C0 in this system.

In the second example we also consider (24) but now with a(θ) ≡ cos θ and b(θ) ≡ 1.
As a(θ) has no constant sign, this case is not covered by Proposition 3.5. As in the previous
example, the Lyapunov exponent of the corresponding skew-product (25) is Λ = lnα−ln 2.
Hence, for α < 2 (and only for this case), the Lyapunov exponent is negative.

First, let us focus on the case α < 2. In Section 3.1, we have seen that there is a
unique attracting invariant curve, that can be written as

xα(θ) = 1 + α cos(θ − ω) + α2 cos(θ − ω) cos(θ − 2ω)

+α3 cos(θ − ω) cos(θ − 2ω) cos(θ − 3ω) + · · ·

=
∞∑

n=0

αn

n∏
j=1

cos(θ − jω).

This curve is plotted in Figure 2, for several values of the parameter α. Looking at the
first 4 plots, it seems that the sup norm of the curve goes to infinity. Moreover, as the
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Figure 1: Attracting invariant curve of (25) for a(θ) ≡ 1 + cos θ, b(θ) ≡ 1 and for α equal
to 1.99 (first row) and 1.999 (second row). The first column displays the attracting curve
and the second column shows its derivative.
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vertical “size” of the plots is always the same, we can look at them as if we were plotting
the “normalised” curve xα(θ)

‖xα(·)‖∞ . The first plot of the last row is a magnification for the
case α = 1.999, and shows the “wild” behaviour of this C∞ curve. In the last plot we
show the derivative of this curve. Note that the derivative seems to go to infinity much
faster than the function.

In principle, we cannot apply item a) of Theorem 3.1 to this example because we do
not know whether the constant function 1 belongs to the residual set D1. If this were
the case, then this theorem would imply that the curve is undergoing a fractalization
procedure. However, if we accept that lim supα→2− ‖xα‖∞ is going to infinity (which is
what the numerical simulations seem to indicate), then item b) of Theorem 3.1 also implies
that the curve must be fractalizing. We stress that, when α approaches the critical value
2, these smooth curves look as strange non-chaotic attractors, and it can be extremely
difficult to detect them as curves by numerical simulation.

If α > 2, Proposition 3.4 implies that there exists continuous functions b for which
(24) does not have a continuous (and repelling) invariant curve. Again, we do not know if
1 is one of these functions so we will simply try to iterate the inverse map of this example,

x =
x̄− 1

α cos(θ̄ − ω)
,

θ = θ̄ − ω,

 (39)

If this has an attracting (and smooth) curve, then (24) will have a repelling one in the
same smoothness class. We select initial conditions (x0, θ0) such that cos(θ̄−ω) is never 0,
and we iterate the map and, after some transient, we plot the attracting set (see Figure 3).
From these plots, it seems that the attracting set is not a continuous curve. Besides of
the apparent discontinuities, the attracting set also seems unbounded (that is the reason
to only plot a magnification for the x coordinate). For instance, the diameter of the
computed attracting set, after 1.1 × 106 iterates, is of the order of 5 × 105 for the case
α = 2.1, and of the order of 4× 105 for the case α = 3.0.

4.2 An example by G. Keller

It is interesting to apply these results to a well-known example by Keller ([Kel96]). In
this work, the author rigorously proves the existence of Strange Non-chaotic Attractors
(SNAs) for systems of the form

x̄ = f(x)g(θ),
θ̄ = θ + ω,

}
(40)

where f : [0,∞) → [0,∞) is increasing, strictly concave, bounded in C1 norm and satisfies
f(0) = 0, while g : T1 → [0,∞) is only continuous. We define

σ = f ′(0) exp

(
1

2π

∫ 2π

0

ln |g(θ)| dθ
)
, (41)
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Figure 2: Attracting invariant curve of (25) for a(θ) ≡ cos θ, b(θ) ≡ 1 and for α equal to
1, 1.95, 1.98, 1.999. The first plot in the last row is a magnification of the case α = 1.999,
and the last plot shows the derivative (w.r.t. θ) of this invariant curve.
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Figure 3: Magnification of the attracting set of (39). Left: α = 2.1. Right: α = 3.0.

where we set σ = 0 if the above integral is −∞. In ([Kel96]) it is proved that (40) has a
SNA provided that there exists at least a value θ̂ such that g(θ̂) = 0 and σ > 1.

It is very interesting to look at this result from a bifurcation point of view. To this end,
we will introduce a parameter α by replacing the function f in (40) by αf . Therefore,
the new value of σ is σα = ασ, where σ has been defined in (41). For simplicity, we
will consider σα as the parameter of the system. Following the results in ([Kel96]) it
is clear that, for σα < 1, x = 0 is an attracting invariant curve (its vertical Lyapunov
exponent is lnσα < 0). It is remarkable that, as the function g has at least one zero,
x = 0 is a non reducible curve. When σα increases and crosses the critical value 1, the
Lyapunov exponent of the origin changes from negative to positive, so that x = 0 becomes
a repelling curve. We recall that, for σα = 1, the IFT cannot be applied to guarantee
the local continuation of the curve. In fact, what happens is that the non reducible curve
x = 0 undergoes a bifurcation and a SNA branches off. It is also clear that, due to the
specific properties of this map, the set x = 0 cannot become fractal or disappear when
its Lyapunov exponent becomes positive. Therefore, this example fits perfectly with our
results.

An interesting modification of this situation is given by the following example:

x̄ = α cos θ tanh x+ τ,
θ̄ = θ + ω.

}
(42)

For τ = 0, the origin is an invariant curve whose Lyapunov exponent can be easily
computed using (14):

Λ =
1

2π

∫ 2π

0

ln |α cos θ| dθ = ln |α| − ln 2.

Hence, for α < 2, the invariant curve x = 0 is attracting. It can also be seen that, when α
increases and crosses the critical value α = 2, a SNA seems to branch off from the origin.
Let us now focus on the case α = 3 (the origin is a repellor). If we choose, for instance,
τ = 0.5, it is easy to see by direct simulation that (42) seems to have an attracting (and
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smooth) invariant curve. If we decrease τ , we see that the curve seems to fractalize and,
for τ = 0 it looks like an SNA. The Lyapunov exponent in all this process is negative (and
far from 0). We believe that this corresponds to a torus collision, although the repelling
torus does not exists (see Section 3.3) until the collision takes place. Therefore, this is
not the scenario considered in this paper.

4.3 Quasi-periodically forced logistic map

Consider the two-parameter family of maps fα,ε : R× T1 7→ R defined by

fα,ε(x, θ) = α(1 + ε cos(θ))x(1− x). (43)

The corresponding dynamical system is

x̄ = fα,ε(x, θ),
θ̄ = θ + ω,

}
(44)

where we select ω = π(
√

5− 1). This map has been studied numerically in several papers
(see, for instance, [PNR01] and references therein).

The reducibility of an invariant curve of this map can be discussed in a very simple
way, by using the results in Section 2.1. If x = u(θ) denotes a continuous invariant curve
of (44), its linear normal behaviour is given by

h̄ = Dxfα,ε(u(θ), θ)h = α(1 + ε cos θ)(1− 2u(θ))h,
θ̄ = θ + ω,

}
where h denotes an infinitesimal displacement from the curve. Now let us focus on (the
zeroes of) the expression a(θ) = (1+ε cos θ)(1−2u(θ)). It is clear that |ε| ≥ 1 or u(θ0) = 1

2

for some θ0 imply non reducibility. On the other hand, if |ε| < 1, u(θ) 6= 1
2

(for all θ) and
u(θ) is of class C∞, Corollary 2.1 shows the reducibility of the curve. Note that the value
x = 1

2
is the critical point of the map (43).

The Lyapunov exponent of a curve x = u(θ) is

Λ(u) =
1

2π

∫ 2π

0

ln |(1 + ε cos θ)(1− 2u(θ))| dθ + ln |α|.

We will first consider the bifurcations of the invariant curve u(θ) ≡ 0 for α > 0. In
this case, the Lyapunov exponent can be computed explicitly for all the values of ε. If we
denote this exponent by Λ0(α, ε), we have

Λ0(α, ε) =
1

2π

∫ 2π

0

ln |1 + ε cos θ| dθ + ln |α| = ln

∣∣∣∣1 +
√

1− ε2

2

∣∣∣∣+ ln |α|.

This expression can be rewritten as

Λ0(α, ε) =


ln

[
1 +

√
1− ε2

2

]
+ ln |α| if |ε| ≤ 1

ln
∣∣∣ε
2

∣∣∣+ ln |α| if |ε| ≥ 1

Note that, for all α, Λ0(α, ε) is continuous for ε ∈ R and real analytic for ε ∈ R \ {±1}.
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Figure 4: Bifurcation curve in the plane (ε, α) for the origin of the quasi-periodically
forced logistic map. The region |ε| < 1 corresponds to reducible cases.

4.3.1 Bifurcations of x = 0. Reducible case

This is the simplest situation. As before, we focus on the curve x(θ) ≡ 0 for α > 0.
Hence, to have reducibility, we need the condition |ε| < 1. Moreover, the reduced system

ȳ = by,
θ̄ = θ + ω,

}
has b = exp [Λ0(α, ε)] > 0. Therefore,

b =
α

2

(
1 +

√
1− ε2

)
. (45)

The changes of stability correspond to the value b = 1, that is,

α =
2

1 +
√

1− ε2
, |ε| ≤ 1.

Note that, for |ε| ≤ 1, α ∈ [1, 2]. The graph is displayed in Figure 4.

4.3.2 Bifurcations of x = 0. Non reducible case

Now we consider the case |ε| ≥ 1. The changes of stability take place when the parameters
(α, ε) cross the curve Λ0(α, ε) = 0, that can be easily rewritten as

α =
2

ε
, |ε| ≥ 1.

The graph is contained in Figure 4.
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Figure 5: Attracting invariant set for the quasi-periodically forced logistic map with
ε = 2, α = 1.001 (left) and α = 1.01 (right). The horizontal and vertical axis are θ and
x, respectively.

To see the kind of bifurcation that occurs in this case, let us fix ε = 2. For α < 1,
the origin is an attracting curve. When α increases and crosses the critical value α = 1,
the origin changes its stability and a new attracting set bifurcates from the origin. We
have drawn this set in Figure 5, for α = 1.001 and α = 1.01 (the corresponding Lyapunov
exponents are −0.002852 and −0.020462).

Note that, if |ε| > 1, the quasi-periodically forced logistic map cannot have continuous
invariant curve other than x = 0. This is because the zeros of the coefficient 1 + ε cos θ
combined with the invariance imply a dense set of zeros for any invariant curve. Therefore,
we think that these invariants sets are SNAs.

4.3.3 Fractalization of an invariant curve

We consider the case ε = 1
2

and α > 0, and we start focusing on the solution x(θ) ≡ 0.
From (45) we obtain that x = 0 is stable for α < α0 ≡ 4

2+
√

3
≈ 1.0717967697 and unstable

for α > α0. As the origin can be seen as a reducible invariant curve, this bifurcation is
standard in the sense that a stable (and reducible) invariant curve is born (see Figure 6,
upper left, for α = 1.3), at the same time that the origin becomes unstable. When α
reaches a critical value α1 ≈ 1.65, the curve crosses the line x = 1

2
and then it becomes

non reducible (see Figure 6, upper, right). If the value of α is increased, the curve becomes
more irregular (see Figure 6, bottom).

Figure 7 shows the evolution of the Lyapunov exponent for ε = 1
2

and α ranging
between 0.5 and 2.7. The graphic clearly displays the change of stability of the origin when
α = α0 = 4

2+
√

3
. When α > α0, the Lyapunov exponent starts decreasing until α reaches

the value α1 where the reducibility of the curve is lost. As predicted by Theorem 2.1,
the derivative of the Lyapunov exponent goes to −∞ when α→ α−1 and to a finite value
when α → α+

1 . When α > α1, the Lyapunov exponent of the curve first approaches 0
and then it starts oscillating. Every time the curve has a new intersection with x = 1

2
,

Theorem 2.1 implies that the derivative of the Lyapunov exponent must go to −∞ and
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Figure 6: Attracting sets for the quasi-periodically forced logistic map, for ε = 1
2
. The

horizontal axis refers to θ and the vertical axis refers to x. The values of α are 1.3, 2.0,
2.65 and 2.665.

then jump to a finite value. This is also seen in Figure 7.

We have also proved that if a Cr invariant curve is attracting, it can be locally contin-
ued with respect to the parameter α. Therefore, as the Lyapunov exponent seems to be
always negative and that there is no evidence of a torus collision taking place, we believe
that this attracting set is not an SNA but simply a smooth curve.

To give more numerical evidence that these “irregular” attracting sets are smooth
curves, let us consider the following dynamical system,

x̄ = f(x, θ),
ȳ = Dxf(x, θ)y +Dθf(x, θ),
θ̄ = θ + ω.

 (46)

Note that, if x = x(θ) is a smooth invariant curve of (1), then (x, y) = (x(θ), x′(θ)) is an
invariant curve of (46). This curve is attracting set of (46) iff x = x(θ) is an attracting
set of (1). Now we will repeat the computations of the attracting sets of Figure 7 but on
the system (46), to estimate the shape of the derivative of the curve, if there is one. In
all the cases we will use the initial condition y0 = 1 for the second equation in (46).
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2
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Magnification of the left plot.

The results are shown in Figure 8, for the same parameters values as in Figure 6. In
the last case, α = 2.665, we have used a logarithmic scale for |y| to show the huge variation
of the derivatives. Note that, if x(θ) is a smooth curve for the last case α = 2.665, then
y = x′(θ) must have a lot of zeros. As we only display the values |x′(θ)| on a finite mesh
–of 105 points– we should only expect to “catch” values of |x′| close to zero but positive.

To check whether the attractor for α = 2.665 is a curve or not, we have performed
several magnifications. If the attracting set is a curve, the values of y in (46) once we are
on the attracting set can be used to estimate the maximum of the absolute value of the
derivative. This quantity gives the amount of magnification needed to see the attractor as
a smooth curve. After a transient of 106 iterates, we take the maximum of the derivative
for 107 extra iterates, to obtain a value of −6.9 × 109 near θ0 = 0.43748252111775532.
This process is very sensitive to roundoff error, especially from the modulus 2π needed
for the variable θ (we will come back to this point later on). Therefore, different runs in
different computers may give different values, but in all our tests the maximum of the
derivative is of the order of 1010. In particular, these estimates imply that to resolve a
neighborhood of θ0 we need magnifications of the order of 1010, at least. Of course, we
can magnify other parts of the curve but we have selected the point –of a sequence of 107

iterates– where the derivative is larger.
Hence, we will take the mesh θj = θ0 + j

m
10−10 for j ranging from −m to m. We

have used several values of m between 100 and 1000. Then, we have computed the values
θ̂j = θj − nω(mod 2π) for a large n (the concrete values are specified below) and we have

iterated forward the points θ = θ̂j, x = 0.4, n times, to obtain the values θ̃j. These values
should coincide with the initial values θj but, due to the roundoff errors (mainly in the
operation mod 2π) they are slightly different. For instance, for n = 105, the differences
θj − θ̃j are close to 2.5× 10−12. To be sure that the results do not depend on the roundoff
errors, we have repeated these computations with quadruple precision (we have used
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Figure 8: Attracting sets for the variational flow of the quasi-periodically forced logistic
map for the attracting sets shown in Figure 6. The values of α are 1.3, 2.0, 2.65 and
2.665. The horizontal axis refers to θ and the vertical axis refers to y (see (46)). In the
last plot we show |y| in a log scale. See the text for details.

the library [BHJ+]). Now, for n = 105 the differences θj − θ̃j are close to 1.7 × 10−23.
These results are shown in Figure 9 (left), where we have displayed the index j vs. the
corresponding value of x. Note the differences between double and quadruple precision,
and that the attractor looks like a clean smooth curve. The attractor for the equation of
the derivative is shown in Figure 9 (right), and it also looks like a smooth curve.

Finally, to estimate the effect of the transient in these computations, we have repeated
them for n = 2× 105 with no visible differences in the plots. We have also performed this
zoom for other values of θ0 with similar results.

One can argue that α = 2.665 is still too small and that the SNA appears for a
larger value. Then, given a larger α one can use the same process we have used here
with extended precision to resolve the curve. We note that, for the fractalization scenario
presented in Section 3, it is possible to select values of α for which the necessary amount
of magnification is outside of the reach of present computers.

Our conclusion is that, although it is possible to obtain evidence of the existence of
an attracting invariant curve by means of purely numerical methods, one has to be much
more careful when dealing with SNAs.
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Figure 9: Zoom of the attracting set of the logistic map near θ0 = 0.43748252111775532,
for α = 2.665. The horizontal axis shows the value j corresponding to the angle θ0+

j
m

10−10

for m = 200. Left: Attracting set computed in double and quadruple precision. Right:
Derivative of the left plot, estimated using the second equation in (46). See the text for
details.

5 Final remarks

In this paper we have considered bifurcations of attracting curves of quasi-periodically
forced 1-D systems from the point of view of the Implicit Function Theorem (IFT). We
have shown that a failure of the IFT due to a null spectral value which is not an eigenvalue
can result in a fractalization phenomena.

It is well known that if the null spectral value is an eigenvalue, the corresponding
eigenvector (eigenfuntion in our case) is the linear approximation to the centre manifold
at the critical point, which contains the relevant information for the bifurcation. The
centre manifold can be seen as the minimal submanifold where the bifurcation takes
place. Therefore, the usual procedure in this situation is to lower the dimensions of the
problem by restricting the problem to this manifold.

However, when the null spectral value is not an eigenvalue, the situation changes
completely. As there is no eigenvector, we cannot claim that the bifurcation is going to
take place in a given low dimensional submanifold. At this point we recall that, if we
are working in the space Cr, r > 0, the spectrum does not change if we replace r by r′,
0 ≤ r′ < r. This implies that we do not have centre manifold for this bifurcation even in
the space of continuous functions. Moreover, it is known ([HL05d]) that, if we work in
the (larger) space

B = {β : T1 → R such that sup
θ∈T1

|β(θ)| < +∞},

endowed with the sup norm (we stress that functions in B do not need to be continu-
ous or even measurable), then the spectrum consists of eigenvalues. This implies that,
in principle, a natural space to study this bifurcation is B. Therefore, one should ex-
pect a complete loss of regularity when approaching such bifurcation, resulting in the
fractalization phenomena that we have discussed here.
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