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Abstract

In this note we consider Kotani eigenstates of one-dimensional Schrö-
dinger operators with ergodic potential. We show that if the spectrum, re-
stricted to an interval, has zero Lyapunov exponents and is a Cantor set,
then for a residual subset of energies, Kotani eigenstates do not exist. In
particular, we show that the quasi-periodic Schrödinger operators whose
Schr̈odinger quasi-periodic cocycles are reducible for all energies have a
limit band-type spectrum.

1 Introduction. Main results

The aim of this note is to relate the existence of Kotani eigenstates for
one-dimensional Schrödinger operators with ergodic potential to the Can-
tor structure of the spectrum. More specifically, we consider a probability
measure space(Ω, µ), a measure preserving invertible ergodic transforma-
tion T , and a bounded measurable real-valued functionV : Ω → R. We let
Hω be the operator onl2(Z) defined by

(Hωx)n = xn+1 + xn−1 + V (Tnω)xn, n ∈ Z. (1)

Our primary interest is with almost periodic and quasi-periodic operators,
which are included this formulation. Most of the arguments can be trans-
ported to the continuous case, with straightforward adaptions, although we
restrict to the discrete case for the sake of definiteness.
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As it is well-know, an operator like (1) can exhibit different spectral
types, depending onV, ω andT . These different types are very much related
to the behaviour of solutions of the corresponding eigenvalue equation

xn+1 + xn−1 + V (Tnω)xn = axn, n ∈ Z, (2)

beinga theenergy. To measure the exponential growth of solutions in the
spectrum, which is relevant for the spectral decomposition, one can intro-
duce theupper Lyapunov exponentas the limit

γ(a) = lim
N→+∞

1
N

∫
Ω

log
∥∥Aa,V (TN−1ω) · · ·Aa,V (ω)

∥∥ dµ(ω),

where

Aa,V (ω) =
(
a− V (ω) −1

1 0

)
,

and whose existence is granted by the subadditive ergodic theorem [Kin68].
Outside the spectrum ofHω, which isµ-a.e. independent ofω and we write
asΣ, the Lyapunov exponent is always positive.

Ishii-Pastur-Kotani theory, see Simon [Sim83] for the discrete version,
relates the absolutely continuous spectrum to the set of zero Lyapunov ex-
ponents

A0 = {a ∈ Σ; γ(a) = 0} .

If A0 has positive measure, its essential closure is the support of the ab-
solutely continuous part of the spectrum ofHω, which is µ-a.e. constant
[KS81]. Moreover, for almost everya ∈ A0 (in the Lebesgue sense), equa-
tion (2) has a pair of independent solutions of the form

x+
n = eiϕ(n,ω)ψ(Tnω)

and
x−n = e−iϕ(n,ω)ψ(Tnω)

whereϕ(n, ω) is measurable andψ ∈ L2(Ω), which we will call Kotani
eigenstates, see Deift & Simon [DS83]. In the almost-periodic case, the
norm of these solutions is anL2-almost-periodic function with the same fre-
quency module than the potentialV . In this note we address the possible
existence of Kotani eigenstates for the remaining energies and the connec-
tion with the existence of gaps in the spectrum. Therefore we define the
set

A1 = {a ∈ Σ; there are Kotani eigenstates} .

It is easy to see that
A1 ⊂ A0 ⊂ Σ.
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The last inclusion is strict, since the Lyapunov exponent can be positive
in the spectrum (e.g. [Her83, SS91, Bou05, Bje05]). In this note we will
characterise when the first inclusion is strict.

De Concini & Johnson [DCJ87] considered the case whereA0 contains
nonvoid intervals. LetI be one of these open maximal intervals. Then,
they show that forall a ∈ I, Kotani eigenfunctions do exist. At endpoints
of I Kotani eigenfunctions cannot exist, as we will see later on, but these
form (at most) a countable set in any case. The content of our main theo-
rem is that whenever endpoints of gaps are dense inA0 (therefore being a
Cantor set), energies without Kotani eigenstates are topologically abundant
(although with Lebesgue zero measure according to Kotani theory).

Theorem 1 Let I be an open interval inR such that

I ∩ Σ = {a ∈ I; γ(a) = 0} = A0 ∩ I.

and it is a nonvoid Cantor set. Then(A0\A1)∩I is a residualGδ ofA0∩I.

Cantor spectrum has been derived for several models, most notably the
Almost Mathieu,V (θ) = b cos θ and an irrational frequency. In fact, this
work is inspired by some of the methods developed by Riedel [Rie03] to
treat this case. Moreover, the Lyapunov exponent has been shown to be0
in the spectrum if, and only if,|b| ≤ 2. Therefore, we have the following
immediate consequence:

Corollary 2 In the Almost Mathieu operator, with irrational frequency and
nonzero coupling, there is aGδ-set of energies in the spectrum without
Kotani eigenstates.

Remark 3 The fact that the Almost Mathieu model is invariant under Fou-
rier transform (Aubry duality), allows to try to produce the same result using
a theorem by Jitomirskaya & Simon[JS94]who prove that, under the same
hypothesis as Corollary 2, there is a residualGδ of energies which are not
point eigenvalues (inl2(Z)). Then using Aubry duality, the dual set of ener-
gies could not haveL2 quasi-periodic Bloch waves, which are a particular
case of our result. Note that for the existence of Kotani eigenstates no con-
trol is imposed on the phase of the sequence (only that its modulus follows
the dynamics ofT ), and for Bloch waves dynamics are imposed also in the
phase, see the discussion following Theorem 7.1 in[DS83].

Finally, we would like to state a result concerning thereducibility of
quasi-periodic Schrödinger cocycles to constant coefficients. In this caseΩ
is a suitabled-dimensional torus andT is a quasi-periodic translation defined
by a frequency vectorα ∈ Rd whose components are rationally independent.
A quasi-periodic Schr̈odinger operator is reducible to constant coefficients
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if there is a continuous quasi-periodic transformation, with the same basic
frequencies, which renders it to constant matrix (called theFloquet matrix).
If a Schr̈odinger cocyle whose energya is not at the endpoint of a gap is
reducible to constant coefficients then the Floquet matrix can be chosen in
SO(2,R) and thereforea has Kotani eigenstates. This implies that we can
get a sort of “inverse” result.

Theorem 4 If a quasi-periodic Schr̈odinger cocycle is reducible to constant
coefficients for all energies then the spectrum consists of spectral bands
(nonvoid closed intervals in the spectrum) and accumulation points of these.

Proof: If a Schr̈odinger cocycle is reducible to constant coefficients and the
Lyapunov exponent is positive, then it has an exponential dichotomy and
the corresponding energy belongs to the resolvent set [Joh82]). Thus if a
Schr̈odinger cocycle is reducible to constant coefficients for all energies in
the spectrum then the Lyapunov exponent must be zero in the spectrum. If
in addition there is a component of the spectrum which is a Cantor set, we
are under the hypothesis of Theorem 1 and there do not exist Bloch waves
for aGδ of energies. Even if at endpoints of gaps the cocycle is reducible
to constant coefficients and there is only a single Bloch wave, these end-
points form a countable set. So the cocycle is still nonreducible to constant
coefficients for a residual set of energies.�

2 Proof of Theorem 1

TakeI an open interval inR such that

K := I ∩ Σ = {a ∈ I; γ(a) = 0} = A0 ∩ I.

We must show thatK contains a residual set of energies without Kotani
eigenstates.

It is worth noting that, with these hypothesis, the Lyapunov exponent is
a continuous function onI. Indeed, continuity at the resolvent set follows
from general principles and continuity at points ofK, whereγ vanishes, is a
consequence of the upper semi-continuous character of the Lyapunov expo-
nent [CS83]. The following lemma states that inA1 the Lyapunov exponent
is also Lipschitz.

Lemma 5 If a0 ∈ K is an energy with Kotani eigenstates, then the map

a ∈ R 7→ γ(a)

is Lipschitz ata0.
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Whena0 lies at the endpoint of a gap inK, then one cannot have Lips-
chitz continuity ata0.

Lemma 6 Assume thata0 is the endpoint of an open gap in the spectrum
with γ(a0) = 0. Then

sup
a 6=a0

∣∣∣∣γ(a)− γ(a0)
a− a0

∣∣∣∣ = ∞. (3)

Proof: The Lyapunov exponent can be expressed throughThouless formula
[Tho72, AS83, CS83],

γ(a) =
∫

R
log |λ− a|dκ(λ)

wheredκ stands for the integration with respect to the density of states mea-
sure (supported on the spectrum). Introducing the so-calledw-functionor
Floquet exponent,

w(a) = −
∫

R
log(λ− a)dκ(λ)

then Rew(z) = −γ(z). If Γ denotes an open spectral gap then a suitable
choice of the branch of the logarithm makes it analytic throughΠ+∪Γ∪Π−.
Its derivative,

w′(a) =
∫

R

1
λ− a

dκ(λ) (4)

is a single-valued function onC \ Σ which is never zero.
Let us now show that ifa0 is an endpoint ofΓ the Lyapunov exponent

has the asymptotics given by Equation (3). For the sake of simplicity, let
a0 be the leftmost endpoint of the spectrum so that the corresponding gap
is Γ = (−∞, a0). Take the determination of the logarithm which makesw
analytic and conformal atC \ [a0,+∞). With this choice,w(a) is real and
negative ifa ∈ (−∞, a0).

Sinceγ is analytic in(−∞, a0), with γ′ negative andγ′′ nonzero there
(see Equation (4)), andγ is continuous ata0, the limit

lim
a→a−0 ,a∈R

w′(a) = − lim
a→a−0

γ′(a) = − lim
a→a−0

γ(a)− γ(a0)
a− a0

exists and is either+∞ or C, a finite positive constant. Let us now see
that the latter case is impossible. Montel’s theorem (eg. [Sch93]) shows
that in that case,w′ possesses angular limits ata0 when approaching from
C\ [a0,+∞) and they are all equal toC. Therefore, sincew is conformal at
C \ [a0,+∞) andC 6= 0 thenw must preserve angles ata0. However, the
image of the upper half plane underw is in the region

Im z ∈ [0, π] and Rez < 0.
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At w(a0) = 0 the boundaries of this region form an internal angle ofπ/2,
and therefore,w cannot preserve angles ata0.

If Γ is any other open gap anda0 is an endpoint of it, then a segment in
Im z = Im w(a0) appears ranging from Rez = 0 to minus the maximum
of the Lyapunov exponent in the gap. Again, this forms an internal angle
of π/2 with Rez = 0, thereby making the argument applicable to the other
open gaps in the spectrum.�

We now turn to the proof of Theorem 1. For anya ∈ K we define

m(a) = sup
λ6=a,λ∈I

∣∣∣∣γ(a)− γ(λ)
a− λ

∣∣∣∣ ,
which is either a positive real number or+∞. If a has a Kotani eigenstate
thenm(a) < ∞ according to Lemma 5 and, ifa is at the endpoint of a gap
in the spectrum, thenm(a) = ∞ due to Lemma 6. We will show that there
is a residual of energies inK with m(a) = +∞. In particular, these cannot
only be endpoints of gaps (at most a countable set).

Let, for anyn ∈ N ∪ {0}

U(n) = {a ∈ K;m(a) > n} .

This is an open set ofK (due to the continuity ofγ on the intervalI) which
is also dense, because it includes endpoints of gaps inK. Therefore

U(∞) =
⋂
n>0

U(n) = {a ∈ K;m(a) = ∞} ,

is a residualGδ subset inK without Kotani eigenstates.�
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