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Abstract

We study the existence of Strange Nonchaotic Attractors (SNA) in the family of Harper maps, proving

that they are typical but not robust in this family. Our approach is based on the theory of linear skew-

products and the spectral theory of Schrödinger operators.

PACS numbers: 05.45.-a 05.45.Df 47.52.+j 47.53.+n

1



The study of the attractors of a dissipative dynamical system is a topic of great interest, be-

cause these invariant sets trap the evolution of a large subset of the phase space and capture the

asymptotic behavior. It has been known for a long time that attractors can bestrange[1], i.e. geo-

metrically complicated. The first examples of strange attractors werechaotic, i.e. with dependence

sensitive on initial conditions [2]. In [3] were found strange attractors that are nonchaotic, and it

has stimulated much numerical experimentation (see the review [4]) as well as rigorous analysis

[5–7].

Our interest in this Letter is to show the existence and abundance ofStrange Nonchaotic Attrac-

tors (SNA for short) in the family of Harper maps. This is a family of 1D quasi-periodically forced

maps that many authors have suggested as a scenario in which SNA appear [8–12][13]. By SNA

we mean here an invariant set that is a graph of a measurable and nowhere continuous function (it

is Strange), that carries a quasi-periodic dynamics (it isNonchaotic) and it attracts exponentially

fast almost every orbit in phase space (it is anAttractor) [38]. We prove that these SNA are typical

but not robust in the family of Harper maps, in the sense that they exist for a positive measure

Cantor set of the parameter space.

In our analysis, we exploit the connections between (a) the dynamical properties of theHarper

map(a 1D quasi-periodically forced map); (b) the spectral properties of theHarper operator(an

example of a quasi-periodic Schrödinger operator); (c) the geometrical properties of theHarper

linear skew-product(a 2D quasi-periodically forced linear map).

In recent years our knowledge of the spectral properties of the Harper operator, also known

as the Almost Mathieu operator, and related quasi-periodic Schrödinger operators has advanced

spectacularly. The progress made will be relevant to our approach. In particular, the connections

between (b) and (c) have been successfully applied to the solution of the “Ten Martini Problem”

[14], on the Cantor structure of the spectrum of the Harper operator.

The connection between (a) and (c) in similar models has been used to study the linearized

dynamics around invariant tori in quasi-periodic systems [15]. Specifically, the formation of SNA

in this linearized dynamics is suggested to be a mechanism of breakdown of invariant tori [16].

A consequence of our approach is that neither arithmetic properties of the frequency of the

quasi-periodic forcing nor localization properties of the spectrum of the Harper operator are crucial

for the existence of SNA.

The family of quasi-periodically forced dynamical systems under investigation in this Letter is
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the family ofHarper maps

yn+1 =
1

a− b cos (2πθn)− yn︸ ︷︷ ︸
fa,b(yn,θn)

,

θn+1 = θn + ω (mod 1),

(1)

wherey ∈ R = [−∞,+∞] and θ ∈ T = R/Z are the phase space variables,a, b are the

parameters, andω is thefrequency(it is assumed to be irrational).

Notice that a Harper map is a skew-product map

Fa,b,ω(yn, θn) = (fa,b(yn, θn), θn + ω),

defining a dynamical system inR×T whose evolution from an initial condition(y0, θ0) is described

by theNth-powerF (N)
a,b,ω(y0, θ0) = (f

(N)
a,b (y0, θ0), θ0 +Nω), forN ∈ Z.

In a Harper map the parametera is called theenergyor thespectral parameterbecause after

writing yn = xn−1/xn this family is equivalent to the family ofHarper equations, which are

second-order difference equations

xn+1 + xn−1 + b cos (2π(θ0 + nω))xn = axn. (2)

These equations are physically relevant because they show up as eigenvalue equations ofHarper

operators(also known asAlmost Mathieu operators),

(Hb,ω,θ0x)n = xn+1 + xn−1 + b cos (2π(θ0 + nω))xn. (3)

These are bounded and self-adjoint operators onl2(Z) whose spectrum, that does not depend on

θ0, describes the energy spectrum of an electron in a rectangular lattice subject to a perpendicular

magnetic flux [17, 18].

The formulation of the second-order difference equation (2) as a first-order system is theHarper

linear skew-product  xn+1

xn


︸ ︷︷ ︸

vn+1

=

 a− b cos (2πθn) −1

1 0


︸ ︷︷ ︸

Ma,b(θn)

 xn

xn−1


︸ ︷︷ ︸

vn

,

θn+1 = θn + ω (mod 1),

(4)
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whose evolution is given by theHarper cocycle

M
(N)
a,b,ω(θ0) =


Ma,b (θN−1) . . .Ma,b(θ0) if N > 0,

I if N = 0,

M−1
a,b (θN) . . .M−1

a,b (θ−1) if N < 0.

(5)

Note that (1) describes the evolution of the slopeyn of vectorsvn under the action of the linear

skew-product (4). That is, (1) is theprojectivizationof (4).

To understand the dynamics of Harper linear skew-products it is important to know the growth

properties of the solutions. The exponential growth is measured by theLyapunov exponentswhich

we now define. Given any nontrivial initial condition of the skew-product (4),(v0, θ0) with v0 6= 0,

the (forward) Lyapunov exponent for(v0, θ0) is the limit

λa,b,ω(v0, θ0) = lim
N→+∞

1

N
log |vN |,

= lim
N→+∞

1

N
log

∣∣∣M (N)
a,b,ω(θ0)v0

∣∣∣ (6)

whenever the limit exists (in which case it is finite). Ifv0 = (x−1, x0) andy0 = x−1/x0 then one

can also define the (forward) Lyapunov exponent of the Harper map (1) for the initial condition

(y0, θ0) by

βa,b,ω(y0, θ0) = lim
N→+∞

1

N
log

∣∣∣∣∂yN

∂y0

(y0, θ0)

∣∣∣∣
= lim

N→+∞

1

N
log

∣∣∣m(N)
a,b,ω(y0, θ0)

∣∣∣ (7)

where

m
(N)
a,b,ω(y0, θ0) =

∂fa,b

∂y
(yN−1, θN−1) . . .

∂fa,b

∂y
(y0, θ0) .

An easy computation shows the relation

βa,b,ω(y0, θ0) = −2λa,b,ω(v0, θ0).

Backward Lyapunov exponents are defined by replacinglimN→+∞ with limN→−∞ in the above

formulation.

Oseledec [19] showed that for almost every initial condition(v0, θ0) the Lyapunov exponent

exists and equals theaveraged Lyapunov exponent

λa,b,ω = lim
N→+∞

1

N

∫
T

log
∣∣∣M (N)

a,b,ω(θ)
∣∣∣dθ,
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which is never negative and exists by the Kingman subadditive ergodic theorem [20].

The case of the nonzero averaged Lyapunov exponent,λa,b,ω > 0, which we callhyperbolic, is

important for our purposes. In this case, there exists a full measure setΘ ⊂ T such that for every

θ ∈ Θ one has a splitting

R2 = W s(θ)⊕W u(θ) (8)

characterized by

v ∈ W s(θ) \ {0} ⇔ lim
N→±∞

1

N
log

∣∣M (N)(θ)v
∣∣ = −λ (9)

and

v ∈ W u(θ) \ {0} ⇔ lim
N→±∞

1

N
log

∣∣M (N)(θ)v
∣∣ = +λ. (10)

W s(θ) andW u(θ) are thestableandunstablesubspaces atθ, respectively. The elements of the set

Θ are referred to as theLyapunov regular points.

In the phase spaceR2 × T, one can form the product setsW s andW u whose elements are

pairs(v, θ) with v ∈ W s(θ) orW u(θ) respectively (whenever these subspaces are defined). These

are thestableand unstable subbundles. According to Oseledec [19] theθ-dependence of the

decomposition is measurable but not necessarily continuous.

When the splitting (8) is defined forall θ, that isΘ = T (henceθ-dependence of the subbundles

is continuous [39]) the linear skew-product is said to beuniformly hyperbolic. Otherwise it is said

to benonuniformly hyperbolic.

In the Harper map, we can determine whether or not hyperbolicity is uniform by looking at the

spectral problem of (3). Indeed, an energya is in the spectrum of the Harper operator (3) if, and

only if, the corresponding linear skew-product (4) isnot uniformly hyperbolic [21, 22]. We will

use an implication of this result: ifa is in the spectrum of the Harper operator and the averaged

Lyapunov exponent is nonzero ata, then the linear skew-product is nonuniformly hyperbolic. Let

us now see that in this case the corresponding Harper map has a SNA.

The above concepts of hyperbolicity can be translated to the dynamics of the Harper map (1)

(which reflects how the linear skew-product (4) changes directions of vectors). Recall that, in the

hyperbolic case,β < 0, there exist two invariant subbundlesW s andW u, for θ ∈ Θ, which are

measurable as a function ofθ and satisfy (9) and (10). We defineys(θ) andyu(θ) as the slopes

of the subbundles: they are the only elements ofR such that(1, ys(θ))T and(1, yu(θ))T belong to

W s(θ) andW u(θ) respectively. The product sets

Y s = {(ys(θ), θ), θ ∈ Θ} andY u = {(yu(θ), θ), θ ∈ Θ}
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are invariant under the Harper map and have quasi-periodic dynamics; thusY s andY u arenon-

chaoticinvariant sets.

Still in the hyperbolic case, the decomposition ofR2 into direct sum ofW s(θ) andW u(θ),

θ ∈ Θ, implies that every pair(v, θ) of this skew-product (4) other than the stable subbundle, is

attracted to the unstable subbundle and grows exponentially in norm. Looking at directions (which

is what the Harper map retains), forward orbits with initial condition(y, θ) (other than(ys(θ), θ))

are exponentially attracted toY u, that is

lim
N→+∞

1

N
log

∣∣∣f (N)
a,b,ω(y, θ)− yu(θN)

∣∣∣ = β = −2λ < 0, (11)

while backward orbits (other than(yu(θ), θ)) are exponentially attracted toY s. ThusY u is anon-

chaotic attractorfor the Harper map: for almost every initial condition, orbits are exponentially

attracted to it. SimilarlyY s is anonchaotic repellor.

Let us now relate the uniformity of hyperbolicity in the skew-product to the regularity of these

nonchaotic attractors. If the skew-product (4) is uniformly hyperbolic then the invariant subbun-

dlesW s, W u are defined in allT and are continuous, and so are their projectivizationsyu and

ys.

In contrast, if the skew-product is nonuniformly hyperbolic, then the invariant subbundles are

measurable but not continuous and their projectivizationsyu andys are measurable but not contin-

uous functions ofθ. Moreover, discontinuities are propagated by the quasi-periodic dynamics and

the invariance property of the attractor: ifyu is discontinuous at a singleθ0 then the same happens

for θN = θ0 +Nω for all N ∈ Z, so that the functionyu is nowhere continuous. The same result

happens forys.

In summary, in the nonuniformly hyperbolic case, we will say thatY u is aStrange Nonchaotic

Attractor (SNA)of the Harper map because the following properties are satisfied:

(i) Y u is the graph of a measurable function ofθ, yu, which is nowhere continuous (Y u is

Strange);

(ii) Y u is an invariant set of the Harper map with quasi-periodic dynamics (Y u is Nonchaotic);

(iii) Almost every orbit in phase space is attracted toY u at exponential rate (Y u is anAttractor).

[40]

The existence of nonuniformly hyperbolic linear skew-products was already shown by Herman
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[23], who proved that

λa,b,ω ≥ max

(
0, log

|b|
2

)
(12)

as long asω is irrational. Moreover, Bourgain & Jitomirskaya [24] prove that the equality in (12)

holds if, and only if,a is in the spectrum of the Almost Mathieu operator.

Thus, for|b| > 2 andω irrational, a Harper map has a SNA if, and only if,a belongs to the

spectrum. Since the measure of the spectrum is given by the formula|4 − 2|b|| [25] these SNA

arepersistent in measurein the family of Harper maps. They are not, however, persistent in open

sets, since the spectrum is a Cantor set [14, 26, 27], and therefore any SNA in a Harper map can

become a regular attractor by means of an arbitrarily small perturbation. As an example, using the

symmetry of the spectrum, the Harper map has a SNA for any|b| > 2, ω irrational anda = 0 (this

value always belongs to the spectrum).

As an illustration of the above rigorous results, we performed several numerical computations.

In the following, we chose the irrational frequencyω =
e

4
[41] , b = 3, and we considereda as a

moving parameter. The averaged Lyapunov exponent as a function ofa is displayed in Figure 1.

Notice that (12) implies thatλa ≥ log 3
2

, so that the Harper cocycle is hyperbolic for all the values

a. Moreover, the equality holds only if the cocycle is nonuniformly hyperbolic. As a result, the

values ofa for whichY u is a SNA of the Harper map correspond to the “flat pieces” of the graph

in Figure 1, which lie in a Cantor set of measure 2. The “bumps” appear in gaps of the spectrum,

that is energiesa in the resolvent set, for whichY u is an invariant attracting continuous curve.

Hence, gaps are labelled by a topological index which is the number of turns ofY u onR [28].

We also selected several values ofa and computed the attractorY u and the repellorY s of the

Harper map for several values ofa. The results are displayed in Figures 2 and 3. Sincey ∈ R

represents a slope, in the pictures we display the angleϕ = tan−1 y ∈ [−π/2, π/2] corresponding

to such a slope. In this representation we identifyϕ = π/2 with ϕ = −π/2, because a line of slope

+∞ is a line with slope−∞. The objects shown are graphs of functionsyu(θ), ys(θ), respectively,

of the slopey ∈ R with respect toθ.

In this Letter we have shown the existence of SNA in Harper maps withω irrational,|b| > 2 and

a in the spectrum without resorting to the possible localization properties of the spectral problem.

Recall thata is a point eigenvalueof a Harper operatorHb,ω,θ0 if the corresponding eigenvalue

(Harper) equation has a nontriviallocalizedsolutionψ = (ψn)n∈Z which is square integrable or

evendecays exponentiallywith |n|. If the set of localized eigenvectors of a Harper operator forms

a complete orthogonal basis ofl2(Z) then the spectrum ispure-point.
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Figure 1: The averaged Lyapunov exponent as a function ofa.

In previous work on the existence of SNA in Harper maps, localization was seen as a justifica-

tion for the strangeness of SNA, in the regime of nonzero Lyapunov exponents [8, 9, 12, 29, 30].

As we have seen, we do not use localization to prove the existence of SNA. Besides, localization

may not hold in all the Harper maps studied here. Indeed, an energya in the spectrum of a Harper

operator with nonzero Lyapunov exponent (for which the Harper map has an SNA) may not be an

eigenvalue of the operator. Indeed, ifω is not Diophantine, localization may only hold for|b| > 2

large enough (depending onω) [27]. Even in the Diophantine case, the spectrum also contains a

residual set of energies which are not point eigenvalues [31, 32]. Thus, there are SNA in the family

of Harper maps without localization for the corresponding operator or arithmetic properties onω.
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Figure 2: The attractorY u and the repellorY s of the Harper map fora = 0.3, 0.5 (SNA) anda = 0.4, 0.6

(continuous invariant curves). Notice thata = 0.4 anda = 0.6 correspond to different gaps which are

labelled by the indices of the continuous curves8 and5, respectively.
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