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Abstract
We study the existence of Strange Nonchaotic Attractors (SNA) in the family of Harper maps, proving
that they are typical but not robust in this family. Our approach is based on the theory of linear skew-

products and the spectral theory of Sidinger operators.
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The study of the attractors of a dissipative dynamical system is a topic of great interest, be-
cause these invariant sets trap the evolution of a large subset of the phase space and capture the
asymptotic behavior. It has been known for a long time that attractors cstnaoge[1], i.e. geo-
metrically complicated. The first examples of strange attractors eexetic i.e. with dependence
sensitive on initial conditions [2]. In [3] were found strange attractors that are nonchaotic, and it
has stimulated much numerical experimentation (see the review [4]) as well as rigorous analysis
[5-7].

Our interest in this Letter is to show the existence and abundargteasfge Nonchaotic Attrac-
tors (SNA for short) in the family of Harper maps. This is a family of 1D quasi-periodically forced
maps that many authors have suggested as a scenario in which SNA appear [8—12][13]. By SNA
we mean here an invariant set that is a graph of a measurable and nowhere continuous function (it
is Strang@, that carries a quasi-periodic dynamics (iNenchaoti¢ and it attracts exponentially
fast almost every orbit in phase space (it istatmactor) [38]. We prove that these SNA are typical
but not robust in the family of Harper maps, in the sense that they exist for a positive measure
Cantor set of the parameter space.

In our analysis, we exploit the connections between (a) the dynamical propertied-Hzriner
map(a 1D quasi-periodically forced map); (b) the spectral properties offirper operator(an
example of a quasi-periodic Sddinger operator); (c) the geometrical properties of Hagper
linear skew-producfa 2D quasi-periodically forced linear map).

In recent years our knowledge of the spectral properties of the Harper operator, also known
as the Almost Mathieu operator, and related quasi-periodicd8ager operators has advanced
spectacularly. The progress made will be relevant to our approach. In particular, the connections
between (b) and (c) have been successfully applied to the solution of the “Ten Martini Problem”
[14], on the Cantor structure of the spectrum of the Harper operator.

The connection between (a) and (c) in similar models has been used to study the linearized
dynamics around invariant tori in quasi-periodic systems [15]. Specifically, the formation of SNA
in this linearized dynamics is suggested to be a mechanism of breakdown of invariant tori [16].

A consequence of our approach is that neither arithmetic properties of the frequency of the
quasi-periodic forcing nor localization properties of the spectrum of the Harper operator are crucial
for the existence of SNA.

The family of quasi-periodically forced dynamical systems under investigation in this Letter is



the family ofHarper maps
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wherey € R = [—o0,4+0oc0] andd € T = R/Z are the phase space variablesh are the
parameters, and is thefrequency(it is assumed to be irrational).

Notice that a Harper map is a skew-product map
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defining a dynamical system Rix T whose evolution from an initial conditiow,, 6,) is described
by theNth-powerFa(fZL(yo, o) = (féf;,[) (Yo, 00),00 + Nw), for N € Z.

In a Harper map the parameiers called theenergyor thespectral parametebecause after
writing v, = x,_1/z, this family is equivalent to the family oflarper equationswhich are

second-order difference equations
Tpi1 + Tno1 + beos (27(0y + nw)) x,, = axy,. 2)

These equations are physically relevant because they show up as eigenvalue equatarpsrof

operators(also known a®\lmost Mathieu operatojs
(Hpw,007),, = Tpi1 + Tp_1 + beos (27(0y + nw)) . (3)

These are bounded and self-adjoint operator#’ () whose spectrum, that does not depend on
6y, describes the energy spectrum of an electron in a rectangular lattice subject to a perpendicular
magnetic flux [17, 18].

The formulation of the second-order difference equation (2) as a first-order systerhl & ez

linear skew-product
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whose evolution is given by thdarper cocycle

Meap (On-1) ... Map(6p) if N >0,
M5 (06) = 1 it N =0, (5)
M,y (On)... M, (0-) if N <O0.
Note that (1) describes the evolution of the slgpef vectorsv,, under the action of the linear
skew-product (4). That is, (1) is th@ojectivizationof (4).
To understand the dynamics of Harper linear skew-products it is important to know the growth
properties of the solutions. The exponential growth is measured hy#minov exponentghich

we now define. Given any nontrivial initial condition of the skew-product((4),6,) with vy # 0,

the (forward) Lyapunov exponent fovy, y) is the limit
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whenever the limit exists (in which case it is finite).ulf = (z_1, z¢) andy, = z_;/x¢ then one

can also define the (forward) Lyapunov exponent of the Harper map (1) for the initial condition
(40, 60) by
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where
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An easy computation shows the relation

ﬁa,b,w(yOa 90) = _2)\a,b,w (Uo, 80)

Backward Lyapunov exponents are defined by replatimng; .. ., with limy_, ., in the above
formulation.

Oseledec [19] showed that for almost every initial conditiog 6,) the Lyapunov exponent
exists and equals theveraged Lyapunov exponent

_ ' 1
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which is never negative and exists by the Kingman subadditive ergodic theorem [20].
The case of the nonzero averaged Lyapunov exponept, > 0, which we callhyperbolic is
important for our purposes. In this case, there exists a full measuge et such that for every

0 € © one has a splitting

R? = W*(#) ® W*(6) (8)
characterized by
S : 1 N
ve W)\ {0} <« Ngrilooﬁlog ’M(N)(G)v| =-A 9)
and
ve W @)\ {0} <« Nl—lg:loo N log !M(N)(H)v‘ =+ (10)

W#(0) andWW"(0) are thestableandunstablesubspaces @ respectively. The elements of the set
O are referred to as theyapunov regular points

In the phase spadg? x T, one can form the product se8* and W* whose elements are
pairs(v, §) with v € W*(0) or W*(0) respectively (whenever these subspaces are defined). These
are thestableand unstable subbundlesAccording to Oseledec [19] thé-dependence of the
decomposition is measurable but not necessarily continuous.

When the splitting (8) is defined fail 0, that is© = T (hence/-dependence of the subbundles
is continuous [39]) the linear skew-product is said taingormly hyperbolic Otherwise it is said
to benonuniformly hyperbolic

In the Harper map, we can determine whether or not hyperbolicity is uniform by looking at the
spectral problem of (3). Indeed, an energig in the spectrum of the Harper operator (3) if, and
only if, the corresponding linear skew-product (4nist uniformly hyperbolic [21, 22]. We will
use an implication of this result: if is in the spectrum of the Harper operator and the averaged
Lyapunov exponent is nonzero@tthen the linear skew-product is nonuniformly hyperbolic. Let
us now see that in this case the corresponding Harper map has a SNA.

The above concepts of hyperbolicity can be translated to the dynamics of the Harper map (1)
(which reflects how the linear skew-product (4) changes directions of vectors). Recall that, in the
hyperbolic casej < 0, there exist two invariant subbundl&s® andWW*, for § € ©, which are
measurable as a function éfand satisfy (9) and (10). We definé(d) andy*(0) as the slopes
of the subbundles: they are the only element® sfuch that 1, y*(6))” and(1, y*(6))” belong to
W#(0) andW*(6) respectively. The product sets

Y ={(y°(),0), 0 € ©} andY™" = {(y*(0),0), 0 € O}
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are invariant under the Harper map and have quasi-periodic dynamicsy tharsd Y* arenon-
chaoticinvariant sets.

Still in the hyperbolic case, the decompositionift into direct sum ofi7*(9) and W*(9),
0 € ©, implies that every paifv, §) of this skew-product (4) other than the stable subbundle, is
attracted to the unstable subbundle and grows exponentially in norm. Looking at directions (which
is what the Harper map retains), forward orbits with initial conditigr9) (other than(y*(9), 9))
are exponentially attracted 6, that is

1 N . -
Jim = log FO (y,0) — y"(On)| = B = —2X < 0, (11)

while backward orbits (other thay“(6), #)) are exponentially attracted #°. ThusY™ is anon-
chaotic attractorfor the Harper map: for almost every initial condition, orbits are exponentially
attracted to it. Similarlyt"* is anonchaotic repellor

Let us now relate the uniformity of hyperbolicity in the skew-product to the regularity of these
nonchaotic attractors. If the skew-product (4) is uniformly hyperbolic then the invariant subbun-

dlesW?#, W are defined in alll and are continuous, and so are their projectivizatighand

S

Y-,

In contrast, if the skew-product is nonuniformly hyperbolic, then the invariant subbundles are
measurable but not continuous and their projectivizati¢rendy® are measurable but not contin-
uous functions of. Moreover, discontinuities are propagated by the quasi-periodic dynamics and
the invariance property of the attractoryif is discontinuous at a singtg then the same happens
fory = 6y + Nw for all N € Z, so that the function“ is nowhere continuousThe same result
happens fog?®.

In summary, in the nonuniformly hyperbolic case, we will say Hats aStrange Nonchaotic

Attractor (SNA)f the Harper map because the following properties are satisfied:

(i) Y™ is the graph of a measurable function&fy®, which is nowhere continuoug’{ is

Strange;
(i) Y™ is an invariant set of the Harper map with quasi-periodic dynami¢dg Nonchaotig;

(iif) Almost every orbit in phase space is attracted'toat exponential rate}(* is anAttractor).
[40]

The existence of nonuniformly hyperbolic linear skew-products was already shown by Herman
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[23], who proved that

_ b
Aabw > Max (0, log %) (12)

as long asv is irrational. Moreover, Bourgain & Jitomirskaya [24] prove that the equality in (12)
holds if, and only if,a is in the spectrum of the AImost Mathieu operator.

Thus, for|b| > 2 andw irrational, a Harper map has a SNA if, and onlydfpelongs to the
spectrum. Since the measure of the spectrum is given by the fotmhul2|b|| [25] these SNA
arepersistent in measuri@ the family of Harper maps. They are not, however, persistent in open
sets, since the spectrum is a Cantor set [14, 26, 27], and therefore any SNA in a Harper map can
become a regular attractor by means of an arbitrarily small perturbation. As an example, using the
symmetry of the spectrum, the Harper map has a SNA foliany 2, w irrational andz = 0 (this
value always belongs to the spectrum).

As an illustration of the above rigorous results, we performed several numerical computations.
In the following, we chose the irrational frequency= Z [41], b = 3, and we considered as a

moving parameter. The averaged Lyapunov exponent as a functiors afisplayed in Figure 1.

Notice that (12) implies thax, > 1°§3, so that the Harper cocycle is hyperbolic for all the values
a. Moreover, the equality holds only if the cocycle is nonuniformly hyperbolic. As a result, the
values ofa for which Y* is a SNA of the Harper map correspond to the “flat pieces” of the graph
in Figure 1, which lie in a Cantor set of measure 2. The “bumps” appear in gaps of the spectrum,
that is energies in the resolvent set, for whicl™ is an invariant attracting continuous curve.
Hence, gaps are labelled by a topological index which is the number of tuié afi R [28].

We also selected several valueszadnd computed the attractd and the repellol® of the
Harper map for several values of The results are displayed in Figures 2 and 3. Since R
represents a slope, in the pictures we display the apgtetan—! y € [—7/2, /2] corresponding
to such a slope. In this representation we identify: 7/2 with ¢ = —x /2, because a line of slope
+oo is a line with slope-oco. The objects shown are graphs of functigh§)), y*(6), respectively,
of the slopey € R with respect td).

In this Letter we have shown the existence of SNA in Harper mapsuiittational,|b| > 2 and
a in the spectrum without resorting to the possible localization properties of the spectral problem.
Recall thata is a point eigenvalueof a Harper operatofd, , ¢, if the corresponding eigenvalue
(Harper) equation has a nontriviaicalizedsolutiony = (v, ),ez Which is square integrable or
evendecays exponentiallyith |»|. If the set of localized eigenvectors of a Harper operator forms

a complete orthogonal basisB8{Z) then the spectrum isure-point
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Figure 1: The averaged Lyapunov exponent as a functien of

In previous work on the existence of SNA in Harper maps, localization was seen as a justifica-
tion for the strangeness of SNA, in the regime of nonzero Lyapunov exponents [8, 9, 12, 29, 30].
As we have seen, we do not use localization to prove the existence of SNA. Besides, localization
may not hold in all the Harper maps studied here. Indeed, an enéngyne spectrum of a Harper
operator with nonzero Lyapunov exponent (for which the Harper map has an SNA) may not be an
eigenvalue of the operator. Indeedyifs not Diophantine, localization may only hold f@f > 2
large enough (depending ar) [27]. Even in the Diophantine case, the spectrum also contains a
residual set of energies which are not point eigenvalues [31, 32]. Thus, there are SNA in the family

of Harper maps without localization for the corresponding operator or arithmetic properties on
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Figure 2: The attractor™ and the repellok”® of the Harper map fot#. = 0.3, 0.5 (SNA) anda = 0.4,0.6
(continuous invariant curves). Notice that= 0.4 anda = 0.6 correspond to different gaps which are

labelled by the indices of the continuous curgesnd5, respectively.
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