
On the computation of reducible invariant tori
in a parallel computer

Àngel Jorba and Estrella Olmedo
Departament de Matemàtica Aplicada i Anàlisi

Universitat de Barcelona
Gran Via 585, 08007 Barcelona, Spain

E-mails: <angel@maia.ub.es>, <estrella@maia.ub.es>

19th May 2008

Abstract

We present an algorithm for the computation of reducible quasi-periodic solu-
tions of discrete dynamical systems. The method is based on a quadratically con-
vergent scheme that approximates, at the same time, the Fourier series of the torus,
its Floquet transformation and its Floquet matrix. The Floquet matrix describes
the linearization of the dynamics around the torus and, hence, its linear stability.

The algorithm presents a high degree of parallelism and the computational effort
grows linearly with the number of Fourier modes needed to represent the solution.
For these reasons it is a very good option to compute quasi-periodic solutions with
several basic frequencies. The paper includes some examples to show the efficiency
of the method in a parallel computer.

1

2

Contents

1 Introduction 3

2 The main iteration 5
2.1 On the hypotheses . 6
2.2 Correcting the approximation to the torus 7
2.3 Correcting the approximation of the Floquet transformation 8
2.4 The iterative scheme . 11

3 Computer implementation 12
3.1 Table of values and Fourier coefficients . 12
3.2 The control of the error . 12
3.3 Parallelism . 14

4 Examples 15
4.1 A quasi-periodically forced pendulum . 15

4.1.1 A disipative situation . 17
4.2 The multi-circular model . 20

References 24

À. Jorba, E. Olmedo 3

1 Introduction

Let us consider a discrete dynamical system that depends on time in a quasi-periodic way,

x̄ = f(x, θ),
θ̄ = θ + ω.

}
(1)

We assume that x ∈ Rn, θ ∈ Td and f is a smooth diffeomorphism. The components of
the frequency vector ω are assumed to be linearly independent over the rationals, that is,
〈k, ω〉 = k1ω1 + · · ·+kdωd 6= 0 for all k ∈ Zd \{0}. Note that, if there exists a k̄ ∈ Zd such
that

〈
k̄, ω

〉
= 0, then one of the components of θ can be expressed as a linear combination

of the remaining ones so that the new expression for (1) has the same dynamics as before
but the new set of angles has dimension d− 1.

Note that, due to the translation in the variable θ, the dynamical system (1) cannot
have fixed points, nor periodic orbits. The simplest invariant set for this system is an
invariant torus parametrized by the angle θ: we will say that (1) has an invariant torus of
dimension d, with frequency vector ω, if there exists a smooth injective map u : Td → Rn

such that

u(θ + ω) = f(u(θ), θ), ∀θ ∈ Td. (2)

Systems of the form (1) appears in many applications. For instance, it is quite common
that the first (simplified) model of a physical situation is an autonomous system, and
that succesive improvements are based on adding perturbations that depend on time in
a periodic way. If they have incommensurable periods, then the resulting perturbation is
quasi-periodic and the model (after a suitable section in the case of a flow) takes the form of
(1). Good examples come from Celestial Mechanics, where the effect of perturbing bodies
can be modelled as the sum of periodic perturbations with incommensurable periods (see,
for instance, [GLMS01a, GLMS01b, GJMS01a, GJMS01b]).

The knowledge of these solutions (and their stable and unstable manifolds) is a key
step in the study of the dynamics of these systems. As it has been mentioned above, they
are the simplest solutions and, in this sense, they play the same role as the equilibrium
points in autonomous systems ([DJS91]).

In this paper we focus on the computation of reducible invariant tori of maps, focusing
on the case in which the dimension of the tori is larger than one. As we will see in the
examples, the method can be used to look for invariant tori of flows by means of a suitable
Poincaré section. Let us start by introducing the main concepts involved in this problem.

As for fixed points or periodic orbits, it is natural to consider the linearized normal
behaviour around a torus, since it provides the linear approximation to its stable, unstable
and centre manifolds. If h(θ) ∈ Rn denotes a small displacement with respect to a point
u(θ) on the torus, we have that

f(u(θ) + h(θ), θ) = f(u(θ), θ) + Dxf(u(θ), θ)h(θ) + O(‖h‖2).

If we define A(θ) = Dxf(u(θ), θ) and we rename h as x, the linearized normal behaviour

4 Computation of tori in a parallel computer

around the torus is described by the following linear skew-product,

x̄ = A(θ)x,
θ̄ = θ + ω.

}
(3)

Definition 1 The system (3) is said to be reducible if and only if there exists a change
of variables of the form z = C(θ)y such that (3) becomes

x̄ = Bx,
θ̄ = θ + ω,

}
where the matrix B = C−1(θ + ω)A(θ)C(θ) does not depend on θ. The matrix B is called
the Floquet matrix and z = C(θ)y is the Floquet transformation.

Note that the dynamics of reducible systems is easily described by computing the
(eigenvalues of the) reduced Floquet matrix. Hence, the linear stability of the torus is
completely described by (the eigenvalues of) this Floquet matrix.

In this work we describe a numerical procedure to compute reducible invariant tori
and their Floquet matrix. The method is very suitable for a parallel computer, and we
will explain our implementation for a cluster of PCs and how it scales with the number of
processors. As it has mentioned before, this method can also be applied to flows by using
a suitable Poincaré section. Note that a suitable section of the flow reduces the dimension
of the computed torus and, as we will see, it also reduces significatively the amount of
computations compared to a similar method for flows.

There are several methods in the literature for the computation of two dimensional
invariant tori of flows (or, equivalently, invariant curves for maps), among them we men-
tion [DLR91, DJS91, Sim94, DL95, Sim98, CJ00, ERS00, SOV05, SVSO06, HdlL06,
AKL07]. There are also numerical methods to approximate the Floquet matrix and
Floquet transformation of linear skew-products, see [Jor01, WM06]. We stress that to
deal with tori of dimensions larger than 2 for flows (or larger than 1 for maps) is more
difficult, essentially because of the increase of the computational effort with the dimension
of the torus. On the other hand, the recent growth of computing power is not coming
from an increase of the speed of the processors, but on the number of processors available,
either in a single computer or through a fast network. For this reason it is quite natural
to focus on parallelization issues. A possibility is to implement the same algorithms as
before, but taking advantage of a parallel environment (for an example, see [CJ08]). Here
we have focus in an algorithm, that requires the torus to be reducible, that offers a high
degree of parallelism.

Our algorithm is derived from the proof of the main theorem given in [JS96]. Although
the results of [JS96] are for flows (not necessarily Hamiltonian flows), they can be easily
translated for maps. In our approach, we represent the parametrization u(θ) of the torus
by means of Fourier series, and we apply a Newton method to look for these Fourier
coefficients. It turns out that, if the torus is reducible and we know an approximation to
the reducing change and the Floquet matrix, the linear system that appears at each step

À. Jorba, E. Olmedo 5

of the Newton process can be written in block diagonal form (or even in diagonal form!),
which is a huge reduction in the computational effort. Therefore, here we try to compute
not only the torus but also the Floquet reduction.

As it has been mentioned above, one of the main issues we have addressed here is
parallelization. When computing invariant tori of dimensions larger than 1, computing
resources usually becomes the main constraint. The method considered here allows for a
high degree of parallelism, specially in the parts with higher computation. This includes
the evaluation of the equation to solve and its Jacobian, and the solution of the linear
system. We have implemented this method to run on a cluster. The coding has been done
in ANSI C, with calls to the PVM library for the communications. We include several
examples showing the performance of our implementation. A preliminar version of this
work can be found in [JO05].

One of the main drawbacks of this approach is that not all the tori are reducible (for
concrete examples, see [BS98, Jor01]). However, reducibility is quite common in many
situations and, as we show here, taking advantage of it can allow huge savings in computer
time and memory.

In this paper we only focus on non-autonomous systems (2), and we look for invariant
tori parametrized by the forcing angle θ. In a forthcoming paper ([JO08]) we will show
how this method can also be used for autonomous systems,

x̄ = f(x), x ∈ Rn,

where the frequency of the torus does not appear explicitly.
The paper is organized as follows: Section 2 contains the description of the method,

Section 3 discusses the implementation in a parallel computer and Section 4 contains some
examples to illustrate the method.

2 The main iteration

We will assume that there exists an invariant torus for (1), that is, that there exists a
smooth function u : Td → Rn verifying (2). The numerical method is based on a New-
ton iteration, with quadratic convergence. Therefore, it needs an initial approximation
to the desired torus. For the moment being, and to simplify the presentation, we will
simply assume that such approximation is available. In the examples we will discuss some
possibilities to derive this initial approximation.

Let ‖.‖ be a norm over Rn and, if u : Td → Rn is a smooth function, we use the standard
notation ‖u‖∞ = supθ ‖u(θ)‖. We assume that we have a parametrization x0 : Td → Rn

such that, if we define

y0(θ) = x0(θ + ω)− f(x0(θ)), (4)

then ‖y0‖∞ is small. We will denote this as ‖y0‖∞ ≈ ε.
We also assume that we know a n×n matrix C0(θ) that is also a good approximation

to the Floquet transformation. This means that the matrix C−1
0 (θ+ω)Dxf(x0(θ), θ)C0(θ)

6 Computation of tori in a parallel computer

is close to a constant matrix B0 or, in other words, if we denote

Q0(θ) = C−1
0 (θ + ω)Dxf(x0(θ))C0(θ)−B0, (5)

what we are assuming is that ‖Q0‖∞ ≈ ε.
In one step of the iterative procedure, we want to compute a new approximation x1

to the torus, a new approximation C1 to its Floquet change and a new approximation B1

to its reduced matrix, such that the new “remainders”

y1(θ) = x1(θ + ω)− f(x1(θ)), (6)

Q1(θ) = C−1
1 (θ + ω)Dxf(x1(θ))C1(θ)−B1, (7)

are of second order w.r.t. the previous ones, that is, ‖y1‖∞ ≈ ε2 and ‖Q1‖∞ ≈ ε2.
In a practical implementation of the method we will use truncated Fourier series to

represent the approximations to the torus and the Floquet change. For simplicity, we will
first describe it using infinite series. The details of the representation in truncated Fourier
series are dicussed in Section 3.1.

2.1 On the hypotheses

As it has been mentioned before, the method is based on a proof of existence of such tori.
Here we discuss the role of these hypotheses and how they affect the convergence of the
numerical method.

A first hypothesis refers to the smoothness of the map. It is quite common to require
analyticity, since it simplifies the proofs and it is enough for most of the applications. For
these reasons, we will assume that the map (1), and the functions x0(θ) and C0(θ) giving
the initial approximations to the torus and to the Floquet change are real analytic.

A second hypothesis is a Diophantine condition on the frequency vector ω and the
eigenvalues λ1, . . . , λn of the matrix B0: we assume that there exists real constants c > 0
and γ > d− 1 such that

| exp(〈k, ω〉 i)− λj| >
c

|k|γ
, ∀k ∈ Zd \ {0}, j = 1, . . . , n, (8)

| exp(〈k, ω〉 i)− λj

λ`

| >
c

|k|γ
, ∀k ∈ Zd \ {0}, j, ` = 1, . . . , n, (9)

where “i” denotes the complex unit. It is clear that condition (8) is always satisfied if
all the eigenvalues λj have modulis different from 1, and that (9) is always satisfied if all
the eigenvalues have different modulus. If there are eigenvalues with modulus 1 and/or
eigenvalues with the same modulus, these conditions can be still satisfied (for a general
reference, see [Lan91]).

As we will see in the next two sections, the iterative method is based in computing
corrections for the approximations to the torus and the Floquet transformation. These
corrections are obtained by solving a linear equation that comes from the linearization
of the problem. As usual, this equation is solved by expanding in Fourier series w.r.t.

À. Jorba, E. Olmedo 7

θ. Then, the coefficients of the Fourier series of these corrections contain the divisors
exp(〈k, ω〉 i)−λj (for the torus) and λj exp(i 〈k, ω〉)−λ` (for the Floquet change). Hence,
we not only need that these values are different from zero but that they cannot get too
close to zero when |k| increases (k is the index of the Fourier expansion), because this
could destroy the convergence of these series. This is the so-called small divisors problem.1

The last hypothesis is a non-degeneracy condition. At each step of the iterative pro-
cess, the approximation to the reduced Floquet matrix B changes and so do its eigenvalues.
This means that asking for conditions (8) and (9) at the beginning it is enough for the
first step of the iterative process, but it does not guarantee that they are satisfied for the
following steps. To deal with this situation, it is common to ask that the eigenvalues λj

depend on parameters. Then, playing with the parameters one can recover properties (8)
and (9). This allows to show that, for a (Cantor) set of positive Lebesgue measure of
values of the parameters, these conditions are satisfied in all the steps and the proof can
be completed.

For more details on these topics, we suggest the general works [BHS96, Lla01, Sev03],
and references therein.

In principle, to be sure that the method will converge one should check all the con-
ditions of the theorems, including that the value ε that measures the accuracy of the
initial approximation is small enough. As we will only apply a finite number of itera-
tions of the method, we can check for the conditions at each step. In particular, for the
range of considered Fourier coeffcients (i.e, the range of indices k) we check if the values
| exp(〈k, ω〉 i)−λj| and |λj exp(i 〈k, ω〉)−λ`| are very small. If so, the program stops with
a message. The error due to the use of truncated Fourier series is discussed in Section 3.2.

2.2 Correcting the approximation to the torus

We assume that we know an approximation to the torus, x0, and an approximation to its
Floquet transformation, C0, and to its Floquet matrix, B0. If we define y0 and Q0 as in
(4) and (5), then we are assuming that ‖y0‖∞ and ‖Q0‖∞ are of order ε (here ε denotes
an small parameter). To simplify notation, we write this as ‖y0‖∞ ≈ ε and ‖Q0‖∞ ≈ ε.
The first step of the iteration is based in the following property:

Lemma 1 Let λ1, . . . , λn be the eigenvalues of B0, and we assume that they satisfy the
Diophantine condition (8) for some constants c > 0 and γ > d. Let us define g(θ) =
−C−1

0 (θ + ω)y0(θ). Then, there exists a function u : Td → Rn satisfying

u(θ + ω) = B0u(θ) + g(θ), (10)

and such that, if x1(θ) = x0(θ) + C0(θ)u(θ) and y1 is defined as in (6), we have that

‖y1‖∞ ≈ ε2.

1If all the eigenvalues have modulus different from one, and there are no two of them with the same
modulus, these divisors can be bounded from below by a constant and the study becomes much simpler.
See, for instance, [BMS76].

8 Computation of tori in a parallel computer

Proof: Writing x1(θ) = x0(θ) + h(θ), we can use the smoothness of f to look for a linear
approximation to h: as

y1(θ) = x0(θ + ω) + h(θ + ω)− f(x0(θ))−Dxf(x0(θ))h(θ) + O2(h),

we look for an h satisfying

h(θ + ω) = Dxf(x0(θ))h(θ)− y0(θ). (11)

If we can find such h, with a norm of the same order as y0, it is clear that we will have
‖y1‖∞ ≈ ε2. To solve (11), we apply the transformation h(θ) = C0(θ)u(θ) to obtain

u(θ + ω) = (B0 + Q0(θ))u(θ) + g(θ), (12)

where Q0 has been defined in (5) and g(θ) = −C−1
0 (θ + ω)y0(θ). It is easy to check that,

to get a remainder y1 of order ε2, it is enough to compute an approximate solution of
(12) with an error of the order of ε2. Therefore, since it is enough to compute u with an
accuracy of order ε, we drop Q0 and we focus on equation (10).

To see that (10) has a solution, we expand u and g in Fourier series. Although it is
usual in theoretical works to expand in complex series, here we expand in real Fourier
series. The reason is that we have used real expansions in the computer programs. Hence,

g(θ) =
a0

2
+

∑
k 6=0

ak cos 〈k, θ〉+
∑
k 6=0

bk sin 〈k, θ〉 ,

u(θ) =
α0

2
+

∑
k 6=0

αk cos 〈k, θ〉+
∑
k 6=0

βk sin 〈k, θ〉 ,

where 〈k, θ〉 = k1θ1 + · · ·+ kdθd. If we plug these expansions in (10), it is not difficult to
check that the unknown Fourier coefficients αk, βk must satisfy the following equations,

(Id−B0)
α0

2
=

a0

2
,

(B2
0 − 2 cos 〈k, ω〉B0 + Id)αk = (cos 〈k, ω〉 Id−B0)ak − sin 〈k, ω〉 bk, (13)

(B2
0 − 2 cos 〈k, ω〉B0 + Id)βk = (cos 〈k, ω〉 Id−B0)bk + sin 〈k, ω〉 ak.

The eigenvalues of the matrices B
(k)
0 = B2

0 − 2 cos 〈k, ω〉B0 + Id (k 6= 0) are of the form

λ2 − 2 cos 〈k, ω〉λ + 1, for λ ∈ Spec (B0), which implies that B
(k)
0 is regular if all the

eigenvalues of B0 are different from exp(±〈k, ω〉 i). For the convergence of the series we
use condition (8) to show the analyticity of u in a subset of the analyticity domain of g,
in the same way it is done in [JS96] or [Lla01].

2.3 Correcting the approximation of the Floquet transformation

The linearized flow around the initial approximation is given by

x̄ = Dxf(x0(θ))x,
θ̄ = θ + ω.

}

À. Jorba, E. Olmedo 9

We have an approximation for its Floquet change and the reduced Floquet matrix, C0(θ)
and B0, satisfying (5) with ‖Q0‖∞ ≈ ε. After the previous step, we have a new ap-
proximation to the solution, x1, and we want to find a new transformation C1(θ) and a
new reduced matrix B1 such that (7) is satisfied with ‖Q1‖∞ ≈ ε2 (this situation has
already been considered in several places, see [BMS76, JS92, JRV97]). Let us introduce
the matrices R and B1 as

R(θ) = C−1
0 (θ + ω)Dxf(x1(θ))C0(θ)−B0,

B1 = B0 + Avg (R),
(14)

where Avg (R) denotes the average of the map θ 7→ R(θ), that is,

Avg (R) =
1

(2π)d

∫
Td

R(θ) dθ.

Lemma 2 Let λ1, . . . , λn be the eigenvalues of B1, and we assume that they satisfy the
Diophantine condition (9) for some constants c > 0 and γ > d. Let us define R̃(θ) =
R(θ)− Avg (R). Then, there exists a matrix valued function H : Td → Rn×n satisfying

H(θ + ω)B1 −B1H(θ) = R̃(θ), (15)

and such that, if C1(θ) = C0(θ)(Id + H(θ)), the matrix Q1 defined as in (7) satisfies

‖Q1‖ ≈ ε2.

Proof: We look for a new approximation to the Floquet transformation, ε-close to the
previous one,

C1(θ) = C0(θ) (Id + H(θ)) , (16)

where H(θ) denotes a matrix with norm of order ε. The new transformation x = C1(θ)z
must reduce the linear skew product

x̄ = Dxf(x1(θ))x,
θ̄ = θ + ω,

}
(17)

to the form
z̄ = (B1 + Q1(θ))z,
θ̄ = θ + ω,

}
(18)

being Q1 a matrix with norm of order ε2.
Let us introduce the matrices R and B1 as in (14). Applying the transformation

x = C0(θ)y to (17), we obtain

ȳ =
(
B1 + R̃(θ)

)
y,

θ̄ = θ + ω,

}
(19)

where R̃(θ) = R(θ)− Avg (R(θ)). Now, if we denote a near identity transformation as

y = (Id + H(θ)) u,

10 Computation of tori in a parallel computer

(H is supposed to be small), and we apply it to (19), we obtain

ū = (Id + H(θ + ω))−1
(
B1 + R̃(θ)

)
(Id + H(θ)) u

θ̄ = θ + ω.

}
(20)

We are interested in reducing (20) to order ε2. Note that (I + H(θ + ω))−1 can be ap-
proximated by

(Id + H(θ + ω))−1 ≈ I −H(θ + ω),

with an error of O(‖H‖2). This means that (20) can be written as

ū =
(
B1 −H(θ + ω)B1 + B1H(θ) + R̃(θ) + O2

)
u

θ̄ = θ + ω.

}
Hence, if H(θ) satisfies (15), it is clear that the transformation (16) reduces (17) to the
form (18).

To show that (15) has a solution, we expand H and R̂ in complex Fourier series
(although for the computations we will use a real expansion, as it will be discussed later).
Therefore, we denote

H(θ) =
∑

k

Hk exp(i 〈k, θ〉), R̃(θ) =
∑
k 6=0

Rk exp(i 〈k, θ〉),

and we insert these expansions in (15). Equating for each k we have that, for k = 0, it is
enough to take H0 = 0. For k 6= 0, Hk has to satisfy

HkB1 exp(i 〈k, ω〉)−B1Hk = Rk. (21)

For each k 6= 0, let us define the linear map Lk, acting on the space of constant matrices,
as Lk(H) = HB1 exp(i 〈k, ω〉)−B1H. Without loss of generality, we can assume that B1

is already in diagonal form, B1 = diag (λ1, . . . , λn). Then, it is not difficult to show that

ker(Lk) = {0} ⇐⇒ there exist j, ` such that λj exp(i 〈k, ω〉)− λ` = 0.

Taking into account condition (9), it is clear that (21) determines the matrices Hk for all
k 6= 0. Moreover, (9) allows to prove the convergence of these series and to show that H
is analytic on a subset of the domain of analyticity of R. As in Lemma 1, the details can
be found in [JS96] or [Lla01].

For the computations, we will use real Fourier series. As H0 = 0, we write

H(θ) =
∑
k 6=0

H
(c)
k cos 〈k, θ〉+ H

(s)
k sin 〈k, θ〉 ,

R(θ) =
∑
k 6=0

R
(c)
k cos 〈k, θ〉+ R

(s)
k sin 〈k, θ〉 .

Then, it is not difficult to derive the following expressions

(H
(c)
k cos 〈k, ω〉+ H

(s)
k sin 〈k, ω〉)B1 −B1H

(c)
k = R

(c)
k ,

(H
(s)
k cos 〈k, ω〉 −H

(c)
k sin 〈k, ω〉)B1 −B1H

(s)
k = R

(s)
k .

(22)

For each, k, this is a linear system (of dimension 2n2) for the unknowns H
(c)
k and H

(s)
k .

À. Jorba, E. Olmedo 11

2.4 The iterative scheme

This process is repeated until the norm of the remainders, ‖yk‖∞ and ‖Qk‖∞, is small
enough. The scheme is summarized as follows: We assume we have an approximation
x0(θ) of a torus such that ‖y0(θ)‖∞ = ‖x0(θ+ω)−f(x0(θ))‖∞ ≈ ε, and an approximation
y = C0(θ)x to its Floquet transformation, such that it transforms the linear system

x̄ = Dxf(x0(θ))x,
θ̄ = θ + ω,

into
ȳ = (B0 + Q0(θ))y,
θ̄ = θ + ω,

with ‖Q0‖∞ ≈ ε. Each iteration of the process has two steps. The first step consists of
the following operations:

1.a) Compute g(θ) = −C−1
0 (θ + ω)y0(θ).

1.b) Find u such that u(θ + ω) = B0u(θ) + g(θ). This is done by expanding g and u in
real Fourier series and using (13).

1.c) Compute h(θ) = C0(θ)u(θ).

1.d) The new approximation to the torus is x1(θ) = x0(θ) + h(θ).

The second step corrects the approximation to the Floquet matrix and Floquet trans-
formation. It consists of the following operations:

2.a) Compute R(θ) = C−1
0 (θ + ω)Dxf(x1(θ))C0(θ) − B0, R̃(θ) = R(θ) − Avg (R) and

B1 = B0 + Avg (R). B1 is the new approximation to the Floquet matrix of the
torus.

2.b) Find a matrix valued function H such that H(θ + ω)B1 − B1H(θ) = R̃(θ). This is
done by expanding R and H in real Fourier series, see (22).

2.c) Compute C1(θ) = C0(θ)(Id + H(θ)). C1 is the new approximation to the Floquet
change.

Note that the dimension of the linear systems in the method only depends on the
dimension of the phase space, and their number only depends on the number of Fourier
modes used in the approximation. As the number of Fourier modes needed to approximate
a torus grow exponentially with the dimension of the torus, the method seems suitable
for computing tori of higher dimensions.

12 Computation of tori in a parallel computer

3 Computer implementation

In this section, we discuss the computer implementation of the algorithm. As it is usual
in numerical implementations, we will use truncated Fourier series to represent tori and
their Floquet transformations, although for some operations it is better to represent them
by a table of values (see Section 3.1). The number of Fourier modes considered (or the
number of points in the tables) is determined from the level of accuracy, as discussed in
Section 3.2. Finally, in Section 3.3, we discuss some details of the parallel implementation.

3.1 Table of values and Fourier coefficients

Some of the operations in the algorithm are better performed on Fourier series (see (13)
and (22)), while some others are better done on tables of values of the functions (the
computation of the matrices Dxf(xj(θ)) and R(θ), and the products involving them).

To perform these transformations, we have used a multidimensional Discrete Fourier
Transform algorithm, as explained in [FJ05]. These techniques are implemented in the
well-known library FFTW3 (its home page is http://www.fftw.org/), included as an
optional package in several GNU/Linux distributions.

We note that the two sets (table of values and truncated Fourier series) have the same
size. Hence, truncated series or tables of values will be stored indistinctly in the same
array, depending on the step where the algorithm is.

3.2 The control of the error

We have two main sources of error that affect the result:

• The error of the invariance condition on the table of values of the torus (and of the
Floquet transformation). This error is easy to control: the iterations explained in
Section 2 are stopped when the remainders on this mesh are small.

• The interpolation error, due to the substitution of the torus (and the Floquet
change) for a mesh of points. To control this second source of errors we need
first to estimate it, and then to be able to change the mesh when this error is too
large. In what follows we will discuss these issues.

Let us denote by A ⊂ Td the set of points corresponding to the tables of values used
in the algorithm. Assume that after some iterations we have obtained two sets of values,
one for the torus and one for the Floquet transformation, {x(θi)}θi∈A and {C(θi)}θi∈A,
and a constant Floquet matrix B satisfying

max
θi∈A

{‖x(θi + ω)− f(x(θi))‖} < δ,

max
θi∈A

{‖C−1(θi + ω)Dxf(x(θi))C(θi)−B‖} < δ,
(23)

À. Jorba, E. Olmedo 13

where δ is a fixed tolerance. Let us define δ1,2 as

δ1 = max
θ∈Td

{‖x(θ + ω)− f(x(θ))‖},

δ2 = max
θ∈Td

{‖C−1(θ + ω)Dxf(x(θ))C(θ)−B‖}.

Note that the computation of δ1,2 is a difficult task (specially for d ≥ 2). We will use
two different methods to estimate these values. The first method is very fast (it requires
almost no work) but the value provided is a rough estimate of the true value. The second
method requieres a much higher effort and the result is more reliable. Let us first explain
these two methods and then we will discuss how we use them.

The first method consists in looking at the norm of some of the “last” coefficients of
the Fourier series, and use it as an estimate for the truncation error of the series. As we
are looking for a fast indicator, we have used the last two coefficients along the “lines”
k = (0, . . . , 0, kj, 0, . . . , 0) (for j = 1, . . . , d). Once the Newton iteration has converged
on a given mesh, we check the size of these coefficients. If one of them is larger than a
prescribed threshold, we assume that the interpolation error is too big and we increase
the number of Fourier series in the direction of these large coefficients (this is equivalent
to refine the mesh of points in the direction of the corresponding angles θj). Then, we
start again the Newton iterations from the previous approximation, with the new Fourier
modes set to zero.

The second test is to evaluate the estimation of the error (23) on a set of values
Ã ⊂ Td different from the set A used for the computations. A first option is to use a
thinner partition Ã, to produce a better estimate of the invariance errors δ1,2. The main
inconvenience is that the number of points in the mesh grows very fast. For instance, if we
double the number of points in each direction θj, j = 1, . . . , d, the total number of points
in the mesh grows by a factor 2d. Although this test has a natural parallelism, it can
take a long time, specially in those cases where the map is given by the Poincaré section
of a flow. For this reason, we propose the following alternative: During the iterative
procedure, we will use a mesh Ã with the same number of points as A. This mesh is
obtained by adding a small vector γ = (γ1, . . . , γd) to each point of A. The values γj are
one half of the distance between the points of A in the direction θj. In this way the new
mesh Ã is interlaced with the initial mesh A. Then, we check the conditions

max
θi∈Ã

{‖x(θi + ω)− f(x(θi), θi)‖} < δ,

max
θi∈Ã

{‖C−1(θi + ω)Dxf(x(θi), θi)C(θi)−B‖} < δ.

If this test is not satisfied, we add some Fourier coefficients (in all the “directions” θi),
and we go back to the Newton iteration to refine the solution. If it is satisfied, we can
either stop the algorithm and accept the solution or to check it again with a thinner mesh.
The idea is to avoid checking with finer meshes during the computations (it is too costly)
and to do a single check at the end, to be sure of the accuracy.

14 Computation of tori in a parallel computer

3.3 Parallelism

The method has mainly two parallelisable points: the simultaneous resolution of the
different linear systems that appear in (13) and (22), and the multiple evaluations of the
map f and its differential. This last point could be the most computing intensive part if
the evaluation of f and Df requires a lot of operations (think of a Poincaré map of an
ODE). These are the places where most of the computational work is done.

Our implementation runs in a cluster of PCs, connected through an Ethernet network,
and using the PVM library for the communications (see [GBD+94]). The PVM library is
freely accesible from the Internet, and it also comes as an option in several GNU/Linux
distributions.

The programming model used is the so called master-slave model: there is a main
program (the master) that splits the work into independent pieces and sends them to
a set of programs (usually called slaves, but we prefer to refer to them as secondary
programs) that do the computations and send the results back to the master (we prefer
to call it primary program). This is one of the simplest paradigms for parallel computing,
and it is enough for our situation.

In our implementation, the primary program runs in one of the nodes of the cluster,
while the secondary programs run in different nodes, on a CPU-per-program basis. We
use three different classes of secondary programs:

• Secondary programs of the kind A (SPA). Their task consists in creating and solving
the linear systems (13). In this way each SPA receives from the main program a
subset of multiindices k. For each k, SPA computes the linear system in (13) and
solves it. Then, it returns to the main program an integer. This integer means that
it has finished the task. If there are more systems to be solved, the main program
send to the SPA another subset of multiindices, otherwise it sends an integer to tell
SPA that there are no more systems to solve. Then, SPA returns all the computed
solutions to the main program.

• Secondary programs of the kind B (SPB). They take care of the construction and
resolution of the linear systems (22). As the SPA, each SPB receives from the main
program a subset of multiindices k. Then, for each k, the SPB constructs the linear
system in (22) and solves it. After that, it returns to the main program an integer
saying that this task has been finished. As before, the main program knows if there
are more systems to solve and, if so, it send two integers more. If all the systems
have been solved, the main program sends an integer to indicate to SPB that the
computation is finished, and then SPB sends all the results to the main program.

• Secondary programs of kind C (SPC). They have the task of evaluating over A the
application f and its differential Dxf . SPC also receives from the main program a set
of values of the angles θ. SPC computes the evaluation of f(θ) and Dxf(x(θ), θ) for
all these θ and asks to the main program for another set. When all the evaluations
have been done, SPC sends all the results to the main program.

À. Jorba, E. Olmedo 15

4 Examples

In this section we present several examples to show the effectiveness of the method.

4.1 A quasi-periodically forced pendulum

Let us consider the following system of ordinary differential equations:

ẋ = y

ẏ = −α sin x + εq(θ0, . . . , θd), (24)

θ̇i = ωi, i = 0, . . . , d,

where x ∈ R, y ∈ R and, for i = 0, . . . , d, θi ∈ T and ωi ∈ R. We will use the following
function q:

q(θ0, . . . , θd) =

[
d + 2 +

d∑
i=0

cos θi

]−1

. (25)

The reason for using this expression and not something simpler like
∑

cos θi is to have
a perturbing function with many harmonics of a relevant amplitude. A natural way to
get this is to invert a trigonometric polynomial with a zero in the complex plane, not far
from the real line (think of the Fourier expansion of the function q in (25)).

Note that, for ε = 0, system (24) has the d-dimensional invariant torus x = y = 0,
θ ∈ Td. It is known ([JS96, JV97]) that there exists a Cantor set E of values of ε
for which the system (24) has a (d + 1)-dimensional invariant torus, with frequencies
ω0, . . . , ωd. Moreover, the Lebesgue measure of the set E ∩ [0, ε0] is exponentially small
with ε0. When ε is small but outside of the set E , the torus can still exist, but with
different stability properties and/or does not need to be unique. For a discussion of this,
see [BHJ+03].

Here we select a small value for ε, and we will try to compute an invariant torus close
to the origin, with frequencies ω0, . . . , ωd. For the computations we will use several values
for d, to produce invariant tori of different dimensions. For d = 1, . . . , 4, the frequency
vector ω is taken as

ω0 = 1, ω1 =
√

2, ω2 =
√

3, ω3 =
√

5, ω4 =
√

7. (26)

Finally, we will use the parameters α = 0.8 and ε = 0.15. To apply the methodology
described before, let us consider the return map for the section θ0 = 0 (mod 2π). If
we denote a point on this section by z = (x, y) and θ = (θ1, . . . , θd), we represent the
associated return map to the section θ0 = 0 (mod 2π) as

z̄ = P (z, θ),
θ̄ = θ + ω,

}
(27)

being ω = (ω̃1, . . . , ω̃d) where, for i = 1, . . . , d, we define ω̃i = 2πωi. The Jacobian of (27)
is obtained by means of the numerical integration of the variational equations of (24).

16 Computation of tori in a parallel computer

d Accuracy Initial Final
1 1.e-12 21 29
1 1.e-14 21 33
2 1.e-12 441 1225
2 1.e-14 441 1591
3 1.e-12 9261 53235
4 1.e-6 390625 531441
4 1.e-8 390625 1185921
4 1.e-10 390625 1975467

Table 1: The torus for the quasi-periodically forced pendulum. The first column shows
the value of d; the second column corresponds to the accuracy of the solution; the third
column contains the number of harmonics of the initial approximation; the last column
shows the final number of harmonics used to approximate the solution within the accuracy
shown in the second column.

We will focus on invariant tori of dimension d, that is, tori that can be parametrized as
z0 : Td → R2 and that satisfy the equation z0(θ +ω) = P (z0(θ), θ). They are the simplest
invariant objects of a system like (27). As it has been mentioned before, the linearization
around such a torus is given by (3), where A(θ) = DzP (z0(θ), θ).

When ε = 0, the point x = y = 0 is invariant by the flow of (24), and this implies
that the map P satisfies P (0) = 0 (note that, if we consider the variable θ, this set is
a d-dimensional invariant torus for (27)). To apply the previous algorithm, we will use
z0(θ) ≡ 0 as an initial approximation to the torus and the Jacobian of P at z = 0 (for
ε = 0) as an approximation to the reduced matrix (note that, for ε = 0, the Jacobian
of P does not depend on θ) and the identity matrix as an approximation to the Floquet
transformation. In other words, we use the torus for ε = 0 as an approximation to the
torus for ε small.

As the number of Fourier terms needed to get an approximation with a prescribed
accuracy is not known in advance, we start with a given number and the algorithm for
the control of the error (see Section 3.2) takes care of increasing the number of Fourier
terms. Table 1 shows the required number of terms for different values of d and different
accuracies. Table 2 displays the eigenvalues of the Floquet matrix of the solutions for
d = 1, 2, 3 and 4. Note that all these solutions are linearly stable.

Table 3 shows the computing time needed to obtain the solution in four different
cases: d = 1 and d = 2 with accuracy 10−14, d = 3 with accuracy 10−12, and d = 4
with accuracy 10−10. The second column shows the number of CPUs used (each is a 2.4
GHz Intel Xeon processor). Each processor runs one SPA, one SPB, and one SPC (see
Section 3.3). Moreover, one of the processors runs the main program. The third column
corresponds to the total time spent by the algorithm (i.e., from the beginning to the
end of the run). The time spent by the main program (i.e., the part that has not been
parallelized) is shown in the fourth column. The time used in the parallel part is obtained
by substracting the third and fourth columns, and it is shown in the fifth one. The last

À. Jorba, E. Olmedo 17

d Modulus Argument
1 1.0000000000000000e+00 -6.7997888309559873e-01

1.0000000000000000e+00 6.7997888309559873e-01
2 9.9999999999999989e-01 -6.7049041137795473e-01

9.9999999999999989e-01 6.7049041137795473e-01
3 1.0000000000000000e+00 -6.6756788267641354e-01

1.0000000000000000e+00 6.6756788267641354e-01
4 1.0000000000000000e+00 -6.6631201608602053e-01

1.0000000000000000e+00 6.6631201608602053e-01

Table 2: Stability of the torus for the quasi-periodically forced pendulum. The first
column contains the value of d, and the second and third column show modulus and
argument of the eigenvalues of the Floquet matrix, respectively.

column is the fourth column divided by p, and shows the time that the paralell part
should take if the parallelism were perfect. The difference between the last two columns
is due to the overheads added by the paralelization (they are mainly communications),
and they increase with the number of processors used.

Figure 1 (left) shows the invariant curve of (27) for d = 1 in the (z1, z2) plane. Fig-
ure 1 (right) shows the torus of (27) for d = 2. To make this plot, we have taken a
uniform “squared” mesh on T2 and we have plot the image of this mesh through the
parametrization of the torus, to make a “geometric” plot. Another option would be to
take a trajectory on T2 (a straight line with the slope given by the frequencies) and to
plot the image of this line in the phase space, by means of the parametrization of the
torus. Figure 2 shows three slices of the invariant torus for the case d = 3, this is, we fix
the value of one of the angles (for instance, θj = 0) and we draw the resultid 2-d torus
as in the previous figure. Finally, Figure 3 shows six sections of the solution in the case
d = 4. Of course, it is possible to use a 3-d mesh in Figure 2 (or a 4-d mesh in Figure 2)
but the resulting plot is less clear. Another possibility is to visualise the torus making a
movie of the section, when the value of the coordinate used for the section varies from 0
to 2π.

4.1.1 A disipative situation

Here we consider a disipative perturbation of (24):

ẋ = y
ẏ = −y − α sin x + εq(θ0, . . . , θd),

θ̇i = ωi, i = 0, . . . , d,
(28)

where the function q is defined in (25) and the frequencies ωi are defined in (26). We also
fix ε = 0.15 and d = 4.

As it was done in Section 4.1, we use the Poincaré section θ0 ≡ 0 and we will compute
invariant tori for the corresponding Poincaré map P . As before, we will obtain the initial

18 Computation of tori in a parallel computer

d p Total Main Parallel Optimum
1 1 6.619s 0.502s 6.117s 6.117s

2 3.675s 0.499s 3.176s 3.059s

2 1 11.214s 0.492s 10.722s 10.722s
2 5.485s 0.469s 5.016s 5.361s
3 4.288s 0.501s 3.787s 3.574s

3 1 8m59.267s 0m25.444s 8m33.823s 8m33.823s
2 4m43.562s 0m25.388s 4m18.174s 4m16.912s
3 3m17.493s 0m25.298s 3m17.493s 2m51.274s
4 2m35.243s 0m25.285s 2m9.958s 2m8.455s
5 2m11.122s 0m25.293s 1m45.829s 1m42.764s
6 1m52.951s 0m25.445s 1m27.506s 1m25.637s

4 1 109m45.770s 5m47.956s 103m57.814s 103m57.814s
2 58m5.449s 5m45.136s 52m20.313s 51m58.907s
4 32m7.966s 5m47.030s 26m22.830s 25m59.454s
6 23m28.204s 5m47.180s 17m41.024s 17m19.635s
8 19m8.460s 5m46.636s 13m21.824 12m59.726s
10 16m55.771s 5m48.277s 11m7.494s 10m23.781s

Table 3: Computing time for the torus of the quasi-periodically forced pendulum. The
first column is the value of d, the second column (p) shows the number of processors
used, the third column is the total computing time, the fourth is the cpu time of the
main program (the non parallel part), the fifth is the difference between the two previous
colums, and the last column is the fourt one divided by p.

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.16 0.17 0.18 0.19 0.2 0.21 0.22
-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17

Figure 1: The picture of the found solution in the case of d = 1 (on left) and d = 2 (on
right).

À. Jorba, E. Olmedo 19

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14
-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14
-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14

Figure 2: Some slices of the computed torus in the case d = 3. Left: θ1 ≡ 0. Middle:
θ2 ≡ 0. Right: θ3 ≡ 0.

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

-0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

-0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

-0.02 0 0.02 0.04 0.06 0.08 0.1 0.12

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

-0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.02

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08
-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

-0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12

Figure 3: Some slices of the found solution in the case d = 4. The first row shows the
slices θ1 ≡ θ2 ≡ 0 (left); θ1 ≡ θ3 ≡ 0 (middle); and θ1 ≡ θ4 ≡ 0 (right). The second row
correspond to the slices θ2 ≡ θ3 ≡ 0 (left); θ2 ≡ θ4 ≡ 0 (middle); and θ3 ≡ θ4 ≡ 0 (right).

20 Computation of tori in a parallel computer

-0.026

-0.024

-0.022

-0.02

-0.018

-0.016

-0.014

-0.012

-0.01

-0.008

-0.006

-0.004

 0.035 0.04 0.045 0.05 0.055 0.06 0.065
-0.018

-0.016

-0.014

-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

 0

 0.03 0.035 0.04 0.045 0.05 0.055 0.06
-0.018

-0.016

-0.014

-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

 0

 0.032 0.034 0.036 0.038 0.04 0.042 0.044 0.046 0.048 0.05

-0.016

-0.014

-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

 0

 0.002

 0.004

 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065
-0.014

-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

 0

 0.002

 0.004

 0.025 0.03 0.035 0.04 0.045 0.05 0.055
-0.016

-0.014

-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

 0

 0.002

 0.004

 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06

Figure 4: Slices of the found solution in the case d = 4 with a disipative perturbation.
The first row shows the slices θ1 ≡ θ2 ≡ 0 (left); θ1 ≡ θ3 ≡ 0 (middle); and θ1 ≡ θ4 ≡ 0
(right). The second row correspond to the sections θ2 ≡ θ3 ≡ 0 (left); θ2 ≡ θ4 ≡ 0
(middle); and θ3 ≡ θ4 ≡ 0 (right).

approximation for the method from the case ε = 0: the fixed point x = y = 0 is used
for the torus, the differential of P at this point for the Floquet matrix, and the identity
matrix for the Floquet transformation.

The invariant torus for ε = 0.15 has been computed with an accuracy of 10−12.
The number of Fourier terms required to get this accuracy is 1, 185, 921. The eigen-
values of the Floquet matrix have modulus 4.3213918263772258 × 10−2 and argument
±1.5161316762139108. We note that, as the divergence of (28) is constant and equal to
−1 and the matrix A(θ) is obtained by integrating the variational flow for 2π units of
time (we recall that ω0 = 1), then det A(θ) ≡ exp(−2π). Therefore, the product of the
modulus of the two computed eigenvalues should be equal to exp(−2π). As an extra test
for the level of accuracy, we compute the difference between this product and exp(−2π),
and the result is 7.1× 10−19. Figure 4 shows six sections of the solution.

4.2 The multi-circular model

Let us assume that Sun and Jupiter move in a circular orbit around their common centre of
mass according to the Kepler laws. The Restricted Three Body Problem (RTBP) describes
the motion of a third particle on the vector field produced by these two primaries (Sun
and Jupiter). It is assumed that the mass of this third particle is so small that does not
affect the motion of the two primaries. It is common to choose units of distance, time and
mass such that the distance between the primaries is 1, the period of the primaries is 2π
and the sum of masses of Sun and Jupiter is 1. It is also usual to use a rotating coordinate

À. Jorba, E. Olmedo 21

system with origin at the centre of mass, so that the two primaries are kept fixed on the
X axis. In this reference system, there are 5 equilibrium points for the particle: three of
them (L1, L2 and L3) are on the X axis and the other two (L4 and L5) form an equilateral
triangle with the primaries (for more details see, for instance, [Sze67]).

We are interested in finding quasi-periodic solutions near L5 in models that are a
perturbation of the RTBP. More concretely, we consider perturbations obtained by adding
planets to the system. We will assume that the planets move in circular orbits around
the centre of masses of Sun and Jupiter. In particular, we want to consider the direct
gravitational effect on the particle due to Saturn, Uranus, Neptune and Earth. The
equations of motion for the particle are:

ẋ = px + y,

ẏ = py − x,

ż = pz,

ṗx = py − (1− µ)
x− µ

r3
S

− µ
x− (µ− 1)

r3
J

−

−
d∑

i=0

mi
x− ai cos θi

r3
i

+
d∑

i=0

mi
cos θi

a2
i

(29)

ṗy = −px − (1− µ)
y

r3
S

− µ
y

r3
J

−

−
d∑

i=0

mi
y + ai sin θi

r3
i

−
d∑

i=0

mi
sin θi

a2
i

ṗz = −(1− µ)
z

r3
S

− µ
z

r3
J

−
d∑

i=0

mi
z

r3
i

where θi = ωit + θ
(0)
i , and ωi are the frequencies of the perturbing planets, mi are their

masses and ai denotes their semimajor axis, in these coordinates. Moreover,

r2
S = (x− µ)2 + y2 + z2,

r2
J = (x− (µ− 1))2 + y2 + z2,

r2
i = (x− ai cos θi)

2 + (y + ai sin θi)
2 + z2,

for i = 0, . . . , d. In our examples d takes values from 1 to 3 (d + 1 is the number of
perturbing planets). The mass parameter µ (that corresponds to the Sun-Jupiter problem)
is 9.5388118036309677×10−4. Table 4 shows the values of the constants, in adimensional
units, that appears in the equation. The index i = 0 corresponds to Uranus, i = 1 to
Saturn, i = 2 to Neptune and i = 3 to the Earth.

As in the previous examples, we will work on the section θ0 ≡ 0. The corresponding
return map depends on d angles (because the system depends on d + 1 and the section
removes one of them). For simplicity, let us abuse the notation and denote by z the vector

22 Computation of tori in a parallel computer

i mi ωi ai

0 5.1464752074960787e-05 0.92801432138537394 5.7788760748791814
1 2.8561327940941584e-04 0.59716051258412511 1.8335242195766197
2 4.3620791653297386e-05 0.85880670883551138 3.6880511883932363
3 3.0375324347911519e-06 -0.1862408594090464 0.8923832582416737

Table 4: Masses, frequencies and radius for the planets used in (29).

d 1 2 3
Tolerance 1.e-12 1.e-10 1.e-9
Number of harmonics 89 3555 147825

Table 5: Accuracy and number of harmonics: the first row shows the value of d, the
second row is the accuracy of the solution, and the third row contains the number of
harmonics needed in the approximation of the solution.

(x, y, z, px, py, pz) ∈ R6. Moreover, we define θ = (θ1, . . . , θd) and, as before, we call P to
the return map to the section θ0 ≡ 0. In this way, the system (29) can be represented by

z̄ = P (z, θ),
θ̄ = θ + ω,

}
(30)

with ω = (ω̃i) with ω̃i = 2πωi/ω0, for i = 1, . . . , d. The differential of P is obtained by
means of the numerical integration of the variational equations of (29). Therefore, if z0(θ)
is a quasi-periodic solution of (30), then the linear dynamics around it is given by (3),
where A(θ) = DzP (z0(θ), θ).

We are interested in finding an invariant torus of (29) near the equilibria L5 of the
unperturbed system, with the same frequencies as the perturbation. We will use as initial
approximation the coordinates of the point L5 of the Sun-Jupiter RTBP. The lienarization
of P at L5 (again for the Sun-Jupiter RTBP) will be used as the initial guess for the
reduced Floquet matrix of the invariant torus of (29) that we want to compute. As for
the unperturbed case (the RTBP) the Floquet change is the identity, we will also select
the identity as a first approximation for the perturbed situation.

Table 5 shows the number of Fourier terms required to get an approximation of the
torus with a given accuracy. In all the cases (d = 1, 2, 3) the six eigenvalues of the Floquet
matrix are complex conjugated pairs with modulus one, so the tori are linearly stable. In
Table 6 the positive argument of these eigenvalues is shown. The first row correspond to
the case d = 1, the second to the case d = 2 and the last one to the case d = 3. As an
extra test, we compute the difference between the product of the eigenvalues and 1 (the
product has to be 1 due to the Hamiltonian structure). This difference is 4.66× 10−15 for
d = 1, 2.64 × 10−15 for d = 2 and 5.14 × 10−12 for d = 3. Finally, Figures 5 and 6 show
the tori for the discrete system (30). The tori for the flow (29) can be easily obtained by
means of numerical integrations starting on a mesh of points on the tori found for (30).

À. Jorba, E. Olmedo 23

d = 1 d = 2 d = 3
5.4503461453063606e-01 4.6491650709992588e-01 4.8782691342003148e-01
5.4486199466481278e-01 4.6494463080617310e-01 4.8785025706880447e-01
5.4486200678996954e-01 4.6494454724444878e-01 4.8785033947562140e-01

Table 6: Positive argument of the eigenvalues of the Floquet matrix of the tori found for
the multi-circular model.

 0.863

 0.864

 0.865

 0.866

 0.867

 0.868

 0.869

-0.503 -0.502 -0.501 -0.5 -0.499 -0.498 -0.497 -0.496 -0.495
-0.502

-0.501

-0.5

-0.499

-0.498

-0.497

-0.496

-0.8685 -0.868 -0.8675 -0.867 -0.8665 -0.866 -0.8655 -0.865 -0.8645 -0.864 -0.8635

 0.863

 0.864

 0.865

 0.866

 0.867

 0.868

 0.869

-0.503 -0.502 -0.501 -0.5 -0.499 -0.498 -0.497 -0.496 -0.495 -0.494
-0.502

-0.501

-0.5

-0.499

-0.498

-0.497

-0.496

-0.495

-0.8685 -0.868 -0.8675 -0.867 -0.8665 -0.866 -0.8655 -0.865 -0.8645 -0.864 -0.8635

Figure 5: Tori of the multi-circular model for d = 1 (first row) and d = 2 (second row).
First column: (x, y) projection; second column: (px, py) projection.

24 Computation of tori in a parallel computer

 0.8676

 0.86765

 0.8677

 0.86775

 0.8678

 0.86785

 0.8679

-0.4953 -0.49525 -0.4952 -0.49515 -0.4951 -0.49505 -0.495 -0.49495 -0.4949
 0.863

 0.864

 0.865

 0.866

 0.867

 0.868

 0.869

-0.503 -0.502 -0.501 -0.5 -0.499 -0.498 -0.497 -0.496 -0.495 -0.494
 0.863

 0.864

 0.865

 0.866

 0.867

 0.868

 0.869

-0.503 -0.502 -0.501 -0.5 -0.499 -0.498 -0.497 -0.496 -0.495 -0.494

-0.4967

-0.49665

-0.4966

-0.49655

-0.4965

-0.49645

-0.4964

-0.86788 -0.86786 -0.86784 -0.86782 -0.8678 -0.86778 -0.86776 -0.86774 -0.86772 -0.8677 -0.86768
-0.502

-0.501

-0.5

-0.499

-0.498

-0.497

-0.496

-0.495

-0.8685 -0.868 -0.8675 -0.867 -0.8665 -0.866 -0.8655 -0.865 -0.8645 -0.864
-0.502

-0.501

-0.5

-0.499

-0.498

-0.497

-0.496

-0.495

-0.8685 -0.868 -0.8675 -0.867 -0.8665 -0.866 -0.8655 -0.865 -0.8645 -0.864 -0.8635

Figure 6: Tori of the multi-circular model for d = 3. First row: (x, y) projection; second
row: (px, py) projection. The three columns refer to the slices θ1 = 0, θ2 = 0 and θ3 = 0.

Acknowledgements

E. Olmedo has been supported by a FI grant from the Generalitat de Catalunya. More-
over, this work has been supported by the MEC grant MTM2006-11265 and the CIRIT
grant 2005SGR01028.

References

[AKL07] R.A. Adomaitis, I.G. Kevrekidis, and R. de la Llave. A computer-assisted
study of global dynamic transitions for a noninvertible system. Internat. J.
Bifur. Chaos Appl. Sci. Engrg., 17(4):1305–1321, 2007.

[BHJ+03] H.W. Broer, H. Hanßmann, À. Jorba, J. Villanueva, and F.O.O. Wagener.
Normal-internal resonances in quasiperiodically forced oscillators: a conser-
vative approach. Nonlinearity, 16:1751–1791, 2003.

[BHS96] H.W. Broer, G.B. Huitema, and M.B. Sevryuk. Quasi-Periodic Motions in
Families of Dynamical Systems: Order amidst Chaos, volume 1645 of Lecture
Notes in Math. Springer, New York, 1996.

[BMS76] N. N. Bogoljubov, Ju. A. Mitropoliskii, and A. M. Samŏılenko. Methods of
Accelerated Convergence in Nonlinear Mechanics. Springer-Verlag, 1976.

À. Jorba, E. Olmedo 25

[BS98] H.W. Broer and C. Simó. Hill’s equation with quasi-periodic forcing: res-
onance tongues, instability pockets and global phenomena. Bol. Soc. Bras.
Mat., 29(2):253–293, 1998.

[CJ00] E. Castellà and À. Jorba. On the vertical families of two-dimensional tori near
the triangular points of the Bicircular problem. Celestial Mech., 76(1):35–54,
2000.

[CJ08] E. Castellà and À. Jorba. On stability regions near the triangular points of
the real Earth-Moon system. Preprint, 2008.

[DJS91] C. Dı́ez, À. Jorba, and C. Simó. A dynamical equivalent to the equilateral
libration points of the real Earth-Moon system. Celestial Mech., 50(1):13–29,
1991.

[DL95] L. Dieci and J. Lorenz. Computation of invariant tori by the method of
characteristics. SIAM J. Numer. Anal., 32(5):1436–1474, 1995.

[DLR91] L. Dieci, J. Lorenz, and R.D. Russell. Numerical calculation of invariant tori.
SIAM J. Sci. Statist. Comput., 12(3):607–647, 1991.

[ERS00] K. D. Edoh, R. D. Russell, and W. Sun. Computation of invariant tori by
orthogonal collocation. Appl. Numer. Math., 32(3):273–289, 2000.

[FJ05] M. Frigo and S.G. Johnson. The design and implementation of FFTW3.
Proceedings of the IEEE, 93(2):216–231, 2005.

[GBD+94] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and S. Sunderam.
PVM: Parallel virtual machine: a users’ guide and tutorial for networked
parallel computing. MIT Press, Cambridge, MA, USA, 1994.

[GJMS01a] G. Gómez, À. Jorba, J. Masdemont, and C. Simó. Dynamics and mission
design near libration points. Vol. III, Advanced methods for collinear points,
volume 4 of World Scientific Monograph Series in Mathematics. World Sci-
entific Publishing Co. Inc., 2001.

[GJMS01b] G. Gómez, À. Jorba, J. Masdemont, and C. Simó. Dynamics and mission
design near libration points. Vol. IV, Advanced methods for triangular points,
volume 5 of World Scientific Monograph Series in Mathematics. World Sci-
entific Publishing Co. Inc., 2001.

[GLMS01a] G. Gómez, J. Llibre, R. Mart́ınez, and C. Simó. Dynamics and mission design
near libration points. Vol. I, Fundamentals: the case of collinear libration
points, volume 2 of World Scientific Monograph Series in Mathematics. World
Scientific Publishing Co. Inc., 2001.

26 Computation of tori in a parallel computer

[GLMS01b] G. Gómez, J. Llibre, R. Mart́ınez, and C. Simó. Dynamics and mission design
near libration points. Vol. II, Fundamentals: the case of triangular libration
points, volume 3 of World Scientific Monograph Series in Mathematics. World
Scientific Publishing Co. Inc., 2001.

[HdlL06] À. Haro and R. de la Llave. A parameterization method for the computa-
tion of invariant tori and their whiskers in quasi-periodic maps: numerical
algorithms. Discrete Contin. Dyn. Syst. Ser. B, 6(6):1261–1300 (electronic),
2006.

[JO05] À. Jorba and E. Olmedo. A parallel method to compute quasi-periodic so-
lutions. In EQUADIFF 2003, pages 181–183. World Sci. Publ., Hackensack,
NJ, 2005.

[JO08] À. Jorba and E. Olmedo. Numerical computation of quasi-periodic motions
for the FPU model. Preprint, 2008.

[Jor01] À. Jorba. Numerical computation of the normal behaviour of invariant curves
of n-dimensional maps. Nonlinearity, 14(5):943–976, 2001.

[JRV97] À. Jorba, R. Ramı́rez-Ros, and J. Villanueva. Effective reducibility of
quasiperiodic linear equations close to constant coefficients. SIAM J. Math.
Anal., 28(1):178–188, 1997.

[JS92] À. Jorba and C. Simó. On the reducibility of linear differential equations
with quasiperiodic coefficients. J. Differential Equations, 98:111–124, 1992.

[JS96] À. Jorba and C. Simó. On quasiperiodic perturbations of elliptic equilibrium
points. SIAM J. Math. Anal., 27(6):1704–1737, 1996.

[JV97] À. Jorba and J. Villanueva. On the persistence of lower dimensional invariant
tori under quasi-periodic perturbations. J. Nonlinear Sci., 7:427–473, 1997.

[Lan91] S. Lang. Introduction to Diophantine Approximations. Springer, New York,
second edition, 1991.

[Lla01] R. de la Llave. A tutorial on KAM theory. In Smooth ergodic theory and its
applications (Seattle, WA, 1999), volume 69 of Proc. Sympos. Pure Math.,
pages 175–292. Amer. Math. Soc., Providence, RI, 2001.

[Sev03] M.B. Sevryuk. The classical KAM theory at the dawn of the twenty-first
century. Moscow Math. J., 3(3):1113–1144, 2003.

[Sim94] C. Simó. Averaging under fast quasiperiodic forcing. In J. Seimenis, editor,
Hamiltonian Mechanics: Integrability and Chaotic Behaviour, volume 331 of
NATO Adv. Sci. Inst. Ser. B Phys., pages 13–34. Held in Toruń, Polland,
28 June–2 July 1993. Plenum, New York, 1994.

À. Jorba, E. Olmedo 27

[Sim98] C. Simó. Effective computations in celestial mechanics and astrodynamics.
In V.V. Rumyantsev and A.V. Karapetyan, editors, Modern Methods of An-
alytical Mechanics and their Applications, volume 387 of CISM Courses and
Lectures. Springer Verlag, 1998.

[SOV05] F. Schilder, H.M. Osinga, and W. Vogt. Continuation of quasi-periodic in-
variant tori. SIAM J. Appl. Dyn. Syst., 4(3):459–488 (electronic), 2005.

[SVSO06] F. Schilder, W. Vogt, S. Schreiber, and H.M. Osinga. Fourier methods
for quasi-periodic oscillations. Internat. J. Bifur. Chaos Appl. Sci. Engrg.,
67(5):629–671, 2006.

[Sze67] V. Szebehely. Theory of Orbits. Academic Press, 1967.

[WM06] D.B. Wysham and J.D. Meiss. Iterative techniques for computing the lin-
earized manifolds of quasiperiodic tori. Chaos, 16(2):023129, 14, 2006.

