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Senior researchers: Àngel Jorba, Carles Simó
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Abstract

The present report addresses the possibilities offered by validated integrators to deal with
some space problems. First, we survey previous results on validated methods for ODEs and
we discuss their sharpness and efficiency, keeping in mind their suitability for space-related
computations.

We have considered two concrete situations. The first one is the propagation of the orbit of
a NEO asteroid, starting from data affected by observational error for a moderate time span.
We have focused on the concrete case of 99942 Apophis, which is having close approaches to the
Earth on the years 2029 and 2037. The goal here is to check if the use of validated methods can
be useful to elucidate possible collisions of these objects with the Earth. The second problem
considered is the transfer of a probe with low thrust propulsion from parking orbit around the
Earth to a much higher orbit, including a capture by the Moon. The goal is to see how the
uncertainties in the initial condition and the thrust affect the propagation of the orbit.
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Chapter 1

Introduction

Many real life problems are well described by models consisting of Ordinary Differential Equa-
tions (ODE),

dx

dt
= f(t, x, λ),

where x belongs to some phase or states space E ⊂ R
n and λ, which accounts for the parameters

of the model, belongs to some parameter space P ⊂ R
p. Here we will focus on equations such

that the vector field f is given in closed form by means of analytic functions.

For most of the ODE the solutions to the Initial Value Problem (IVP) x(t0) = x0 are not
known in closed form or cannot be obtained by solving a simple equation, as happens, e.g., in
the case of the two-body problem which only requires the solution of Kepler’s equation.

For concreteness we denote the flow by ϕ, that is, given t0, x0, λ, the solution at a final time
tf is denoted as

ϕ(tf ; t0, x0, λ).

This leads to the need of numerical integration of the IVP for ODE. Unfortunately all
methods are affected by the presence of integration errors at each step and by the propagation
of errors by the proper dynamics.

In many critical applications, like the motion of a NEO or space missions using a close fly-by
to a massive body, the effect of the errors can be critical. Hence, it is natural to ask for methods
providing solutions which are as correct as possible and, better, to guarantee that the solution
at time tf is inside a given subset of the phase space. Furthermore this subset should be “small”,
that is, the method should not overestimate its size.

On the other hand both initial data t0, x0 and the values of the parameters λ, are not exactly
known. Consider, for instance, the case of a NEO a few days after it has been discovered (or
even at present time). Due to bad conditioning of initial observations the elements of its orbit
have a large uncertainty. Hence, one should be able to give rigorous and sharp estimates of the
set

ϕ(tf , t0,X0,Λ) = {ϕ(tf , t0, x0, λ), for all x0 ∈ X0, λ ∈ Λ} ,

where X0 and Λ are the sets which contain all possible initial values of x0, λ, respectively.

For conceptual simplicity, and without loss of generality, it is better to consider state and
parameter variables together, that is, we can introduce

z =

(

x
λ

)

,
dz

dt
=

(

f(t, z)
0

)

,

where z ∈ EP = E × P, the state–parameter space. Also initial data can be considered in a set
Z0 like X0 × Λ or a subset of it.
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Different methods have been proposed to obtain rigorous estimates of Zf = ϕ(tf , t0, Z0)
based on the use of interval analysis and generically known as “Self Validated Integrators” (see
Chapter 4).

The three main points which should be taken carefully into account, when considering all
these methods and applications are:

a) Rigorous estimates should be provided.

b) The estimates should be sharp, that is, not producing a too large image domain.

c) They should be efficient from a CPU time point of view.

1.1 Sources of errors

The numerical integration of ODE is a key task in many applications. In this work we have
been concerned with conservative systems, e.g., given by some Hamiltonian function, or close to
conservative systems. In contrast to some dissipative systems having simple global attractors
(like steady states or periodic solutions) the effect of the errors introduced by the numerical
method can invalidate the numerically obtained solution.

One should distinguish clearly between regular and chaotic orbits. The difference in be-
haviour can be measured by means of the Lyapunov exponents (see, e.g. [Sim01]). They
measure the exponential rate of separation of nearby orbits. We can consider as regular the
orbits for which the maximal Lyapunov exponent is zero and then nearby orbits separate in a
potential way (typically in a linear way) with respect to time. Otherwise, orbits for which the
maximal Lyapunov exponent is positive can be considered as chaotic or with strong sensitivity
to initial conditions.

One should note, however, that Lyapunov exponents are defined as a limit of the exponential
rate of separation when time tends to infinity. In practice time will be finite and the orbit only
explores a reduced part of the phase space. It is better to refer to some kind of local Lyapunov
exponent where local refers to the fact that the orbits we can be interested in move only on a
reduced subset of the available phase space.

Numerical integration of ODE is affected by different kinds of errors:

1. Errors in the initial data, x0,

2. Errors in the model, for instance in the parameters λ describing the model,

3. Truncation errors due to the fact that the numerical method, even if computations were
done with infinite precision, is just an approximation, depending on the order of the
method,

4. Round off errors due to the fact that computations are done with a finite number of digits,

5. Propagation of the errors produced in the different steps due to the proper characteristics
of the dynamics. This is specially critical in the case of chaotic orbits.

It is clear that the effect of items 3. and 4. can be decreased by high order methods and,
if required, by doing computations with more digits (e.g., with quadruple precision or higher).
But one should face the problems due to items 1. and 2. Concerning item 5. it is possible, in
some cases, to decrease its effect by a suitable reformulation of the problem (e.g., using some
regularising variables like KS variables for close approaches in perturbed two-body problems,
see [SS71]).
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In any case, a reasonable method should behave in a nice way if we consider the evolution
of the theoretically preserved quantities, such as energy, momentum, etc.

Furthermore, it is also clear that to cope with item 5 a validated method requires information,
at least, on the first variational equations. This allows to bound the derivatives of the final state
with respect to the initial one (and also with respect to the parameters, of course). These
equations are used for the computation of Lyapunov exponents. They allow to detect if the
orbit behaves in a regular or chaotic way, which is relevant, even at a local scale, to decide about
the more convenient set of variables to be used.

The strong relation between propagation of errors and dynamical behaviour of system at
hand must necessarily be taken into account.

1.2 The Taylor method

Consider the initial value problem

{

x′(t) = f(t, x(t)),
x(a) = x0,

(1.1)

where f is assumed to be analytic on its domain of definition, and that x(t) is assumed to be
defined for t ∈ [a, b]. We are interested in approximating the function x(t) on [a, b]. The idea
of the Taylor method is very simple: given the initial condition x(t0) = x0 (t0 = a), the value
x(t0 + h0) is approximated from the Taylor series of the solution x(t) at t = t0,

x0 = x(t = 0),

xm+1 = xm + x′(tm)hm +
x′′(tm)

2!
h2

m + · · · + x(p)(tm)

p!
hp

m, m = 0, . . . ,M − 1,
(1.2)

where tm+1 = tm + hm, hm > 0 and tM = b.

For a practical implementation one needs an effective method to compute the values of the
derivatives x(j)(tm). A first procedure to obtain them is to differentiate the first equation in
(1.1) w.r.t. t, at the point t = tm. Hence,

x′(tm) = f(tm, x(tm)), x′′(tm) = ft(tm, x(tm)) + fx(tm, x(tm))x′(tm),

and so on. Therefore, the first step to apply this method is, for a given f , to compute these
derivatives up to a suitable order. Then, for each step of the integration (see (1.2)), we have
to evaluate these expressions to obtain the coefficients of the power series of x(t) at t = tm.
Usually, these expressions will be very cumbersome, so it will take a significant amount of time
to evaluate them numerically. This, jointly with the initial effort to compute the derivatives of
f , is the main drawback of this approach for the Taylor method.

This difficulty can be overcome by means of the so-called automatic differentiation (see
[BKSF59], [Wen64], [Moo66], [Ral81], [GC91], [BCCG92], [BBCG96], [Gri00]). This is a proce-
dure that allows for a fast evaluation of the derivatives of a given function, up to arbitrarily high
orders. As far as we know, these ideas were first used in Celestial Mechanics problems ([Ste56],
[Ste57]; see also [Bro71]).

We note that the algorithm to compute these derivatives by automatic differentiation has
to be coded separately for different systems. This coding can be either done by a human
(see, for instance, [Bro71] for an example with the N -body problem) or by another program
(see [BKSF59, Gib60, CC94, JZ05] for general-purpose computer programs). An alternative
procedure to apply the Taylor method can be found in [SV87] and [IS90]. We can also find some
public domain software to generate numerical integrators of ODEs using Taylor methods:
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• ATOMFT, http://www.eng.mu.edu/corlissg/FtpStuff/Atom3_11/. ATOMFT is written
in Fortran 77 and it reads Fortran-like statements of the system of ODEs and writes a
Fortran 77 program that is run to solve numerically the system using Taylor series.

• taylor. It can be obtained from http://www.maia.ub.es/~angel/taylor/. It reads a
file with a system of ODEs and it outputs a time-stepper for it (in C/C++), with automatic
selection of order and step size. Several extended precision arithmetics are supported.

There is also a public domain package for automatic differentiation, ADOL-C, included as an
option in many Linux distributions (home page: http://www.math.tu-dresden.de/~adol-c/).
It facilitates the evaluation of first and higher derivatives of vector functions that are defined by
computer programs written in C or C++.

There are several papers that focus on computer implementations of the Taylor method in
different contexts; see, for instance, [BWZ70], [CC82], [CC94] and [Hoe01]. A good survey is
[NJC99] (see also [Cor95]).

1.2.1 Automatic differentiation

As it has been mentioned before, automatic differentiation is a recursive procedure to compute
the value of the derivatives of certain functions at a given point (relevant references are [Moo66,
Ral81, Gri00]). The functions considered are those that can be obtained by sum, product,
quotient, and composition of elementary functions (elementary functions include polynomials,
trigonometric functions, real powers, exponentials and logarithms). We note that the vector
fields used in Celestial Mechanics and Astrodynamics belong to this category. Other functions
can be considered as elementary if they are defined as the solution of some differential equation
whose coefficients are previously known to be elementary functions. A notorious case of a non-
elementary function is Γ(x). A celebrated theorem of Hölder states that Γ does not satisfy any
algebraic differential equation whose coefficients are rational functions.

Assume that a is a real function of a real variable t.

Definition 1.2.1 The normalised j-th derivative of a at the point t is

a[j](t) =
1

j!
a(j)(t).

Assume now that a(t) = F (b(t), c(t)) and that we know the values b[j](t) and c[j](t), j =
0, . . . , n, for a given t. The next proposition gives the n-th derivative of a at t for some functions
F .

Proposition 1.2.1 If the functions b and c are of class Cn, and α ∈ R \ {0}, we have

1. If a(t) = b(t) ± c(t), then a[n](t) = b[n](t) ± c[n](t).

2. If a(t) = b(t)c(t), then a[n](t) =

n
∑

j=0

b[n−j](t)c[j](t).

3. If a(t) =
b(t)

c(t)
, then a[n](t) =

1

c[0](t)



b[n](t) −
n

∑

j=1

c[j](t)a[n−j](t)



.

4. If a(t) = b(t)α, then a[n](t) =
1

nb[0](t)

n−1
∑

j=0

((n − j)α − j) b[n−j](t)a[j](t).

5. If a(t) = eb(t), then a[n](t) =
1

n

n−1
∑

j=0

(n− j) a[j](t)b[n−j](t).
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6. If a(t) = ln b(t), then a[n](t) =
1

b[0](t)



b[n](t) − 1

n

n−1
∑

j=1

(n− j)b[j](t)a[n−j](t)



.

7. If a(t) = cos c(t) and b(t) = sin c(t), then

a[n](t) = − 1

n

n
∑

j=1

jb[n−j](t)c[j](t), b[n](t) =
1

n

n
∑

j=1

ja[n−j](t)c[j](t).

It is possible to derive similar formulas for other functions, like inverse trigonometric func-
tions.

We note that the number of arithmetic operations to evaluate the normalised derivatives of
a function up to order n is O(n2). We will come back to this point later on.

As an example, we can apply them to the Van der Pol equation,

x′ = y,
y′ = (1 − x2)y − x.

}

(1.3)

To this end we decompose the right-hand side of these equations in a sequence of simple opera-
tions:

u1 = x,
u2 = y,
u3 = u1u1,
u4 = 1 − u3,
u5 = u4u2,
u6 = u5 − u1,
x′ = u2,
y′ = u6.















































(1.4)

Then, we can apply the formulas given in Proposition 1.2.1 (items 1 and 2) to each of the

equations in (1.4) to derive recursive formulas for u
[n]
j , j = 1, . . . , 6,

u
[n]
1 (t) = x[n](t),

u
[n]
2 (t) = y[n](t),

u
[n]
3 (t) =

n
∑

i=0

u
[n−i]
1 (t)u

[i]
1 (t),

u
[n]
4 (t) = −u[n]

3 (t), n > 0

u
[n]
5 (t) =

n
∑

i=0

u
[n−i]
4 (t)u

[i]
2 (t),

u
[n]
6 (t) = u

[n]
5 (t) − u

[n]
1 (t),

x[n+1](t) =
1

n+ 1
u

[n]
2 (t),

y[n+1](t) =
1

n+ 1
u

[n]
6 (t).

The factor 1
n+1 in the last two formulas is because we are computing normalised derivatives.

Then, we can apply recursively these formulas for n = 0, 1, . . ., up to a suitable degree p, to
obtain the jet of normalised derivatives for the solution at a given point of the ODE. Note that
is not necessary to select the value of p in advance.
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1.2.2 Estimation of order and step size

There are several possibilities to estimate an order and step size for the Taylor method. When
Taylor is used in a non-validated way, these estimates come from the asymptotic behaviour of
the error. The following result can be found in [Sim01].

Proposition 1.2.2 Assume that the function z 7→ x(tm + z) is analytic on a disk of radius ρm.
Let Am be a positive constant such that

|x[j]
m | ≤ Am

ρj
m

, ∀ j ∈ N, (1.5)

and assume that the dominant part in the computational cost is proportional to the square of the
order up to which the Taylor series is computed. Then, if the required accuracy ε tends to 0, the
values of hm (local step) and pm (local order) that give the required accuracy and minimise the
global number of operations tend to

hm =
ρm

e2
and pm = −1

2
ln

(

ε

Am

)

− 1. (1.6)

Note that the optimal step size does not depend on the level of accuracy. The optimal order
is, in fact, the order that guarantees the required precision once the step size has been selected.

It is important to note that the values (1.6) are optimal only when the bound (1.5) cannot
be improved. If the value Am can be reduced –or if the function x(t) is entire– the previous
values are not optimal in the sense that a larger hm and/or a smaller pm could still deliver the
required accuracy.

1.2.3 Validated integration

Validated methods are numerical methods based on an “exact” arithmetic, combined with a
rigorous estimate of the truncation errors. Hence, the results (usually values with bounds on
the error) are rigorous. For an “exact” arithmetic we mean a validated floating point arithmetic,
which is usually an interval arithmetic, that guarantees that the result is between the given
bounds (see Section 1.3).

One of the advantages of validated methods is that they produce rigorous results, that can
be used to derive computer-assisted proofs of theorems (see, for instance, [Lan82, EKW84]). If
the computation requires the numerical integration of a non-stiff ODE, then Taylor method is
probably the best choice to have a rigorous estimation of the error.

In these cases, it is quite common to use a high precision arithmetic to check the conditions
needed to derive the computer assisted proof. For instance, [KS07] shows the linear stability
of the Figure Eight solution of the 3-body problem, by using an extended precision arithmetic
(100 digits) and computing this orbit and its first variationals up to a very high accuracy. This
allows for a very precise validated integration which, in turn, allows to complete the proof.

The situation considered in this work is of a different nature. We are focusing on space
applications (propagating the motion of an asteroid or a spacecraft), and this means that there
is an error in the data that cannot be reduced by extending the accuracy of the arithmetic.
Because of the relatively large size of these errors, it will be enough to use interval arithmetics
based on the double precision of the computer.

1.3 Interval arithmetic

Interval arithmetic was first introduced by E. Moore [Moo66] in 1966. In this book the foun-
dations of interval arithmetic where laid. In the past years, it has been developed being now
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a very important tool for the computation of rigorous bounds for many problems in numerical
analysis. See, for instance, [Zgl07] for a description of different applications.

We define the set of intervals on the real line as:

IR = {[a] = [al, au] | al, au ∈ R, al ≤ au}.

An interval number [a] is the set of real numbers x that satisfy al ≤ x ≤ au. If al = au we
say that we have a point interval and if al = −au we say that we have a symmetric interval.
Two intervals [a], [b] are equal iff al = bl and au = bu.

We can define the classical inclusions as follows, we will say that [a] ⊆ [b] iff al ≤ bl ≤ bu ≤ au.
And we can also define the partial ordering as [a] < [b] iff au < bl.

We can also define the following quantities:

• w([a]) = au − al is the width of the interval [a].

• m([a]) = (al + au)/2 is the mid point of the interval [a].

• |[a]| = max(|al|, |au|) is the magnitude of the interval [a].

1.3.1 Real interval arithmetic

The interval arithmetic is an extension of the real arithmetic. We will first assume that the
end points of the intervals can be computed in an exact way. Further on we will discuss which
modifications must be done so that the round-off errors are taken into account.

Let [a] and [b] ∈ IR and ◦ ∈ {+,−, ∗, /} be one of the arithmetic operations. We define the
arithmetic operation on intervals as:

[a] ◦ [b] = {x ◦ y | x ∈ [a], y ∈ [b]}, (1.7)

where, for ◦ = / the operation is not defined if 0 ∈ [b]. It is immediate to see that:

• [a] + [b] = [al + bl, au + bu],

• [a] − [b] = [al − bu, au − bl],

• [a] ∗ [b] = [min(albl, albu, aubl, aubu),max(albl, albu, aubl, aubu)],

• [a]/[b] = [al, au] ∗ [1/bu, 1/bl], if bl > 0.

Properties:

1. The interval addition and multiplication are both associative and commutative, i.e. if
[a], [b] and [c] ∈ IR, then:

[a] + ([b] + [c]) = ([a] + [b]) + [c],

[a] + [b] = [b] + [a],

[a] ∗ ([b] ∗ [c]) = ([a] ∗ [b]) ∗ [c],

[a] ∗ [b] = [b] ∗ [a].

2. The real numbers 0 and 1 are identities for the interval addition and multiplication re-
spectively, i.e. if [a] is an interval then:

0 + [a] = [a] + 0 = [a],

1 ∗ [a] = [a] ∗ 1 = [a].
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3. The inverse elements for addition and for multiplication only exist in the degenerate case,
i.e. for point intervals.

4. The arithmetic operations are monotonic inclusions, i.e. if [a1] ⊂ [a2] and [b1] ⊂ [b2] then:

[a1] ◦ [b1] ⊂ [a2] ◦ [b2], where 0 /∈ [b2] if ◦ = /.

5. The distributive law does not always hold for interval arithmetic, but we do have the sub
distributive law, i.e. if [a], [b] and [c] ∈ IR, then

[a] ∗ ([b] + [c]) ⊆ [a] ∗ [b] + [a] ∗ [c].

It can be seen that the distributive law holds if [b] ∗ [c] ≥ 0, if [a] is a point interval or if
both [b] and [c] are symmetric.

We will refer to an interval vector and interval matrix as a vector or matrix where all their
components are intervals. And we will define the set of n-dimensional real interval vectors as
IR

n and the set of n×m-dimensional real interval matrices as IR
n×m. The interval arithmetic

operations involving interval vectors and interval matrices are defined as in the scalar case but
substituting the scalars by intervals and using the definitions seen above. Further properties
of the interval arithmetic on interval vectors and matrices and the extension of the interval
arithmetic to other functions can be seen in [Moo66, Moo79, AH83].

1.3.2 Rounded interval arithmetic

The interest in interval arithmetic has aroused, specially due to the limitations of the represen-
tation of floating point numbers on a computer. Every time that a real number x is stored on a
computer or that computations with such numbers are made, round-off errors occur. Rounded
interval arithmetic provides a tool to bound the roundoff error in an automatic way.

Now, instead of representing the real number x by a machine number, it will be represented
by an interval [x] = [xH, xN], where xH is the negative rounding of x and xN is the positive
rounding of x. Then we can use the real interval arithmetic described before but rounding
positive on the right end points and rounding negative on the left end points, i.e. if [a] = [al, au]
and [b] = [bl, bu] are intervals, with the endpoints previously rounded positive and negative as
needed, and ◦ = {+,−, ∗, /}, then:

• [a] + [b] = [(al + bl)H, (au + bu)N],

• [a] − [b] = [(al − bu)H, (au − bl)N],

• [a] ∗ [b] = [min(albl, albu, aubl, aubu)H,max(albl, albu, aubl, aubu)N],

• [a]/[b] = [al, au] ∗ [1/bu, 1/bl], if bl > 0.

On our validated computations we will use a rounded interval arithmetic instead of the real
interval arithmetic. In this way, after all the computations, we will have an interval that contains
the exact result.

1.3.3 The dependency problem and the wrapping effect

As it was observed by E. Moore [Moo66], interval arithmetic is sometimes affected by overesti-
mation due to the dependency problem, which happens as interval arithmetic cannot detect the
different occurrences on the same variable.
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Figure 1.1: The fields in a double variable, according to the standard IEEE 754

For instance, x− x = 0 for all x ∈ [1, 2], but using interval arithmetic we have that [1, 2] −
[1, 2] = [−1, 1]. It is true that the true solution [0, 0] is contained in [−1, 1], but we have
a big overestimation. Another example would be x2 − x for x ∈ [0, 1]. It can be seen that
for all x ∈ [0, 1], (x2 − x) ∈ [−1/4, 0]. Note that using interval arithmetic we have [0, 1] ∗
[0, 1] − [0, 1] = [−1, 1]. Notice that x2 − x = x(x− 1) and if we evaluate this second expression:
[0, 1]∗([0, 1]−1) = [−1, 0], we get a better estimation of the real interval. So here we can see two
clear examples of the dependency on the order of the operations that occur in interval arithmetic.
This is a situation that must be taken into account in order to get accurate estimations of the
real result. A correct estimate of f([a, b]) for continuous functions would require to find extrema
of f on [a, b]. In general, this cannot be achieved quickly, specially in the case of several variables.
Anyway, subdivision algorithms can improve the result. In the x 7→ x2 −x example, subdivision
in 10 equal parts gives the result [−0.35, 0.1].

Another source of error in interval arithmetics is the wrapping effect. Let us consider the

function: f(x, y) =
√

2
2 (x + y, y − x). The image of the square: [0,

√
2] × [0,

√
2] is the rotated

square of corners (0, 0), (1,−1), (2, 0) and (1, 1), but interval arithmetic gives [0, 2] × [−1, 1], a
square that doubles the size.

These and other examples have been studied by E. Moore [Moo66] and other authors, for
instance [NJ01]. In this project, we will describe techniques that can be developed in order to
deal with these two effects in an accurate way, and to get good approximations of the real result.

1.3.4 Software implementations for interval arithmetic

There are several possibilities to construct an interval arithmetic. Usually, an interval arithmetic
is defined as a structure with two members, the upper and the lower bounds of the interval.
These members are floating point types. Depending on the considered application, they can be
double precision numbers, or to have extended precision.

In this work, due to the fairy large amount of error in the initial data, and to the relatively
moderate number of floating point operations in the experiments done so far, we have chosen
to use an arithmetic based on the standard double precision of the computer: using extended
arithmetic makes the programs slower without any significant gain in accuracy.

There are several libraries in the public domain for interval arithmetic. For a comprehensive
list, see http://www.cs.utep.edu/interval-comp/intsoft.html. As it has been mentioned
above, we will only focus on arithmetics based on the standard double precision. In the next
sections we discuss several possibilities to implement such arithmetic.

Accessing the internal representation

There is a widely accepted standard to store floating point numbers, the IEEE Standard for
Binary Floating-Point Arithmetic (IEEE 754). In short, floating point numbers are stored using
one bit for the sign, 11 bits for the exponent, and 52 bits for the mantissa (for a discussion see,
for instance, [Gol91]). This has been represented schematically in Figure 1.1
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The idea is, after each arithmetic operation, to access the bit representation of the result and
to add (or subtract) 1 to the less significant bit to produce an enclosure for the true result. This
technique has been used in the libraries FI LIB (ANSI C) and FILIB++ (C++), freely accessible
from http://www.math.uni-wuppertal.de/~xsc/software/filib.html. More details can be
found in [LTWVG+06].

Using the rounding modes of the processor

A second possibility is provided by the rounding modes specified by the standard IEEE 754:
round to nearest (the default), round toward 0, round toward +∞, and round toward −∞. For
instance, if we are adding two intervals it is enough to add the lower bounds with rounding
toward −∞ and the upper bounds with rounding toward +∞.

The GCC compiler on Intel platforms provides library functions to access and modify the
rounding modes of the processor. We have implemented a first version of an interval arithmetic
based on the use of these rounding modes. The main drawback is that every time the rounding
mode is altered, the floating point pipeline is restarted which means a considerable loss of
performance of the floating point unit.

Correcting the output of the operations

We have considered a third possibility: assuming that the result of each arithmetic operation is
correct up to rounding error, we can modify the result of the operation up and down to obtain an
enclosure for the true result (as it is done in the FI LIB and FILIB++ libraries). The difference is
that, instead of accessing the bits of the mantissa of the floating point variable (which is costly
in time), we multiply by a correcting factor. For instance, if a = b+ c > 0, we can construct the
upper and lower bounds by doing a = a(1 − δ) and a = a(1 + ε), for suitable positive constants
ε and δ. It is clear that ε and δ have to be as small as possible to minimise the growing of the
size of the intervals, but if they are too small the rounding of the computer arithmetic makes
that a = a = a, and the result will be wrong.

We have selected the values ε = 2−52 (the so-called machine epsilon) and δ = 2−53 (half of
the machine epsilon). The reason for using this δ comes from the way the subtraction (and the
subsequent rounding) is done.

In the implementation (in C++) we have added a flag to optionally ask for verification of
the result after each operation. This verification consists in checking the condition a < a < a,
which means that we have obtained an enclosure for the result. A particular point that has to
be considered here is the effect of the extra digits that the Intel CPU has in its floating point
registers (80 bits each). Think of the following situation:

a) the code generated by the compiler is keeping the variables in these extra precision registers
so that the relation a < a < a is verified inside those registers;

b) once these numbers are stored in memory (only 64 bits), the roundoff makes that a = a
or a = a.

This checking is done by accessing the bit representation of the floating point number (8 bytes),
using a union type variable to overlap the number with two integer variables (4 bytes each). In
this way, the checking is done in a very fast way: the check slows down the arithmetic by a 30%.
We have done this check on a set of 1010 randomly chosen double precision numbers and the
condition has been satisfied in all the cases. A second test has been to use the flag -ffloat-store
of the GCC compiler when compiling the code that checks for the condition a < a < a: this flag
forces that, after each arithmetic operation, the result is stored in memory (64 bits). In this
way, we have ruled out the previous effect when checking the previous inequalities. This second
test slows down a lot the arithmetic.
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Comparisons

We have done several comparison bewtween these arithmetics. We only explain one of the tests,
which is enough to give an idea of how they compare. This test is the scalar product of two
arrays of interval type, of 1000 components each. To have a measurable time, this product
is done 106 times. As a reference, this test takes about 4.4 seconds using the double precision
arithmetic of the computer (a Linux workstation with a 3.2GHz Intel Xeon CPU). The same
test using our library takes 24.8 seconds, and using FI LIB it takes 108.4 seconds. For this test
we have compiled the FI LIB library with the -O3 option, although the makefile that comes with
the source of the library does not use any optimization flag.

Other options

There are other options to construct a fast interval arithmetic. For instance, instead of storing
the upper and lower bountd for the interval, we can store the central point and the radius. Then,
the operations are done using the central point of the intervals (using the standard floating point
arithmetic) and the resulting radius is modified to account for the roundoff of the operation.
We have not explored this possibility in this work, but it is an interesting option that we plan
to consider in the future.
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Chapter 2

Applications

The aim of this work is to develop validated methods that can be applied to space related
problems. We have chosen two particular examples where we will apply these methods. The
first one is the propagation of the orbit of a Near Earth Object (NEO) and the second one is
a low thrust transfer of a probe from a neighbourhood of the Earth to a neighbourhood of the
Moon. In both problems we have an uncertainty in the initial condition and we want to know
the effect of these uncertainties after a long time. They also require a long time integration that
must be done in an accurate way. In this section, we will briefly describe these two applications.

2.1 The two-body problem

A first approximation of the motion of an asteroid orbiting around the Sun or of a probe that
orbits around the Earth is the well-known two-body problem (details can be found in almost
any textbook on Classical or Celestial Mechanics, e.g. [Mou14, Pol76, Dan88]). We will use this
problem as a toy model to test the validated techniques that have been developed. This is done
due to the simplicity of this model and because we have a complete knowledge of the solutions
of the problem.

The two-body problem describes the motion of two point masses X1 and X2 ∈ R
3 of masses

m1 and m2, respectively, that are evolving under their mutual gravitational attraction. This
problem can be reformulated by taking r = X1 −X2, namely,

r̈ = −µ r

‖r‖3
, (2.1)

where µ = G(m1 +m2) is the mass parameter and G is the gravitational constant.
The above system is super integrable, that is, it has more first integrals than degrees of

freedom. In particular, the first integral of the energy can be defined as

E =
v2

2
− µ

r
, (2.2)

where v represents the velocity of the second body with respect to the first one.
In our tests, we will consider that one of the particles is massless. This is the most natural

assumption when one considers the motion of an asteroid around the Sun or of a low-thrust
probe in the Earth-Moon system. We notice that this hypothesis reduces the problem to a
central vector field in the asteroid case.

2.1.1 Local behaviour around an elliptic orbit

We are interested in the numerical propagation of an uncertainty in position and, as first ap-
proximation, Kepler’s third law gives how such error is propagated.
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We recall that this reads

n2a3 = µ, (2.3)

where n and a are, respectively, the mean motion and the semi-major axis associated with a
given orbit. Roughly speaking, if we consider two orbits characterised by different values of a,
say a1 > a2, then Eq. (2.3) yields T1 > T2, where Ti = 2π/ni (i = 1, 2) is the corresponding
period. This means that on the first orbit a particle will move slower than on the second one.

We can apply the above argument to predict the behaviour of a set of initial conditions which
are displaced one from the other in position. This displacement results in an uncertainty on
the semi–major axis, say ∆a, which makes the mean motion n to vary in a quantity ∆n. More
precisely, expanding Eq. (2.3) up to first order, we have

2na3∆n+ 3a2n2∆a = 0. (2.4)

We can always rescale the variables of the problem in such a way that µ = 1, n0 = 1 (i.e.
T0 = 2π) and a0 = 1, where the subindex 0 refers to a nominal initial condition. In this way,
any initial condition associated with ai = a0 + ∆a = 1 + ∆a will be characterised by

ni = n0 + ∆n = 1 − 3

2
∆a.

After m revolutions of the nominal orbit, the others will be delayed by an angle ∆ψ given by

∆ψ = −3

2
mT0∆a = −3mπ∆a ≈ −10m∆a.

As a consequence, if we integrate numerically a random set of initial conditions, we will see the
box stretching out along the orbit, that is, at a given time different points displaced one ahead
the other.

Let us consider two vectors, one tangent to the orbit and the other orthogonal to it at the
initial time. After m revolutions, the angle α between them will have changed according to

tan (α) =
∆a

∆ψ
≈ 1

10m
.

For m large enough, we have

α ≈ 1

10m
.

Moreover, the stretching of the box behaves linearly, in a first approximation, with respect
to the time t. This can be proved noting that in action-angle variables, I and ϕ, the angle ϕ
evolves linearly with time, depending only on the constant action. Since this change of variables
is a diffeomorphism, the same behaviour is observed approximately in Cartesian coordinates if
we approximate locally the diffeomorphism by its differential map.

2.2 Solar System models

As we want to describe the motion of an object in space, we first need to have a good model
of the motion of the Solar System. It is well known that the motion of the planets can be
approximated by the N -body problem.
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Body/Planet G ·m
Mercury 0.4912547451450812 × 10−10

Venus 0.7243452486162703 × 10−9

Earth 8.8876923901135099 × 10−10

Mars 0.9549535105779258 × 10−10

Jupiter 0.2825345909524226 × 10−6

Saturn 0.8459715185680659 × 10−7

Uranus 0.1292024916781969 × 10−7

Neptune 0.1524358900784276 × 10−7

Pluto 0.2188699765425970 × 10−11

Moon 1.0931895659898909 × 10−11

Sun 0.2959122082855911 × 10−3

Table 2.1: Values of G ·m in AU3/day2 for the bodies considered.

2.2.1 The N-body problem

We suppose that we have N bodies in space that are evolving under the effect of their mutual
gravitational attraction. This problem has been highly studied (see [Mou14, Dan88, MH92]).
In our particular integrations we have taken into account the following bodies: Sun, Mercury,
Venus, Earth, Moon, Mars, Jupiter, Saturn, Neptune, Uranus and Pluto. As we will describe
objects that have close approaches with the Earth’s orbit, the gravitational effect due to the
Moon must be considered.

The equations of motion are:

Ẍi =

11
∑

j=1,j 6=i

Gmj(Xj −Xi)

r3ij
, for i = 1, . . . , 11 (2.5)

where X1, . . . ,X11 ∈ R
3 are the position of the 11 bodies, m1, . . . ,m11 are their masses,

rij is the distances between the bodies Xi and Xj (i, j = 1, . . . , 11) and G = 6.67259 ×
10−11m3/(s2kg) is the gravitational constant. In this notation, each body is related to a num-
ber as follows: 1=Mercury, 2=Venus, 3=Earth, 4=Mars, 5=Jupiter System, 6=Saturn System,
7=Uranus System, 8=Neptune System, 9=Pluto, 10=Moon and 11=Sun.

We have taken as units of mass, distance and time: 1 kg, 1 AU and 1 day, respectively. In
Table 2.1, we can see the values of G ·m in these units. This and other astronomical constants
can be found in [Sei92] or [JPL].

We must mention that, to obtain a full understanding of the dynamics of a body in the Solar
System, other effects should be taken into account. Among them, the relativistic correction,
the forces due to other natural satellites and asteroids, the J2 (and higher order harmonics of
the potential) effect of the Earth and other bodies. However, these terms can be considered
negligible for our purpose. In the next section we will see some tests that have been made to
verify the accuracy of our model.

2.2.2 The JPL model

The JPL Solar System Ephemerides are computer files that store information to derive the
positions of Sun, Earth, Moon and the planets in three-dimensional, Cartesian coordinates.

In this report we have used the ephemerides DE405 of Caltech’s Jet Propulsion Laboratory
(JPL). They have been obtained from a least-square fitting of previously existing ephemerides to
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the available observation data, followed by a numerical integration of a suitable set of equations
that describe the motion of the Solar system.

A detailed description about how these ephemerides are obtained can be found in [SW]. In
short, we will only mention that the equations of motion used for the creation of DE405 include
contributions from: (a) point mass interactions among the Moon, planets, and Sun; (b) general
relativity (isotropic, parametrised post-Newtonian); (c) Newtonian perturbations of selected
asteroids; (d) action upon the figure of the Earth from the Moon and Sun; (e) action upon the
figure of the Moon from the Earth and Sun; (f) physical libration of the Moon, modelled as a
solid body with tidal and rotational distortion, including both elastic and dissipational effects,
(g) the effect upon the Moon’s motion caused by tides raised upon the Earth by the Moon and
Sun, and (h) the perturbations of 300 asteroids upon the motions of Mars, the Earth, and the
Moon.

The numerical integrations were carried out using a variable step-size, variable order Adams
method. The result of the integration is stored in form of interpolatory data (Chebyshev poly-
nomials, each block of them covers an interval of 32 days). The DE405 ephemerides is defined
from Dec 9, 1599 to Feb 1, 2200 (there are other ephemerides covering longer time spans, with
a slightly lower accuracy).

The internal reference system is the so-called J2000 coordinates. This is a Cartesian frame,
with origin at the Solar system barycentre, theXY plane is parallel to the mean Earth Equatorial
plane, the Z axis is orthogonal to this plane, the X axis points to the vernal point and the Y
axis is selected to have a positive oriented reference system. All these references are taken at
2000.0 (Jan 1st, 2000, at 12:00 UT).

For numerical integrations, we access the file DE405 to obtain the positions of the bodies
of the Solar system. We have coded a few routines to interface our programs with the JPL
programs for the ephemerides, in particular we have added the option of changing from the
equatorial coordinates of the ephemeris to ecliptic coordinates, which are more natural to deal
with asteroids.

To obtain initial conditions for Apophis, we have used [GBO+08] and the JPL Horizons
system ([JPL]). The Horizons system provides a very simple and convenient web interface
method to access for the initial conditions of an asteroid (or any body in the Solar system, in a
variety of coordinates).

2.3 The orbit of a Near Earth Object (NEO)

A Near Earth Object is an asteroid, a comet or a meteoroid whose orbit can get significantly close
to the Earth’s one, ranging from zero (collision) to a few Earth–Moon distances. In particular,
the perihelion distance can assume values less than 1.3 AU.

To model the motion of a NEO we will take a restricted (N+1)-body problem. As before, we
will suppose that we have N bodies, the 9 planets, Moon and Sun (N = 11), that are evolving
under their mutual gravitational attraction and that we have a massless particle, the NEO,
which is affected by the gravitational attraction of the N bodies but that has no gravitational
effect on them. The equations of motion are:

Ẍi =
11
∑

j=1,j 6=i

Gmj(Xj −Xi)

r3ji
, for i = 1, . . . , 11

Ẍa =
11
∑

j=1

Gmj(Xj −Xa)

r3ja
,

(2.6)
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where again X1, . . . ,X11 ∈ R
3 are the position of the 11 bodies, m1, . . . ,m11 are their masses,

Xa ∈ R
3 is the position of the asteroid, rij denotes the distance between the main body i and

the main body j (i, j = 1, . . . , 11) and ria the one between the major bodies i (i = 1, . . . , 11)
and the asteroid. Just mention that we have taken the same units of mass, distance and time
as before.

In our simulations we have taken the asteroid (99942) Apophis. This asteroid was discovered
in 2004 when it presented a high probability of a close approach to the Earth and a possible
collision with it. The trajectory of this asteroid has recently been studied by various research
groups (see [GBO+08] and [MCS+05]). Information about the physical data, close passages of
Apophis with the Earth, among others, can also be found in [NEO]. It seems that Apophis will
exhibit a close approach with the Earth on Friday 13 April 2029 and another in 2037. For this
reason, it is necessary to have a rigorous methodology to clarify if a collision might take place.

2.4 The transfer of a probe using low-thrust

The second example considered is the transfer of a spacecraft from the Earth to the Moon
using a low-thrust propulsion system. This problem can be approached in several ways. In our
formulation, we will consider that the probe is accelerated (or decelerated) by a constant low
thrust in a given direction.

Also in this case, the model adopted is a restricted (N + 1)-body problem where now the
massless particle will be the low-thrust probe and the N bodies will be the 11 bodies already
mentioned. The probe will be affected by the gravitational effect of the N bodies and by an
extra force due to the thruster. Under these assumptions, the equations are:

Ẍi =

11
∑

j=1,j 6=i

Gmj(Xj −Xi)

r3ji
, for i = 1, . . . , 11

Ẍsat =
11
∑

j=1

Gmj(Xj −Xsat)

r3jsat

+ FT
Vsat − Vc

‖Vsat − Vc‖
,

(2.7)

where X1, . . . ,X11 ∈ R
3 are the position of the 11 bodies, m1, . . . ,m11 are the masses of these

bodies and rij (i, j = 1, . . . , 11) their mutual distances, Xsat, Vsat ∈ R
3 are, respectively, the

position and velocity of our probe, Vc ∈ R
3 is the velocity of the body with respect to which we

are accelerating or braking and FT is the thrust magnitude.
We will consider two strategies to build up the mission. In the first case, the probe will

depart from a circular orbit at an altitude of 650 km around the Earth and it will be accelerated
in order to gain energy with respect to the Earth and thus to move away from it. When the
probe will reach a region where the Moon’s influence becomes significant, approximately 67000
km from the Moon [Ron05], we will change the direction of the thruster in order to lose energy
with respect to the Moon and to come closer to it. Finally, we will turn the thruster off when
the distance from the probe to the Moon is less than RMoon + 1000 km, where RMoon = 1737.5
km is the Moon’s radius [Ron05]. This can be resumed as:

Stage 1: FT > 0 and Vc = VEarth.
Stage 2: FT < 0 and Vc = VMoon.
Stage 3: FT = 0.

In the above procedure, the most crucial point concerns the instant of thrust direction’s change.
Because of this, we will also look at a different approach, which takes advantage of the

dynamics associated with the L1 point. It is well known that in the Circular Restricted Three–
Body Problem (CR3BP), there exist five equilibrium points, Li (i = 1, . . . , 5) and that L1 is the
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one which lies between the primaries on the axis joining them. Because of its unstable character,
there exist stable and unstable manifolds associated with L1. Departing from L1 forwards in
time on a trajectory belonging to the unstable manifold, it is possible to get to the Moon or to
an orbit close to the Earth, depending on the branch of the manifold chosen. The same result
can be obtained by means of the stable manifold going backwards in time.

From these considerations, the second idea applied is to construct a trajectory which passes
right through L1 with null velocity and to carry out the transition between acceleration and
braking at that moment. This is, we will consider two trajectories starting from L1, one moving
away from it forwards in time with FT < 0, the other approaching the Earth backwards in time
with FT > 0. This can be summarised as

L1-Earth leg: FT > 0, Vc = VEarth, t < 0,
L1-Moon leg: FT < 0, Vc = VMoon, t > 0.

However, in the real problem L1 does not exist, since it is approximately replaced by a
quasi–periodic curve whose properties depend on the model adopted ([JV97]). We can translate
the above design, by considering a point at the same distance from the Earth in physical units
moon-ward side. In the inertial reference frame, this point is no longer characterised by null
velocity, but it moves with the same angular velocity as the Moon. This means

VL1
= (VMoon − VEarth)

rEL

rEM
,

where rEL is the distance between Earth and the fictitious L1 and rEM is the distance between
Earth and Moon. In this case, we will consider as initial time t = JD2454607.1034722, which
corresponds to 20 May 2008 14.29h, when the Moon will be at the apogee with respect to the
Earth.

As final remark, according to the data offered by the SMART–1 mission (see [SMA]), we
will set the low-thrust magnitude as 5× 10−6 AU/day2 (about 0.1 mm/s2) in both simulations.
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Chapter 3

Non validated methods

As a previous step to the so-called validated methods we use non-validated methods with two
main purposes: first to get familiarised with the orbits of the problems we are going to deal and
second to get an idea of what should expected to obtain when using validated methods.

Within this framework, we have implemented a non-validated Taylor method for ODEs
adapted to each of the problems we have considered. The main details of the implementation
are commented below.

3.1 The N-body integrator

As it has been mentioned in Section 2, we have modelled the motion of the Solar System by the
N -body problem with N = 11, where each body represents one of the 9 planets, the Sun or the
Moon.

We have coded a Taylor integrator with variable step size and arbitrary order for the jet
with respect to time. The user can modify the number of main bodies to consider N , the local
tolerance of each step and the order of the method. In most of our computations we have used
a local tolerance of ǫ = 10−20 and order p = 28.

Remark. According to Proposition 1.2.2 of Chapter 1, assuming the computational effort to
be quadratic in p, the optimal order is pm ≈ −1

2 log ǫ ([Sim01, JZ05]), which gives pm = 23 if
ǫ = 10−20. If the computational effort is assumed to be linear, then pm ≈ − log ǫ. In our case
we must consider both effects, c1(p + 1)2 + c2(p + 1), then one can see that the optimal order
for ǫ = 10−20 is pm = 28.

We must mention that for the numerical integration of (2.5) we have taken into account the
symmetries of the problem and other properties in order to save computations and speed up the
integrator. It is a known fact that the N -body problem conserves the centre of mass. We have
fixed the centre of mass at the origin of coordinates, and therefore we compute the position and
velocity of the Sun from the position of the other planets. With this we avoid to integrate the
Sun’s orbit and so save some computational time. Moreover, let us notice that the force exerted
from the body Xi to Xj is the same in magnitude but with the opposite direction than the one
exerted from the body Xj to Xi. We have also taken this into consideration in order to reduce
the number of operations at each integration step.

3.1.1 Comparing the results with JPL 405 ephemerides

In order to verify the results obtained by our Taylor integrator, we have compared the results
of integrating the Solar System using our integrator and the JPL 405 ephemerides.
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Planet |xp − xjpl| |yp − yjpl| |zp − zjpl|
Mercury 0.81012770E-04 0.72433510E-04 0.13317051E-04
Venus 0.34691978E-04 0.65331954E-04 0.28509546E-08
Earth 0.28927662E-05 0.55188831E-05 0.99721224E-07
Mars 0.20693680E-06 0.28612678E-07 0.22556628E-08

Jupiter 0.62007402E-06 0.17336213E-05 0.36908137E-06
Saturn 0.37777570E-05 0.79455660E-05 0.30570073E-06
Uranus 0.10436420E-05 0.66091594E-06 0.14739934E-08
Neptune 0.78729302E-08 0.48713875E-08 0.17239279E-09
Pluto 0.81168067E-11 0.46916092E-10 0.70336794E-12
Moon 0.89781622E-10 0.90764759E-10 0.17574056E-10

Table 3.1: Difference between the planets position given by our Taylor integrator and by the JPL
ephemerides after ≈ 200 years (Final Day: JD2524466.5). Units AU.

Planet |vxp − vxjpl| |vyp − vyjpl| |vzp − vzjpl|
Mercury 0.23435797E-04 0.11450443E-03 0.29769501E-05
Venus 0.27469289E-04 0.22077168E-04 0.11440552E-05
Earth 0.11208050E-05 0.20475347E-05 0.82068533E-07
Mars 0.31470357E-07 0.19719165E-07 0.18005013E-08

Jupiter 0.20419279E-04 0.87025726E-04 0.35358497E-05
Saturn 0.31999577E-05 0.61769777E-06 0.17548453E-06
Uranus 0.15234875E-06 0.28771651E-06 0.21109683E-08
Neptune 0.10852279E-08 0.82065225E-09 0.30393440E-10
Pluto 0.86420376E-11 0.31223743E-11 0.46450213E-12
Moon 0.61859111E-05 0.27738011E-05 0.13349501E-06

Table 3.2: Difference between the planets velocity given by our Taylor integrator and by the JPL
ephemerides after ≈ 200 years (Final Day: JD2524466.5). Units AU/day.

We must mention that the JPL coordinates are given assuming as origin of the reference
frame the Solar System Barycentre. In our code, we assume that the origin is set at the centre
of masses of the N -body system and use it to compute the Sun’s position. As we are neglecting
other bodies this centre is different from the complete Solar System Barycentre. So in order to
have good initial conditions we must, before starting the simulations, recompute the centre of
mass of our system and make a translation in the initial conditions, to place our centre of mass
at the origin.

We have made simulations integrating the 11 bodies up to approximately 600 years. In
Tables 3.1 and 3.2, we can see the difference in position and velocity, respectively, after 200
years.

Looking at the discrepancy on the planets coordinates, one source of error resides in the
relativistic correction which should be applied to the Mercury’s orbit. In Figure 3.1, we can see
as a function of time the difference between the Mercury’s true longitude taking the data from
our integration and the data obtained by JPL. In average, the difference ∆ω, is around 0.000208
radians ≈ 42.972′′ per century.

This quantity is in agreement with the precession of the perihelion of Mercury, due to the
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Figure 3.1: Perihelion precession of Mercury obtained integrating the N -bodies problem (N = 11).
The whole interval of time considered is of 600 years, we can see that in average ∆ω ∼ 0.000208
rad per century.

relativistic effects. After one revolution, that is, 0.2408467 years, it can be estimated as

∆ω =
6πGMSun

a(1 − e2)c2
rad, (3.1)

where a = 57909176000 m and e = 0.20563069 are, respectively, Mercury’s semi-major axis and
eccentricity, c = 299792458 m/s is the speed of light and GMSun = 1.32712440018×1020 m3/s2.
This is, ∆ω = 42.978′′ per century.

Another considerable effect which has been neglected is the J2 Earth’s gravitational poten-
tial harmonic. Indeed, the non-sphericity of the Earth affects the Moon’s motion causing the
perihelion to advance of

dω

dt
= 3nJ2R

2
E

1 − 5 cos2 i

4(1 − e2)R2
, (3.2)

where J2 = 1.0827 × 10−3, e = 0.0549 is the Moon’s eccentricity, RE = 6378.14 km is the Earth
mean radius, R = 384400 km is the Earth-Moon distance, n = 2.65 × 10−6 is the Moon’s mean
motion and i = 23.45◦ is the Moon’s mean inclination with respect to the Earth’s equator. With
these values, equation (3.2) gives ∆ω ≈ −6 × 10−5 rad per year. As we can see in Figure 3.2,
our simulations (that do not take into account the J2 effect) give an advance in the perihelion
of −5.8 × 10−5 rad per year.

A classical reference for perturbation theory is [Dan88].

3.2 Precision and speed of the integrator

Beyond the accuracy of the model one also must consider the errors done during the integration
of the N -body problem with a Taylor integrator.

It is well known that the N -body problem has 10 first integrals, such as, the energy level,
the angular momentum and the conservation of the centre of mass. We have already used the
conservation of the centre of mass to derive the position of the Sun and save computing time,
but we can check the conservation of the other first integrals.

As before, we have done simulations up to 600 years, and we check the variation of these
first integrals at every step. In Figure 3.3, we can see that this variation is very small, up to the
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Figure 3.2: Perihelion advance of the Moon obtained integrating the N -bodies problem (N = 11).
The whole interval of time considered is of 600 years, we can see that in average ∆ω ∼ −5.8× 10−5

rad per year.

computer accuracy, and behaves as a random walk. This shows that the only sources of error
during our computations is due to the roundoff of the computer as the truncations errors are
almost negligible.

We also want to comment on the computational time. At present, our code takes 29.52
seconds of CPU time to integrate the 11 bodies up to 600 years using an Intel Xeon CPU at
3.40GHz.

3.3 Including Apophis

As we have already explained in the previous section, we have modelled the motion of a NEO
asteroid (99942 Apophis) by a restricted (N + 1)-body problem. We consider 11 main bodies
affected by their mutual gravitational attraction but not by the asteroid, which is a massless
particle evolving under the gravitational attraction due to the planets, the Sun and the Moon.

With respect to the numerical simulation, we have used the N -body integrator described
above to integrate the N massive bodies and used a similar algorithm for the equations con-
cerning the asteroid.

To deal with the imprecision on the position and velocity of the main bodies observed
previously (recall Tables 3.1 and 3.2), we propose an alternative method to integrate the motion
of Apophis. The main idea is to take advantage of the JPL ephemerides for the main bodies:
we use our integrator for Apophis and the JPL integrator for the other bodies. In this way, the
position of the major bodies is taken in a more realistic way, as the JPL files takes into account
some additional effects which become relevant over long time intervals and which can make the
dynamics of our asteroid to vary, specially in close approaches.

We recall that the equation of motion for Apophis can be written as

Ẍa =

11
∑

j=1

Gmj(Xj −Xa)

r3ja
.

Note that to compute the jet of derivatives for Xa we need the jet of derivatives of the bodies
Xj . We assume the step of integration to be small enough to take into account just the mutual
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Figure 3.3: From left to right, up and down the variation of the energy h and the angular momentum
ax, ay and az, respectively, for the 11-body problem for a time span of 600 years.

gravitational attraction for the main bodies and to neglect the other effects in JPL. With this
we mean, that the jet of derivatives of the major bodies will be computed using the N–body
approximation, taking at each step of integration the position given by JPL ephemerides.

3.3.1 Comparing the results with JPL 405 ephemerides

We have first done some computations and compared the results with the JPL Horizons system
[JPL]. We have taken the initial data for Apophis and the other 11 massive bodies on 1 Septem-
ber 2006 00:00h (t = JD2453979.5) from the JPL Horizons system (see data in Table 3.5).
We have done the simulations using both of the schemes mentioned before, with and without
corrections on the massive bodies, just before the first close approach of Apophis with the Earth
on 13 April 2029 00:00h (t = JD2462239.5). In Tables 3.3 and 3.4 we can see the results for
these simulations for the two procedures and the results given by the JPL ephemerides.

Method x y z

Integ without JPL -0.9246754234693604E+00 -0.3936319665713030E+00 -0.8053392702252214E-03

Integ with JPL -0.9246768454408323E+00 -0.3936299644684824E+00 -0.8055027261187782E-03

JPL ephemerides -0.9246839460779299E+00 -0.3936206025875185E+00 -0.8061487939761827E-03

Table 3.3: Position of Apophis on 13 April 2029 00:00h doing the integration with the JPL, without
JPL and the data given by JPL ephemerides. Units AU.

As we can see, if we take the corrections of the planets by JPL at every time step we get a
better approximation than without taking them into account.

In Figure 3.4, we show the results concerning the numerical simulation of the Apophis’
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Method vx vy vz

Integ without JPL 0.8889495406390923E-02 -0.1368219560142266E-01 0.9635559643139474E-03

Integ with JPL 0.8889374524479276E-02 -0.1368219167106837E-01 0.9635357380844921E-03

JPL ephemerides 0.8889257217928338E-02 -0.1368237615492765E-01 0.9635446437798482E-03

Table 3.4: Velocity of Apophis on 13 April 2029 00:00h doing the integration with the JPL, without
JPL and the data given by JPL ephemerides. Units AU/day.
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Figure 3.4: On the left, for t ∈ (JD2462239.5, JD2462240.5) the orbit of the Earth (in red),
of the Moon (in green) and of Apophis. The reference system displayed is centred at the So-
lar System Barycentre. Unit AU. On the right, the distance between Apophis and the Earth
(in pink) and the distance between Apophis and the Moon (in blue) as function of time for
t ∈ (JD2462240, JD2462241.5). Units km and days.

trajectory, taking as initial condition the one given in Table 3.5. On the left, we display the
close approach with the Earth corresponding to t ∈ (JD2462239.5, JD2462240.5); on the right,
the distance between Apophis and the Earth and the one between Apophis and the Moon as
function of time in the interval t ∈ (JD2462240, JD2462241.5).

3.3.2 The non-rigorous propagation of an initial box

In order to have an idea of what should be expected by a validated method we have propagated
an initial box using our non-validated code. The idea is to iterate a mesh of points on a box.
In this particular case the initial box represents the uncertainty in the determination of the
position of the asteroid.

As we have already said, information on the physical and orbital data of Apophis can be
found in the NEODYS website ([NEO]). According to recent observations of Apophis [GBO+08],
we have a standard deviation on the semi-major axis, a, σa ≈ 9.6 × 10−9 AU and a standard
deviation on the mean anomaly, M , σM ≈ 1.08×10−6 degrees. Hence, σa gives an uncertainty of
about 1.44 km in the determination of the position of the asteroid, and σM gives an uncertainty
of about 2.59 km on the velocity’s direction, as a ≈ 0.92 AU.

According to these data, we have chosen an initial box centred at the initial condition given
in Table 3.5, of 7 km long on the tangent to the orbit direction and 3 km long on two other
given orthogonal directions.

In our code, the user can choose the mesh of points on the initial box, the total interval of
time and the time step to print out the results. For instance, we have propagated 10 × 4 × 4
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Data from [GBO+08]

x y z

position 0.5166128258669076E+00 0.6961955810635310E+00 -0.2443608670809208E-01

velocity -0.1295180180760195E-01 0.1388132695417834E-01 -0.1047646475022484E-02

Horizons

x y z

position 5.166129167886292E-01 6.961955223318413E-01 -2.443608650998807E-02

velocity -1.295180048414146E-02 1.388132804750336E-02 -1.047646730942868E-03

Table 3.5: Initial position and velocity for Apophis on 1 September 2006 00:00h, given by [GBO+08]
and by the Horizons system.
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points over about 23 years plotting every 0.5 days when Apophis has a close approach with the
Earth.

In Figure 3.5, we show, on the left, the orbit of the given initial box propagated up to the
first close approach with the Earth. On the right, the distance between the box and the Earth:
the closest point to the centre of the Earth reaches a distance of about 36000 km.

In the simulations, we have observed that the boxes stretch out along the direction of the
orbit as time goes by. This is something that can be expected. As already mentioned, as a
first approximation the motion of the asteroid can be seen as a two-body problem, just consid-
ering Sun and asteroid. Thus its trajectory can be approximated by a Keplerian orbit and the
estimates given in Section 2.1.1 hold.

3.3.3 The non-rigorous propagation of an initial box using variational equa-
tions

As mentioned in the introduction, a validated method requires information at least on the first
order variational equations to describe how an initial uncertainty evolves in time. In some cases,
when the error grows we need to consider a higher order approximation for the dynamics. One
can consider a k order jet of derivatives with respect to time and a j order jet of derivatives
with respect to spatial coordinates. It is then relevant to know which (k, j)-jet of Taylor method
provides an accurate information of the system.

On the other hand, when we deal with a non-validated method, the behaviour of a random
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box can be described by the variational equations. In general, they provide accurate information
on the evolution over time of close initial conditions with a lower computational effort (see
Appendix A).

In particular, we have considered the first and second order variational equations to approx-
imate the random box along time. We are interested in knowing if the first order one gives
enough information or if we need to take into account the second order one.

First, this has been done starting from t = JD2453979.5 (01 September 2006 00:00h) up
to t = JD2462240.5 (14 April 2029 00:00h). The results show that we need the quadratic
approximation furnished by the second variational equations to describe the first estimated
close approach of Apophis with the Earth. In particular, this is needed in the interval of
time t ∈ (JD2462240.42, JD2462240.5), which covers about 2 hours. Apart from that, the
linear information gives a very good estimation of the box. Looking to Figures 3.6 and 3.7,
we can appreciate when the Earth’s attraction starts bending the box, that is, when the linear
approximation provided by the first variational equations is no longer enough to describe the
dynamics.

As a further step, we have tried to figure out if the same approach could be considered for the
second estimated close approach, that is, up to t = JD2465323.5 (22 September 2037 00:00h).
It turns out that, after the first passage, the dynamics becomes very sensitive to the initial
conditions and thus there exists an instant of time from which we are no longer able to predict
the behaviour of the box. In our simulation, we have found this discrepancy after approximately
6 years from JD2462240.5.

Concerning the CPU computational time, our code spends 1.169 s to integrate the vector
field, 1.572 s to integrate the first variational equations and 11.129 s to integrate the second order
ones from 1 September 2006 to 13 April 2029. This has been done using an Intel Xeon CPU with
2.66GHz. For more details on the computation of the variational equations see Appendix A.

3.4 Low-Thrust

With respect to the low-thrust transfer, we have first integrated the system of equations (2.7)
in Section 2.4 defined in the previous chapter by a Taylor non-validated integrator of order 22
and variable step size, setting as local tolerance 10−20. Given the results of the above sections,
we consider the planets’ position and velocity to be determined by the JPL ephemerides.

In these simulations, we have observed a significant loss of digits, both departing from
the Earth or from the instantaneous point L1. This fact can mainly be explained by two
considerations. System (2.7) faces the problem in an inertial reference system with origin at
the Solar System Barycentre, but the motion of the spacecraft takes place in the Earth–Moon
neighbourhood. This means that we are dealing with an initial condition which keeps few
information about the dynamics we are interested in. On the other hand, in both strategies
(see Section 2.4) the orbit obtained consists of several ellipses characterised by different values
of semi–major axis. Departing from the Earth, the extra force introduced is not as big as to
gain altitude soon and thus the spacecraft moves very fast performing thousands of revolutions
before getting to the target. The same argument holds when we depart from the instantaneous
L1, as the probe gets closer to the Earth backwards in time.

To overcome this problem, we rewrite the equation of motion in order to take into account
the relative position and velocity of the probe with respect to the Earth (or the Moon). If
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Figure 3.6: In blue, the box of uncertainty in space corresponding to Apophis, in red and in green
the information provided by the variational equations of first and second order, respectively. The
interval of time is t = [JD2462240.435, JD2462240.46].
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Figure 3.7: In blue, the box of uncertainty in space corresponding to Apophis, in red and in green
the information provided by the variational equations of first and second order, respectively. The
interval of time is t = [JD2462240.465, JD2462240.495].



3.4. Low-Thrust 31

Y = Xsat −Xc and V Y = Vsat − Vc, then the new system of equations will be

Ẍi =

11
∑

j=1,j 6=i

Gmj(Xj −Xi)

r3ji
, for i = 1, . . . , 11

Ÿ =
11
∑

j=1

Gmj(Xj −Xc − Y )

r3jcY
− Ẍc + FT

V Y

‖V Y ‖ ,

(3.3)

where rjcY is the distance between the planet j (j = 1, . . . , 11) and the spacecraft.
At each integration step we keep on taking the data relative to the planets from the JPL

model. On the other hand, we notice that the change of variables just introduced does not
affect the computation of the jet of derivatives associated with the planets. Indeed, we are not
modifying the reference frame and thus the only force acting on the main bodies is still their
mutual gravitational attraction.

To illustrate the improvement resulting from this choice, in Tables 3.6 and 3.7 we show the
relative and absolute error obtained by integrating equation (2.7) and equation (3.3) starting
from a same initial condition up to 730.5 days. We have checked how many digits we were losing
in double precision taking the solution computed in quadruple precision as the exact one.

Eq. relative error absolute error

(2.7) 1.56e-9 1.53e-9

(3.3) 7.16e-13 7.e-13

Table 3.6: Relative and absolute error in position obtained by integrating equations (2.7) and (3.3)
starting from a same initial condition up to 730.5 days. The errors refer to the results obtained in
double precision and considering the solution obtained with quadruple precision as the exact one.

Eq. relative error absolute error

(2.7) 1.03e-5 1.41e-7

(3.3) 1.45e-9 2.e-11

Table 3.7: Relative and absolute error in velocity obtained by integrating equations (2.7) and (3.3)
starting from a same initial condition up to 730.5 days. The errors refer to the results obtained in
double precision and considering the solution obtained with quadruple precision as the exact one.

3.4.1 Nominal orbits

In order to get two nominal orbits to work with, we have applied the mission designs mentioned
in Section 2.4 by means of the new system of equations (3.3).

In the first case, we set as departure orbit a circular orbit around the Earth with radius
r = 650 km and inclination i = 23.5◦ with respect to the Earth’s equator. To find a nominal
trajectory which gets to the Moon, we integrate forwards in time equation (3.3) setting FT > 0
and Vc = VEarth and taking as initial conditions 1257 ≈ 2π/(5× 10−3) equally spaced points on
the given circular orbit. For each of these trajectories, we change the thrust direction, i.e. FT < 0
and Vc = VMoon, when the distance to the Moon becomes smaller than 67000 km. Finally, when
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xsat − xEarth ysat − yEarth zsat − zEarth

-1.4666642042013140e-05 4.0598584396571580e-05 1.8541442146629470e-05

Table 3.8: Initial condition in position for the first nominal orbit of the low-thrust mission considered.
Initial time JD2454371.6034722 (28 September 2007 02:29h). Unit AU.

ẋsat − ẋEarth ẏsat − ẏEarth żsat − żEarth

-4.0476276575951110e-03 -1.5733606852764890e-03 2.4329879836049721e-04

Table 3.9: Initial condition in velocity for the first nominal orbit of the low-thrust mission considered.
Initial time JD2454371.6034722 (28 September 2007 02:29h). Unit AU/day.

xsat − xEarth ysat − yEarth zsat − zEarth

-9.5667391869508616e-04 -1.8395563106682602e-03 -1.0105503932953232e-03

Table 3.10: Initial condition in position for the second nominal orbit of the low-thrust mission
considered. Initial time JD2454607.1034722 (20 May 2008 14.29h). Unit AU.

ẋsat − ẋEarth ẏsat − ẏEarth żsat − żEarth

4.3272284589505872e-04 -1.8632719222831515e-04 -7.0465113441901608e-05

Table 3.11: Initial condition in velocity for the second nominal orbit of the low-thrust mission con-
sidered. Initial time JD2454607.1034722 (20 May 2008 14.29h). Unit AU/day.

the spacecraft reaches a distance less than 1000 km from the Moon’s surface (considered as a
sphere), we turn the engine off.

In this way, we have found as nominal orbit the one shown in Figure 3.8. The corre-
sponding initial condition is given in Tables 3.8 and 3.9, the initial time t = 0 corresponds to
JD2454371.6034722 (28 September 2007 02:29h) and the manoeuvre is performed after approx-
imately 741 days. One day after we switch the engine off; the probe gets to the Moon after
about ttot = 765 days.

We would like to point out that not all the initial conditions considered accomplish the
condition of getting to a distance less of 67000 km from the Moon, neither this requirement is
enough to guarantee to be captured by the Moon. In the two–body problem, the gravitational
capture by the Moon (or the Earth) could be defined as the moment at which the energy of
the probe with respect to the main body changes from positive to negative. Unfortunately, our
problem cannot be approximated by such a model, since we need to consider at least three main
bodies, Earth, Moon and Sun, to affect the spacecraft. As a consequence, we cannot apply the
above criterion to carry out the manoeuvre.

To illustrate this, in Figure 3.9 we show the two–body energy, see equation (2.2), with
respect to the Earth and to the Moon as function of time up to the manoeuvre and after that.
We can note that the thrust direction’s change takes place when the energy with respect to the
Moon is still positive and the one with respect to the Earth is still negative. At the same time,
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Figure 3.8: First nominal orbit considered for the low-thrust mission. Inertial reference frame centred
at the Earth. In green, trajectory’s leg characterised by FT > 0; in red, by FT < 0. In black, the
Earth; in blue, the orbit of the Moon. Unit AU.

when we are braking towards the Moon, the energy with respect to the Earth and the one with
respect the Moon oscillate from positive to negative. This behaviour is due to the perturbations
introduced on the probe by the planets, which make the dynamics corresponding to the probe
very sensitive to the initial condition at the time of performing the manoeuvre.

We have decided to turn the thruster off when the distance to the Moon is less than 2737.5
km for the same reason as above. By changing a little this value, the spacecraft could not achieve
the goal of the mission, i.e. to get to the Moon.

We have also considered another nominal trajectory, starting from the instantaneous L1

corresponding to JD2454607.1034722 and integrating equation (3.3) backwards in time with
FT > 0 and Vc = VEarth and forwards in time with FT < 0 and Vc = VMoon. The initial
condition corresponding to L1 is given in Tables 3.10 and 3.11. The trajectory is shown in
Figure 3.10. In this case, the total transfer time is about ttot = tMoon + tEarth ≈ 45 + 245 days.

Comparing the two trajectories above, we note that in the first case we need more than
two years to get to the Moon, while in the second one less than one. On the other hand, the
trajectory passing right through L1 flows from a departure and an arrival orbit characterised by
a great value of eccentricity (e ≈ 0.8), which is actually not a realistic parameter.

3.4.2 The non-rigorous propagation of an initial box using variational equa-
tions

With respect to the non-rigorous propagation of an initial box, we follow the same procedure as
done in the case of Apophis. This is, we take an orthonormal basis, composed by the tangent to
the orbit vector and by two vectors orthogonal to this one and we consider how an uncertainty
in position is reflected on these directions. With the actual technologies, the position of a probe
can be measured with a high level of accuracy: we set the box to be 30 cm long on the three
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Figure 3.9: On the left, two–body energy, see equation (2.2), with respect to the Earth (green) and
to the Moon (red) as function of time up to the manoeuvre. On the middle, two–body energy with
respect to the Earth after the manoeuvre. On the right, two–body energy with respect to the Moon
after the manoeuvre. We can note that the thrust direction’s change takes place when the energy
with respect to the Moon is still positive and the one with respect to the Earth is still negative. At
the same time, when we are braking towards the Moon, the energy with respect to the Earth and
the one with respect the Moon oscillate from positive to negative.
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Figure 3.10: Second nominal orbit considered for the low-thrust mission. On the left, in the inertial
reference frame centred at the Earth we show the trajectory’s leg characterised by FT > 0 (green)
and the one corresponding to FT < 0 (red). In black, the Earth; in blue, the orbit of the Moon. On
the right, in the inertial reference frame centred at the Moon the part of the trajectory associated
with FT < 0 in red and the Moon in black. Unit AU.

directions.

Applying the variational terms of first and second order to the orthonormal basis at each
step of the integration and to both the nominal trajectories, we can approximate very well the
dynamics obtained. In particular, the quadratic approximation is needed when the probe is
approaching the Moon or when a considerable interval of time has elapsed. In Figure 3.11, we
show some results associated with the L1-Moon leg.

It is worth to point out that a difficulty arises at the time of performing the manoeuvre. As
said before, for the nominal orbit we have decided to change the thrust direction when the probe
reaches a distance to the Moon less than 67000 km, which corresponds to a well–defined instant
of time. However, each initial condition included in the given box fulfils the above requirement
at a different value of time. We can decide to fix as instant of force’s change the one associated
with the nominal trajectory, that is, the same for all the points of the initial box. Or, to carry
out the manoeuvre in a independent way one point to the other, that is, at different times
according to the trajectory considered.
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Figure 3.11: In blue, the box of uncertainty in space corresponding to the probe, in red and in green
the information provided by the variational equations of first and second order, respectively. The
initial condition considered corresponds to the instantaneous L1 at t0 = JD2454607.1034722, see
Tables 3.10 and 3.11. The leg of trajectory is characterised by FT < 0 and Vc = VMoon. The interval
of time displayed is t = [t0 + 39.609375, t0 + 39.84375].

As explained before for the Apophis case, a random box stretches out along the tangent to
the orbit direction. Hence the first option gives values of distance to the Moon (and of Keplerian
energy) which are significantly different for one point to the other. We have already mentioned
that the dynamics is quite sensitive to the initial condition when we are approaching the Moon
and how this can produce an effect on getting there. On the other hand, to apply the second
choice means that we are considering not one mission, but as many as the number of initial
conditions in the box. These considerations hold even more for the validated integration.
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Chapter 4

Validated methods: theory

Since R. Moore started the study of validated methods for ODEs, different methods have been
suggested to improve the original Moore’s algorithm (an implementation of the original algorithm
by Lohner is in the AWA code [Loh] which also contains implementations of the parallelepiped
method and the C0 QR-Lohner method). Mainly, the problem of the initial algorithm is the
so-called wrapping effect as R. Moore already stated in his celebrated example of a rotation (a
brief explanation is given in Section 1.3.3). Below we describe the main lines of improvement of
the classical algorithm.

To fix ideas, let u(t;u0) be the solution of the initial set value problem (ISVP)

u′ = f(u), u(t0) = u0 ∈ {u0}, (4.1)

where f : R
m → R

m defines an analytic vector field, u0 ∈ R
m and {u0} is a set of R

m. The
ISVP should be understood in the following way: given h > 0 we look for a set {u1} of R

m such
that u(t0 + h;u0) ∈ {u1} for all u0 ∈ {u0}. We have then a map T mapping a region {u0} to a
region T ({u0}) ⊂ {u1}. The idea is to implement the evaluation of T in such a way that the set
{u1} is as close as possible to the set T ({u0}). The difference between the two sets is mainly
due to the wrapping effect, but the so-called dependency problem also plays a role.

Two different approaches can be found in the literature: the so-called Interval methods and
the Taylor-based methods. Both approaches try to reduce the wrapping and the dependency
effect by modifying the original algorithm in an effective way. A precise explanation of both
methods mainly for linear ODEs as well as a comparison between them for specific linear ex-
amples can be found in [NJN07]. For the sake of completeness, in the following we give an
explanation of the main ideas of both type of methods.

In this report, we will concentrate in examining the Interval methods although they are not
so accurate as the Taylor-based methods. The main reason to explore these methods is that
Interval methods for rigorous integration of an ODE are faster than Taylor-based methods. A
comparison of the two methods is given in [HB03] where the integration of the asteroid 1997
XF11 using a Kepler model and using a model of the full Solar System is carried out by using
both types of methods. In this paper the authors note that although the Taylor-based integration
is more stable and accurate the method is around 50 times slower that an Interval method. Some
results concerning the same example can also be found in [BMH01].

In both strategies of integration several problems related to the interval representation of
the sets appear as will be explained now.

4.1 Interval based methods

This family of methods contains the Moore’s original algorithm and the later modifications: the
parallelepiped method, the Lohner algorithm and the Cr-Lohner algorithms. The main idea of
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these methods is to represent sets in terms of interval boxes (product of intervals of R) in a
suitable form. There are many ways to represent sets in terms of intervals. In [MZ00] there is
a list of some useful representations. Using the notation of [MZ00] we are mainly going to deal
with the interval set representation, parallelepiped representation and the cuboid representation.
We also propose a modification of the cuboid representation which uses the fact that the vector
field is a second order one.

4.1.1 Moore’s direct algorithm

We start describing the ideas of the Moore’s direct algorithm. In Moore’s algorithm sets are
represented using interval set representation, that is, a set {u0} is represented by an interval
box [u0] which is a direct product of intervals of R. Let IR

m the set of intervals of R
m. From

now on [x] ∈ R
m will denote an interval set representation of a given set {x}. We have then

{x} ⊂ [x] and we expect the difference between both sets to be not very large (although it can
be large enough to produce the failure of the method as is going to be shown).

For u0 ∈ {u0}, Taylor expansion of u(t0 + h;u0) up to order n around t = t0 gives

u(t0 + h;u0) = T (u0) +R(ξ;u0),

where

T (u0) = u0 + f(u0)h+ · · · + dn−1

dtn−1
f(u0)

hn

n!
,

and

R(ξ;u0) =
dn

dtn
f(u(ξ;u0))

hn+1

(n + 1)!
,

with ξ ∈ [t0, t0 + h].
To make this evaluation rigorous it is important to note that for all u0 ∈ {u0} it is T (u0) ⊂

T ([u0]), where

T ([u0]) = [u0] + f([u0])h + · · · + dn−1

dtn−1
f([u0])

hn

n!
,

and where an interval extension of f is considered, that for convenience we denote by the same
symbol f . We recall that a map f̂ : IR

m → IR
m is said to be an interval extension of f : R → R

if f̂ |R = f , where by f̂ |R we denote the restriction of the map f̂ to the point interval sets.
To have a rigorous way to evaluate T ({u0}), it remains to obtain an interval containing

R(ξ;u0) for all u0 ∈ {u0}. Note that if [û0] is an interval box such that u(t;u0) ⊂ [û0] for all
t ∈ [t0, t0 + h] and for all u0 ∈ [u0], then

R(ξ, u0) ⊂ R([û0]),

and, as a consequence,
[u1] = T ([u0]) +R([û0]),

which gives a solution of the ISVP at time t+ h.
To obtain the interval [û0] it is proposed the iteration

[û0
0] = [u0] + [ǫ, ǫ],

[ûk+1
0 ] = [u0] + [0, h]f([ûk

0 ]), (4.2)

whose convergence can be justified if h is small enough. This provides the interval box [û0] with
the required properties. A theoretical justification of this iteration can be found, for instance,
in [Ned99]. This interval is denoted as rough enclosure.

This method provides a rigorous integrator of an ODE. Nonetheless, among the inconve-
niences of this method we note



4.1. Interval based methods 39

1. The evaluation of T ([u0]) depends on the interval extension of f . This is the so-called
dependency problem and can be reduced by a suitable implementation of the algorithm.

2. The set {u1} = {T (u0), u0 ∈ [u0]} is not an interval box and hence we need to include it
in T ([u0]) giving rise to the so-called wrapping effect.

3. The iteration (4.2) implies the use of a small step size (mainly reduced to the size of the
Euler method). To have convergence of the method requires h to be less than L−1 where
L is the Lipschitz constant of f . We note that other approaches as polynomial enclosures
provide large step size for verified integration (see [Ned99]).

The most relevant inconvenience of the described method is the wrapping effect which implies
the rigorous integration of solutions that do not come from the initial set [u0] making the interval
enclosures growing fast and invalidating the method. The wrapping effect is a consequence of
the way we represent the sets. In any representation we choose we will have wrapping effect
although the choice of a suitable representation can reduce it.

4.1.2 The parallelepiped method, the QR-Lohner method and new modifica-
tions

As mentioned above, the inclusion T (u0) ⊂ T [u0] used in the Moore’s algorithm is the point
where the wrapping plays a role. In order to analyse this evaluation carefully we rewrite it in
centred form way. Note that

T [u0] = T (m(u0)) +DT ([u0])([r0]),

where m(u0) denotes the mid point of the interval set and [r0] = [u0] −m(u0). Hence, Moore’s
algorithm in centred form reads

[u1] = T (m(u0)) +DT ([u0])([r0]) + [z1], (4.3)

where [z1] = R([û0]).

Remark. In general, it is better to use centred forms rather than direct forms. The idea behind
this is to reduce the effect of the interval arithmetic to high order terms in the evaluation. As
a general rule the interval evaluation should be the latest and at the highest possible order.

Parallelepiped method

The basic idea of the parallelepiped method is to represent a set in terms of the parallelepiped
representation (see [MZ00]), that is, the set {u} is included in a set of the form p+A[r], where
p ∈ R

n is a point, A ∈ R
n×n is a matrix and [r] ⊂ R

n is an interval box set.
To be precise, assume {u0} = m(u0) +A0[r̂0]. Then,

T ({u0}) ⊂ T (m(u0)) +DT ([u0])A0([r̂0]) + [z1] ⊂ {u1}. (4.4)

where we want the set {u1} to be of the form {u1} = m(u1) +A1[r̂1].
Note that m[u1] = T (m(u0))+m(z1). Then, it turns out that DT ([u0])A0([r̂0])+[z1]−m(z1)

should be A1[r̂1] for a suitable A1. Setting A1 = m(DT ([u0]A0)) (or A1 = m(DT ([u0]))A0)
giving the same numerical results) and

[r̂1] = [B1][r̂0] + [A−1
1 ]([z1] −m(z1)), (4.5)

then
DT ([u0])A0([r̂0]) + [z1] −m(z1) = A1[r̂1],
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where the factorisation DT ([u0])A0 = A1[B1] is considered. Note that in this evaluation mainly
the second term is affected by wrapping effect and it can be considered small (increasing the
order of the Taylor expansion for instance).

Remark.

1. To get the factorisation DT ([u0])A0 = A1[B1] we proceed in the following way. Put

DT ([u0])A0 = m(DT [u0]A0) +DT [u0] −m(DT [u0]A0) = A1 + [B̃1],

where [B̃1] = DT [u0] −m(DT [u0]A0). Then,

DT ([u0])A0 = A1[B1],

with [B1] = Id+ [A−1
1 ][B̃1].

2. To compute the rigorous inverse [A−1] of a point matrix A we start by computing an
approximate inverse B = A−1 (computed non-rigorously). Then, it is [B][A] = Id + [δ]
which implies

A−1 = (Id+ [δ])−1B ⊂ B

(

Id± ‖[δ]‖∞
1 − ‖[δ]‖∞

)

= [A−1],

where ‖[δ]‖∞ = max
i=1,...,n

n
∑

j=1

|[δij ]|.

Note that instead of computing DT ({u0}) we evaluate DT [u0] as was noted in the formula
(4.4). This is because to evaluate the jet of a set of the form p+A[r] using interval arithmetic
needs an interval as input. On the other hand, the change of variables x = Aξ, where ξ are the
standard variables we use in computations, gives an initial set which is the interval A−1p + [r]
but becomes necessary to compute the jet of derivatives of A−1 ◦ f ◦ A which is not an obvious
task. This evaluation on an overestimation of the set {u0} will be analysed in detail later when
explaining a method (KT method) which allows the computation on the exact interval A−1p+[r]
for a suitable choice of the matrix A in the representation of the sets.

It is remarkable that, in the evaluation of a step of the parallelepiped method, the interval
evaluation is done in the first order differential DT [u0]. This suggests to use centred form again
modifying the method in order to use the interval evaluation in higher derivatives. For instance,
instead of using the expression (4.3) it is possible to use the following

[u1] = T (m(u0)) +DT (m(u0))A0[r̂0] +
1

2
(A0[r̂0])

tD2T ([u0])(A0[r̂0]). (4.6)

One expects this modification to be useful when there is a relevant difference of the first vari-
ational in different points of the set {u0} and that this difference is well-approximated by the
second variational effect. In this case, we choose A1 = DT (m(u0))A0 and we proceed in a similar
way as in the first order case.

In general, the parallelepiped method is almost as inefficient as the direct method. The
main inconvenience is that the wrapping effect is reduced by a change of variables A1 which
should be rigorously inverted to compute r̂1. As was observed in [NJ01] for the particular
case of a planar linear system with different magnitude eigenvalues, after some time steps the
matrix A1 becomes singular. Although in the case of a linear ODE with suitable linear part
the parallelepiped method is able to reduce the wrapping effect, its effectiveness for non linear
systems depends on the concrete case considered.

We have observed in Section 2.1.1 that the stretching that a box suffers along the orbit
behaves linearly (not exponentially) with respect to the time. However, after enough revolutions
the stretching becomes a problem as the matrix becomes singular.
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QR-Lohner algorithm

To solve the problem of inverting a singular matrix in the parallelepiped method Lohner proposed
a modification of the above method consisting in just inverting the orthogonal matrix Q1 of the
QR factorisation of the matrix A1.

As before, we put {u1} = m(u1) + A1[r̂1] then A1[r̂1] = DT [u0][A0][r̂0] + [z1] −m(z1) and
DT [u0][A0] = A1[B1]. Consider the QR-factorisation of [A1], [A1] = Q1[R1]. Hence,

[r̂1] = [R1][B1][r̂0] +Q−1
1 ([z1] −m(z1)),

and {u1} = m(u1) +Q1[r̂0] and we proceed as in the parallelepiped method.
Lohner modification of the original algorithm seems to be an efficient way to deal with the

ISVP. Note, however, that we compute again the term DT [u0] in an over estimated interval set
containing {u0}. The effect of wrapping appears not only in the term DT [u0], but it is also
partially propagated in different ways in the term [R1][B1][r0].

KT method

Note that, when evaluating DT ({u0}) on the interval set [u0], the wrapping effect can produce
a big overestimation of the result. In order to solve this problem we propose the following
modification of the QR-Lohner algorithm. We observe that any vector field of the form ẍ = f(x)
is equivariant by matrices of the form

(

M 0
0 M

)

,

where M is such that f(x) is equivariant by M (that is, f(M(x)) = Mf(x)). Moreover, as
shown in the appendix B, the Kepler force and, in general, the N -body problem, is equivariant
by any orthogonal matrix Q ∈ SO(3). We conclude that the Kepler vector field is equivariant
by any matrix of the set

K =

{

K ∈ M6×6 s.t. K =

(

Q 0
0 Q

)

, Q ∈ SO(3)

}

.

This fact suggests the representation of the sets in the form p+K[r] whereK ∈ K. The validated
algorithm is similar to the QR algorithm but instead of computing the QR factorisation of
matrix A1 we compute a KT factorisation of the matrix, that is, a factorisation where K ∈ K
and T ∈ M6×6. A possible choice of the matrix Q of K is the corresponding orthogonal matrix
of the QR factorisation of an order three minor of A1. For instance, if

A1 =

(

A11 A12

A21 A22

)

, Aij ∈ M3×3,

put A11 = Q1R1 and choose Q = Q1 ∈ SO(3). If T is expressed as a block matrix of the form

T =

(

T11 T12

T21 T22

)

,

then, according to the choice of K above, Tij = QtAij , i, j = 1, 2 (in particular, T11 = R1).

Remark. It will be relevant to know which choice of K is suitable to carry on the computations.
The problem with this method is that K is related with the “true” change of variables, given
essentially by the first variational equations, but it does not coincide with the change neither
with the orthogonal part of the change itself. It is interesting to study if another choice of
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matrices produces better results. For instance, if one considers matrices that respect only the
equivariance of the force f , the method can be adapted just by changing the initial point at
each step but the jet of derivatives necessary to compute the Taylor step remains invariant.

The important fact of the KT factorisation is that it allows us to make the change of
variables x = Kξ and integrate the equations in the new variables x, because by equivariance
this is equivalent to a suitable integration in the ξ variables. In particular, the differential DT
can be evaluated in the set K−1(p) + [r] without computing an interval set [u0] which exceeds
the real set {u0}. We explain in detail the evaluations in what follows.

In the ξ coordinates, a set {u0} = p0 +K0[r0] is expressed as {u0} = K−1
0 (p0) + [x0] = [x̂0],

with [x0] = [r0]. The system of equations has the same expression in the new coordinates due
to the equivariance of the vector field with respect to K ∈ K. So, we have to integrate the same
system but with different initial condition (the initial condition now is given by [x̂0] which is
an interval with respect to the ξ coordinates). In particular, the jet of derivatives of the first
variational equations is the same, so we can compute DT [x̂0] directly. The method reads then,

T ({u0}) ⊂ T (m(x̂0)) +DT [x̂0][x0] + [z1],

and, as before, we require the right hand of the last expression to be of the form p1 +K1[x1].
Then, in the new coordinates x the set is described by K0p1 +K0K1[x1].

We note that all the methods explained can be generalised to higher order centred form
like the one given by (4.6). In the next Chapter we provide examples of different computations
carried out using each of these methods. However, other methods and generalisations can be
found in the literature as we proceed to briefly explain.

4.1.3 Cr-Lohner algorithms

Although our interest in this work is to propagate a box under an N -body flow, and this should
be done by integration of the vector field, we want to stress that for other applications (for
instance [KS07]) it is important to compute rigorously the solution of the variational equations.

It turns out that the direct rigorous integration by Lohner algorithm of the system of equa-
tions together with the variational equations is not an efficient way to integrate the problem.

The interval methods above described are slightly modified to compute the variational equa-
tions. Note that the variational equation is already used to get the term DT [u0], remaining only
a rigorous bound of the error of this evaluation. This gives rise to the so-called C1-Lohner meth-
ods (see [Zgl02]) which provide a rigorous integrator for the system of equations and variational
equations with a few more effort.

The idea used can be generalised to higher derivatives giving rise to the Cr-Lohner algorithms
(see [WZ08]) . It becomes necessary an examination of the errors using this type of integrators
for the variational equations.

4.2 Taylor-based methods

In the numerical examples using validated methods we will see that the dependency on the
initial conditions up to first, second or higher order plays a role in the computations allowing
to reduce the wrapping effect. Also in the non-rigorous computations of Apophis (Section 3.3),
it was observed that the box of random points is well-approximated using the first variational
equations for quite a long time becoming necessary the second variational equations when trying
to approximate the random box close to the 2029 approach of Apophis with the Earth.

Using validated integrators, as the boxes increase due to wrapping and dependency effects, it
becomes necessary to use higher order approximation after a smaller interval of time than in the
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non-validated case. There is another type of methods which take care of this fact and compute
the dependency of the final set with respect to the initial conditions up to higher order.

When computing the set {u1} at time t = t0 + h of the ISVP with initial condition {u0} the
interval computations give rise to wrapping and dependency phenomena. The idea behind the
Taylor-based models is to represent the set {u1} as a Taylor series with respect to the initial
conditions. More precisely, they represent the set {u0} as

{u0} = û0 + [∆u0],

where [∆u0] ∈ I
m is an interval box describing the uncertainty in the initial conditions. Then

(δ1, ..., δm) ∈ {∆u0} denotes any point in the uncertainty region. The idea is to represent
the solution at time t = t0 + h as a Taylor series with respect to the set of variables (t, δ) =
(t, δ1, ..., δm). The Taylor series is then truncated at order n with respect to the full set of
variables and the remainder is estimated in a suitable way. Mainly, the idea to estimate the
errors is to compute the Taylor step using polynomials in a non-rigorous way and to obtain an
interval I bounding the errors of computations. In the next step, the input is a polynomial plus
the interval I. This is called a Taylor model which consists in the polynomial approximation p
plus an interval I. The Taylor step produces a Taylor model of the function at time t+ h.

To compute the Taylor series with respect to the set of variables (t, δ) a symbolic manipulator
is used. The input parameter for the Taylor time stepper is a polynomial with respect to the
δ variables and the output is again a polynomial with respect to the δ variables, which is the
Taylor expansion of a set close to the set {u1} (they differ by terms that are added to the
remainder in a suitable way). In the time stepper, the polynomials are considered with respect
to the (t, δ) variables (see [NJN07]).

In order to compute a rigorous remainder an algebra on Taylor models is necessary. That
is, at least we need to know how to compute the sum, product, inverse, powers, etc. of Taylor
models. The algebraic manipulator allows to do these operations for the polynomial part of
the Taylor model. On the other hand, for the interval remainder part it is necessary a careful
bound of the Taylor remainder of the Taylor series with respect to the full set of parameters
of the expansion. In this way in [Mak98] it is established how to do the computations with
Taylor models. For instance, let (p1, I1) and (p2, I2) be two Taylor models up to order n of two
functions. Then (p1 + p2, I1 + I2) is a Taylor model up to order n for the sum of the functions,
where p1 +p2 is computed symbolically and I1 +I2 is computed using interval arithmetic. Other
algebraic operations are not so simple, but for each operation one can compute a suitable upper
bound for the interval part of the Taylor models (see [Mak98]).

Among the advantages of this method, we note the ability to deal with sets that are not
convex, mainly because at any step it is not necessary to embed the approximation of the solution
in an interval set. However, the wrapping effect still plays a role: it is included in the remainder
estimations which at each step is an interval containing all the errors of the computations. In this
way, different strategies are also proposed to confront this problem. Mainly, the kind of strategies
are the same as those explained in the interval methods, that is, a parallelepiped representation
of the remainder set, QR representation when the matrix of the parallelepiped method becomes a
singular matrix, or different kinds of representations according to the dynamics of the flow to be
integrated rigorously. We want to emphasise that the preconditioning strategy, which consists
in taking suitable coordinates to integrate the system, can be included in the Taylor-based
method. This is accomplished by composition of the Taylor series of the change of variables
with the Taylor series of the integration with respect to the new variables (see [MB05]).

In general, the Taylor-based methods produce better results than the first order Interval
methods (see [NJN07], [HB03] for comparison of the results). From a theoretical point of view,
the higher order Interval methods are equivalent to this polynomial approach. However, using



44 Chapter 4. Validated methods: theory

this idea one can compute in an easy (but expensive) way the dependency with respect to the
initial conditions up to higher order.

Remark.

1. In the Taylor time stepper, the jet with respect to the time t is considered mixed with the
jet with respect to the space coordinates δ. It is not clear to us if considering separate jet
expansions produce different results. Moreover, it is possible to perform the integration
using different orders for different variables according to the precision required. However,
if both jets are considered together, the Taylor model algebra used for computations gives
upper bounds of the solution in a direct way. When dealing with the jets in a separate
way, one should bound the time expansion using different techniques (for instance, via the
computation of a rough enclosure for the solution or via analytical estimates).

2. A suitable rescale of variables and time to get similar rates of increase of the different
variables could provide sharper bounds of the error of computations.

4.3 Subdivision strategy

As we have already mentioned, in the validated integration of an ODE the problem to deal with
is mainly the wrapping effect and, more precisely, the wrapping produced in the evaluation of
DT ({u}) (in the case of a first order interval method). In the case of Taylor-based methods,
the wrapping is included in the remainder and in the final evaluation. As a general procedure
to reduce the wrapping, one can consider the subdivision strategy which consists in dividing the
interval in different intervals and evaluating each of them separately.

We consider two strategies of subdivision. A first procedure consists in subdividing the set
in different intervals and integrating each of them separately. Note that this subdivision can be
done at the beginning or when considered necessary along the computations. This reduces the
problem of integrating a big domain into many problems of integrating not so big intervals.

On the other hand, for the Interval methods, another possibility is to divide the interval just
when necessary for the evaluation of the variational part, which produces wrapping and then,
to continue with the integration by considering the interval hull of the set of intervals obtained
after the evaluation.

The major problem with subdivision strategy is that the computational time needed to
obtain the result increases linearly with the number of subdivisions. On the other hand, we are
dealing with six dimensional interval boxes and it is not clear which can be the optimal way to
divide them. Nevertheless, we note that the process of evaluation of the different subintervals
can be parallelised easily, allowing the computations to be done in a relatively short time.

An advantage of this subdivision procedure is that it can be implemented in any of the
methods explained in this section, and in particular for all the Interval methods of first and
higher order. In the next section, we will illustrate the effect of this subdivision in some examples.
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Chapter 5

Validated methods: results

In this chapter, we compare the results obtained using some of the numerical methods explained
in the last chapter. Before dealing with the concrete examples of the motion of an asteroid and
the low-thrust transfer, we focus on the Kepler’s problem which we shall use as a paradigmatic
example to illustrate the advantages and inconveniences of the methods. We will see that, as
was also observed in [HB03], the results obtained from the integration of the asteroid in the
Kepler’s problem and in the N -body code do not differ too much. We recall that the two body
problem in the asteroid case is reduced to a centre vector field because the asteroid is assumed to
be of negligible mass. On the other hand, the solution of the Kepler problem can be computed
explicitly, though we do not use this information neither any other properties because we want
to confront this problem in the same way as we can confront any other general problem.

5.1 Validated integration of Kepler’s problem

In the examples of this section the initial condition described in Table 5.1 are used. This initial
condition corresponds to the data of JD 2453979.5 (1 September 2006 00:00h) obtained from
[GBO+08], which also gives information about uncertainties.

Component Initial data Uncertainty

x0 0.5166128258669076 ±5 × 10−8

y0 0.6961955810635310 ±5 × 10−8

z0 −2.443608670809208 × 10−2 ±5 × 10−8

vx −1.295180180760195 × 10−2 0
vy 1.388132695417834 × 10−2 0
vz −1.047646475022484 × 10−3 0

Table 5.1: Initial condition and uncertainties for the Kepler’s problem.

On the other hand, for some examples we have used uncertainties of 10−6 in position instead
of 5 × 10−8, the reason being to analyse the overestimations of the interval boxes with more
evidence. We will specify each uncertainty for the intervals when convenient. The uncertainties
are always considered in position because the uncertainties in velocity at the initial point can
be translated in terms of the uncertainties in position in a similar manner that we have done to
generate the random points in the non-validated integration.

We have implemented different Interval methods. The algorithms described in the last chap-
ter provide rigorous integration schemes for the ISVP. In the implementation, all the computa-
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tions are done using interval arithmetic in order to obtain rigorous set enclosures for the flow.
These are the set which contain the numerical errors of the computations and hence validate
the procedure.

We start by describing the results obtained using our codes in the case of Interval methods of
first order. Table 5.2 specifies the time at which the computations stop due to the overestimation
of the sets involved and to the impossibility of finding a rough enclosure for the validating step
of the Taylor method. The results have been obtained using the parallelepiped method, the QR-
Lohner one and the KT modification. To get these results it has been used a Taylor method of
order 28 and fixed step size h = 0.625 day. It should be noted that to decrease the order and/or
to change the step size (for instance dividing it by 10) produces exactly the same results.

Uncertainty Parallelepiped QR-Lohner KT -equivariant

0 1612.5 1206.875 969.375
±5 × 10−8 648.75 748.75 573.75
±10−6 268.75 493.75 473.75

Table 5.2: Maximum time of integration (in days) applying first order intervalar methods to the
Kepler’s problem. In all the computations, h = 0.625 day.

It seems that the integration using QR method gives better outcome when the initial interval
box is not so small. However, in the parallelepiped method we have never detected problems
with the inversion of the matrices. Hence it remains to clarify why the QR method is better.

Remark. We have already shown how an uncertainty in semi–major axis is reflected on the
behaviour of the box and how the angle between two given vectors evolves in time. Recalling
the results of Section 2.1.1, we find an heuristic explanation why there is no problem in the
inversion of matrices in the parallelepiped method.

Before continue with our exploration of the interval methods, we would like to make some
comments with respect to the step size h. The choice of h = 0.625 day is motivated by the fact
that this number is representable in an exact form by the binary arithmetic that the computer
uses. In this way, there is no error in time when integrating.

Nevertheless, although from a formal point of view this choice should be done, it has not
been observed any difference in the computations when changing the step size.

On the other hand, we note that while in the non-validated integration the step size consid-
ered is around 30 days (except, of course, in the close approach to the Earth) in the validated
integration we are restricted to the use of a step size less than one day. The main restriction for
the usage of large step size is due to the computation of the rough enclosure which is necessary
for the validation of the process. In Appendix B it is described an alternative to the rough
enclosure procedure which allows much larger step sizes. The proposed procedure has been
implemented and the results are described in Section 5.2.

To continue with the analysis of the results obtained using the first order Interval Taylor
methods, we examine which one of the considered methods provide more accurate interval boxes.
Figure 5.1 on the left shows the distance between the box obtained by integration of 500 random
conditions in the initial data box by the non-rigorous Taylor method and the interval box
obtained by validated integration using the parallelepiped method. The points of the random
box are translated inside the interval box [r̂k] via the inverse of the change of coordinates Ak.
In these coordinates, the distance is measured. In the figure, on the y-axis it is represented the
decimal logarithm of the distance in each component and on the x-axis the number of iterations
(each unit in the x-axis means 6.25 days of integration).

We note that formula (4.5) implies that no one of the coordinates is able to decrease although
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the real dynamics makes the box to decrease in some directions (indeed, the differential of the
flow is symplectic and the volume of the boxes is preserved in phase space). To solve this, we
have modified the method by factorising the matrix A1 in the form A1 = Ã1D, where D is a
diagonal matrix which considers the expansion and contraction in each one of the directions.
The corresponding results are illustrated in figure 5.1 on the right. We note that there is no
advantage using this modification. In all these considerations, the initial uncertainty in position
is of 10−6.
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Figure 5.1: Overestimation of the interval boxes with respect to the random boxes in the paral-
lelepiped method (left) and the modified parallelepiped method (right), see text for details. Each
colour corresponds to the difference of the measure in each of the components: x corresponds to
red colour, y to green, z to dark blue, vx to magenta, vy to blue and vz to yellow colour.

Figure 5.2 shows the same box overestimations as in the Figure 5.1, but for the QR-Lohner
algorithm and the KT -modification.
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Figure 5.2: Overestimation of the interval boxes with respect to the random boxes using the QR-
Lohner method (left) and the KT modification (right), see text for details. The pattern of colours
used is the same as in figure 5.1.

Observing the Figures 5.1 and 5.2 we can conclude that the parallelepiped method produces
better results, although the other methods allow to make computations for longer time. Note
that in the QR and KT methods at each step the sets are included in a representation which
does not follow so close the true shape of the interval. This happens in particular in the KT
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case where the matrix K is not necessary close to the linear change of variables needed for the
representation.

To better understand how the computed sets differ from the random points box, Figures 5.3
and 5.4 represent the interval boxes obtained using parallelepiped and KT methods as well as
the random box for t = k 6.25 with k = 0, 5, 10 and 15. The computed interval box is just the
section corresponding to zero initial uncertainty in the velocity components. We remark that, at
the beginning, this section contains the box of random points, but that this does not necessarily
take place when the uncertainty in the velocity components increases.
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Figure 5.3: For t = k 6.25 with k = 0, 5, 10, and 15 we represent the boxes obtained using the
parallelepiped method and the position of the random initial points.

In a more precise way, the random box should be contained in the projection of the six
dimensional interval box computed by the method. Note that the projection in a plane of a
six dimensional box is, generically, a dodecagon. The corresponding projection containing the
position of the points of the initial random box is depicted in Figure 5.5.

In all of the methods, we observe the same type of behaviour. The interval boxes predicted
by the validated algorithm are quite precise during the first steps but then start to grow. This
implies that the first order variational matrix in the set, that is DT ({u0}) and the centre of
this variational matrix m(DT ({u0})) cannot longer be close enough. In other words, it seems
necessary at least a second order variational approximation in the set {u0}. This makes necessary
the implementation and analysis of the second order Interval Taylor methods.
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Figure 5.4: For t = k 6.25 with k = 0, 5, 10, and 15 we represent the boxes obtained using the KT
method and the position of the random initial points.

Parallelepiped QR-Lohner KT -equivariant

893.75 681.25 481.25

Table 5.3: Maximum time of integration (in days) obtained using second order interval methods. In
all the computations, h = 0.625 day and the initial uncertainty in position is ±10−6.

5.1.1 Second order interval methods

As explained in the sketch of validated methods of the Chapter before, all the Interval methods
can be generalised to second order Interval methods. We have implemented the second order
methods for the three types of algorithms. The more satisfactory results have been obtained
with the parallelepiped method. All the results are described in Table 5.3.

Now, if we apply the parallelepiped second order method to the Kepler’s problem with the
real initial uncertainty of ±5 × 10−8 in position, we obtain the results of Table 5.4.

To obtain these results it was necessary to use h = 0.0625 day. Using h = 0.625 day the
program breaks down because at some step (depending on the method) it is not possible to find
rough enclosure. Once more it becomes clear the need to suppress the rough enclosure step (see
B where an idea is provided to suppress this step of validation and to justify the use of larger
step size).

Remark. At this point we can comment on the fast increase of the size of the boxes near the



50 Chapter 5. Validated methods: results

1st. order 636.875 days

2nd. order 1575. days

Table 5.4: Maximum time of integration (in days) obtained using first and second order parallelepiped
interval methods. In all the computations, h = 0.0625 day and the initial uncertainty in position is
±5 × 10−8.

No Div. 268

Div. 1 (k = 26) 330

Table 5.5: Comparison between the maximum interval of time obtained without applying subdivision
and applying the first strategy subdivision. Unit days.

end of the admissible computations. Let ℓ be a typical size of the box at one step. At the next
step it is of the order ℓ(1 + αℓp) if a method of order p is used. Here α is a constant, probably
large, which accounts for bounds of higher order derivatives, dependency, etc. We can set up
the recurrence ℓk+1 = ℓk +αℓp+1 which, for small ℓk and smaller α can be approximated by the
solution of dℓ

dk = αℓp+1, which gives ℓk = (ℓ−p
0 − pαk)−1/p, with a singularity for k = 1

pαℓ
−p
o .

5.1.2 Subdivision strategy

We have implemented the subdivision process for the parallelepiped method of order one. Tables
5.5 and 5.6 contain the details of the computations. The initial uncertainty in position is 10−6

and the step size is h = 0.625 day. As explained before, we have considered two different
subdivision strategies:

1. Div. 1: We divide the initial interval box into k subintervals and then we propagate each
one of them separately.

2. Div. 2: We divide the interval box into k subintervals just when we compute the variational
matrix, DT ({u0}). After dividing the interval box, we can proceed in two different ways:

(i) We compute the variational matrix for each of the intervals, obtaining DT{ui
0} for

i = 0, ..., k, and we take the union of the interval components of the matrices to
produce the final DT{u0}. Then, we continue with the validated algorithm using the
variational matrix DT{u0}.

(ii) For each of the k interval matrices we compute the productDT{ui
0}A0, for i = 0, ..., k,

obtaining k matrices and then consider the union of each interval components to
construct the matrix DT{u0}A0.

As we can see, as the number of subdivisions increases we are able to integrate more time.
The main drawback is the computational time. In particular, we observe that the strategy 2
(ii) is better than the 2 (i) one because the former is able to reduce dependency and wrapping
problems. Figure 5.6 illustrates the boxes obtained using the first strategy. As before, the plot
contains a three dimensional representation and just the points with no uncertainty in velocity
should be contained in the boxes.

Alternative approaches, taking directly an interval which contains A[u], subdividing in in-
tervals and taking only the ones which intersect A[u] can also be considered, but have not been
implemented yet.
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Div. 2 k = 26 k = 36 k = 46

(i) 313 338 365.625

(ii) 441.25 446.875 448.75

Table 5.6: Comparison between the subdivisions methods (i) and (ii) of the second subdivision
strategy in terms of the maximum integrated time in days. The boxes are subdivided the same
number of times in each direction. So k = 26 means that two subdivisions are made in each
direction, k = 36 means three subdivisions in any of the six directions, and k = 46 four subdivisions.

5.2 Validated alternative to the rough enclosure

As we have already commented, the computation of a rough enclosure in any validated algorithm
strongly restricts the time step size. In particular, for the Kepler problem in the Apophis case
we have to use step sizes less than one day although the period is close to one year. To solve this
inconvenience, in Appendix B we describe a way to bound the remainder without using the rough
enclosure set in a validated way. This strategy also provides a way to choose an appropriate
variable step size which is much larger than the one provided by the rough enclosure method.

We recall that the Kepler equations, after normalising µ = 1, can be written as

ẍ = fx = −xr−3, ÿ = fy = −yr−3, z̈ = fz = −zr−3.

If the instantaneous distance to the body is assumed to be one, then the remainder of the
Taylor expansion of the Kepler equation can be bounded by

c−1

(

h

tf

)n+1 1

1 − h
tf

, (5.1)

where tf = 1
vc−

√
c

is the convergence radius of the solution with respect to the time variable,

c =
√

2 + 1 is the rate of increase of the coefficients of fx, fy and fz, and h is the step size (see
Appendix B for details).

We will bound the remainder by the roundoff error representation of the arithmetics (which
is equal to ε = 2−52) and find for a given order n the appropriate step size h. That is, we look
for h such that (5.1) is less than ε. We solve the equality

c−1 (ξ)n+1 1

1 − ξ
= ε,

or equivalently,
ξn+1 + (ξ − 1)εc = 0,

where ξ = h
tf

is solved iterating a Newton method using as initial guess ξ = 1. It is easy to see

that when n tends to ∞, ξ goes to 1 (i.e. h→ tf ).
Then we define the new step size h = fact ξtf , where fact is a constant. For instance, we

have chosen fact = 0.95. Before using the new step size we must check that the inequality

c−1 (ξ)n+1 1

1 − ξ
< ε,

is rigorously satisfied (using interval arithmetics). If it is not satisfied we can reduce fact .
Figure 5.7 shows the step size h predicted by the method explained above as a function of

the order n. We see that it tends to a value close to the convergence radius tf , precisely, as we
use fact = 0.95 to compute h, it converges to 0.95tf .
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1st. order 632.5 days

2nd. order 1529.375 days

Table 5.7: Maximum integration time obtained for Apophis in the (N + 1)-problem using first and
second order parallelepiped validated methods.

To apply this procedure to the general Kepler problem is necessary to rescale distance and
time at each step of integration. In the Apophis case, with initial uncertainty in position equal
to 10−6 and using order 28 in the Taylor expansion, the evolution of the step size along the
integration can be seen in Figure 5.8.

We note that the time of integration is almost the same as the one achieved using rough
enclosure. However, the number of iterates of integration is 64 instead of 429 iterates using
h = 0.625 and the rough enclosure procedure.

5.3 Validated integration of the Apophis orbit

This section describes the results obtained in the validated propagation of the orbit of Apophis.

We take as model the restricted (N + 1)-body problem, as initial box the one described in
Table 5.1 and as step size h = 0.0625 days. We have set uncertainty in position only in the
Apophis coordinates, not in the planets’ ones. Indeed, at each integration step we consider
the position and velocity of the planets as point intervals. This is because we need intervals
to computes the jet of derivatives associated with Apophis, but we read the coordinates of the
major bodies from the JPL ephemerides.

As mentioned before, the results offered by the Kepler model and those obtained with the
(N + 1)-body problem are very similar. Comparing Tables 5.7 and 5.4, we can appreciate how
the easiest model represents a good approximation for the full one.

5.4 Validated integration of the low-thrust problem

As explained previously, for the low-thrust mission we take as nominal orbits two trajectories
which require a manoeuvre in the course of the transfer. With a validated method we will likely
perform the manoeuvre when the box has become considerably large but this will not apply to
an actual mission. Rather, we can think to consider the trajectory as composed by different
branches and to treat each of them separately. In the real framework, we are given with ground
and on board instruments as reliable as to control and correct the orbit of the probe, as soon as
it deviates from the nominal one. To fix ideas, we assume that orbit determination is available
every day. In other words, a validated analysis of the low-thrust problem can make sense if we
take into account short intervals of time.

The first case analysed takes as initial condition a validated box centred at the point given
in Tables 3.10 and 3.11 setting an uncertainty in space of 10−12 AU. We will put uncertainty
not only in position but also in the thrust magnitude, in order to consider the error relative to
the engine’s power. In particular, we have considered three values of uncertainty for the thrust:
0, 5 × 10−9 and 5 × 10−8 AU/day2, respectively.

We apply the parallelepiped method of first and second order without subdivision to prop-
agate the box forwards in time with FT < 0 and Vc = VMoon and also backwards in time with
FT > 0 and Vc = VEarth, that is, when we are braking towards the Moon or accelerating from
the Earth, respectively. We have used different values for the integration step to see how the
result might change according to it. In Tables 5.8 and 5.9, we show the maximum interval of
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thrust error first order second order

0 6.7875 6.8375

5 × 10−9 4.41875 4.5625

5 × 10−8 3.63125 3.7875

Table 5.8: Maximum interval of time obtained until the first and the second order parallelepiped
method break down. The initial box considered is centred at the point given in Tables 3.10 and 3.11
with an uncertainty in space of 10−12 AU. The integration has been performed forwards in time with
FT < 0 and Vc = VMoon, which corresponds to the trajectory’s leg going from L1 to the Moon. The
integration step is h = 0.00625 days. The first column refers to the error assumed for the thrust.
Units AU/day2 and days.

thrust error first order second order

0 9.6125 9.8125

5 × 10−9 4.6875 4.76875

5 × 10−8 3.4875 3.575

Table 5.9: Maximum interval of time obtained until the first and the second order parallelepiped
method break down. The initial box considered is centred at the point given in Tables 3.10 and
3.11 with an uncertainty in space of 10−12 AU. The integration has been performed backwards in
time with FT > 0 and Vc = VEarth, which corresponds to the trajectory’s leg going from L1 to the
Earth. The integration step is h = 0.00625 days. The first column refers to the error assumed for
the thrust. Units AU/day2 and days.

time obtained until the given method breaks down using h = 0.00625 days. In Tables 5.10 and
5.11, we display the results referring to h = 0.0078125 days. Comparing a first order validated
method with a second order one, we note that the greater computational effort needed in the
second case is not worth, since it does not result in a significant improvement. The same can
be observed comparing different integration steps. Apart from those showed, we have tried with
h = 0.0625 and h = 0.000244140625 days.

A similar effort has also been devoted to test QR–Lohner methods of first and second order
on the low–thrust transfers. Though increasing the order does not provide any meaningful
contribution, in this case we obtain much better results in the L1–Earth’s leg of trajectory
comparing with those offered by the parallelepiped method. In Figure 5.9, we show the orbit
integrated with the two methods, considering null the error for the thrust.

With respect to the other nominal trajectory, departing from a box centred at the point
given in Tables 3.8 and 3.9 and setting an uncertainty in space of 10−12 AU, with any of the
above methods we are able to launch the validated integration only with h <= 10−6 days, which
is not an useful parameter. This difficulty arises because of the short period associated with the
initial condition considered and because of the small distance with respect to the Earth.
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thrust error first order second order

0 6.9140625 6.875

5 × 10−9 4.3984375 4.5625

5 × 10−8 3.6328125 3.7890625

Table 5.10: Maximum interval of time obtained until the first and the second order parallelepiped
method break down. The initial box considered is centred at the point given in Tables 3.10 and 3.11
with an uncertainty in space of 10−12 AU. The integration has been performed forwards in time with
FT < 0 and Vc = VMoon, which corresponds to the trajectory’s leg going from L1 to the Moon. The
integration step is h = 0.0078125 days. The first column refers to the error assumed for the thrust.
Units AU/day2 and days.

thrust error first order second order

0 8.8203125 9.8828125

5 × 10−9 4.4765625 4.7734375

5 × 10−8 3.4921875 3.578125

Table 5.11: Maximum interval of time obtained until the first and the second order parallelepiped
method break down. The initial box considered is centred at the point given in Tables 3.10 and 3.11
with an uncertainty in space of 10−12 AU. The integration has been performed backwards in time
with FT > 0 and Vc = VEarth, which corresponds to the trajectory’s leg going from L1 to the Moon.
The integration step is h = 0.0078125 days. The first column refers to the error assumed for the
thrust. Units AU/day2 and days.
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Figure 5.5: Two dimensional projection of the 6D interval box computed using the parallelepiped
method at t = 250 days. From left to right and from top to bottom the corresponding plane of
projection is xy, xz, xvx, xvy, xvz, yz, yvx, yvy, yvz, zvx, zvy, zvz, vxvy, vxvz, and vyvz.
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Figure 5.6: Propagation of the 64 boxes contained in the initial box with uncertainties 10−6 in
position. From left to right and top to bottom t = 0, 31.25, 62.5, 93.75 days.
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Figure 5.8: Evolution of the step size along the integration, for the alternative method proposed in
Section 5.2. Step size h in days (y-axis) vs. iterate of validated integration (x-axis) for the Apophis
Kepler problem.
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5.5 Summary

Here we summarise the results obtained in this chapter. We have developed three different
interval based methods:

• Parallelepiped,

• QR - Lohner,

• KT - equivariant.

First, we have tested them for the Kepler problem using a first and second order approach,
following the ideas of the original Moore’s algorithm. In Table 5.12 we can see these results for
all these methods taking an initial uncertainty of ±10−6 and an integration step size h = 0.625.

Parallelepiped QR - Lohner KT - equivariant

1st order 268.75 493.75 473.75

2nd order 893.75 681.25 481.25

Table 5.12: Comparison of the maximum time of integration (in days) obtained for the 3 different
methods using 1st and 2nd order approaches. In all the computations we have taken a step size
h = 0.625 days and an initial uncertainty of ±10−6

As the step size provided by the classical rough enclosure method is very small, we have de-
veloped a new strategy (see Section 5.2), adapted for the Kepler problem, that can be generalized
to N -body problems). This allows to use step sizes about 7 times larger (see Figure 5.8).

We have also developed and tested three different subdivision strategies (see Section 5.1.2
for more details on the differences) and we have tested them using the parallelepiped method.
In Table 5.13 we can see the results of applying the different subdivision strategies with the first
and second order methods. In Table 5.6 we can see the results of considering the two subdivision
strategies and applying them for a different number of subdivisions.

1st order 2nd order Subdiv 1 Subdiv 2i Subdiv 2ii

268.75 893.75 340 313 441.25

Table 5.13: Comparison of the maximum time of integration (in days) obtained for the parallelepiped
method using 1st and 2nd order approaches and different subdivision strategies. In all the computa-
tions a step size h = 0.625 days and an initial uncertainty of ±10−6 is used.

According to the previous results and the accuracy of the computed interval boxes it seems
that the parallelepiped method is the best choice. We have applied this method, using the
first and second order approaches, to our two applications: the motion of a NEO, taking the
particular case of Apophis, and the motion of a low-thrust probe in the Earth-Moon system.

Table 5.7 shows the results for the Apophis case, taking and integration step size h = 0.0625.
We can see that, in this case, taking the second order parallelepiped method is much better. We
notice that the results are very similar to the results obtained for the Kepler problem.

In Tables 5.8, 5.9, 5.10 and 5.11 we can see the results for the motion of a low-thrust probe.
In this case we can see that the gain obtained when we consider second order methods is almost
negligible.
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Chapter 6

Conclusions and future work

6.1 Conclusions

After looking at the topics presented in this report and to the available literature on Self Vali-
dated Integrators, the following conclusions have been reached:

1) For non-validated integrations, the Taylor method has been widely tested. In the case of
non-stiff equations, for analytic vector fields or, at least, for sufficiently regular ones, it
seems to be a good choice.

Main points are: 1. Recurrent computation of higher order coefficients by automatic
differentiation; 2. Truncation error negligible in front of round off errors; 3. Suitable order
for optimal performance, and 4. Optimal step size depending only of the local radius of
convergence of the expansion and, in particular, independent of the number of digits used
in the computations.

The propagation of the round off errors in the first integrals displays the characteristics
of a random walk. In some sense, one cannot do better. Furthermore, for given initial
conditions and final time one easily obtains that the cost is proportional to d4 when working
with an arithmetic with d digits.

It also allows to implement the integration of variational equations. This, in turn, gives a
way to propagate a box of initial data.

2) When dealing with intervals the key problems to face are dependency and wrapping. Their
influence in the integration of ODE is crucial, specially for relatively long time intervals.

It is important to note that we can consider two different kinds of problems. First one
appears if our purpose is to give a Computer Assisted Proof of some fact like existence
of a periodic solution or a transversal homoclinic solution. Second one concerns with the
propagation of a given initial set of data.

In the first case it is possible to use a large number of digits. This allows to “delay” the
apparition of problems due to dependency and wrapping. A good and efficient implemen-
tation of interval arithmetic is essential to speed up the computations.

In the second case, if the initial box is relatively large, then the proper dynamics can
largely increase the size of the box. This occurs, typically, at a linear rate, for integrable
Hamiltonian systems, like Kepler’s problem. The behaviour is similar for an asteroid,
except during the periods of close approaches. Then, as in the general case of chaotic
systems, the rate of increase is exponential.

In this last case the influence of the errors introduced by the arithmetic is almost negligible.
The bad problem is that all estimates must be done in large boxes. As mentioned at the
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end of Section 5.1.1, even in a simple model describing the rate of increase of the size of
the boxes, the procedures lead to a singularity in the size of the boxes.

3) Our efforts have been devoted to the implementation of algorithms based of Lohner algo-
rithm and variants. We have found three, non independent, main sources of difficulties.
We describe them shortly and how we have tried to solve them.

a) First one concerns with rough enclosure. Starting with a current box at some moment
t∗ of the integration one should find another box which contains the image of that
box for all t in the interval [t∗, t∗ + h], where h is the current time step. This is done
to obtain existence of the solution and to bound the errors of the Taylor method used
to do one time step. The procedure is iterative and the value of h has to be very
small, of the order of the inverse of the Lipschitz constant of the vector field, to have
convergence. This constant can increase in a non-admissible way when the size of the
boxes increase far beyond the true size of the propagation of the starting box, due to
dependency and wrapping.

The fact that the rough enclosure is small is not critical concerning the final re-
sult about the size of the boxes at a given final time, but it affects, definitely, the
computing time.

An approach which largely improves the computations skips the computation of rough
enclosure and replaces it by analytical estimates, based on the domain of analyticity
of the vector field. Using tools from analysis we have been able to produce lower esti-
mates of the radius of convergence and upper estimates of the remainder. Appendix
B contains a sketch of the method for Kepler’s problem. It can be extended to the
perturbations of other bodies and to general analytic vector fields.

b) Next difficulty is dependency. At every operation one takes the worst case among all
the possible choices of elements contained in the boxes involved in the operation. But,
in general, they are not independent because they can come from different real number
computations done with the same elements. To compute f(I) for all elements x in a
set I is an almost impossible task if the computation of f involves many individual
operations and we want to produce sharp estimates.

A mild remedy we have tried is to change the interval arithmetic in the elementary
case of computing squares of real intervals. But the improvement is minor. A better
approach is based on subdivision, to be commented in next item.

c) Last problem is wrapping. Every time an operation with sets is done, we must put
the result inside a set of a given class, using some suitable representation. To mimic
the behaviour of the true dynamics a convenient method consists in representing the
sets as a central point plus a matrix applied to a product of intervals in R. This is
how boxes propagate under the first variational equations. The size of the boxes has
to be increased to account for the remainder and errors in the operations.

An important difficulty is that the differential matrix, even keeping the symplectic
character in the integration of Hamiltonian systems, can have a strong increase in
the condition number. Some representations like QR or similar decompositions can
improve the results in a moderate way.

In the case of Kepler problem (integrated without taking into account any special
property, like passing to action angle variables) both dependency and wrapping pro-
duce an increase of the size of the box across the orbit. This implies changes in the
energy, hence in the frequency and, therefore, in the size along the orbit.

A suitable method to cope with these difficulties is subdivision. This can be done at
two different places:
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A. On the initial box of data.

B. When an initial box is propagated under the algorithm, instead of putting the
image of the box inside a product of intervals, it can be covered by small boxes of
the same kind, with a minimal covering.

Anyway, subdivision has the drawback of a strong increase in the computing time.
This is specially dramatic when the dimension of the phase space is high. Dimension 6
gives not so many chances to subdivide in small elements with a reasonable computing
time.

4) As a result of the experiments carried out inside this project we conclude that Lohner-like
base methods are suitable when the following conditions are satisfied:

A. The size of the initial set of data is very small.

B. The time interval during which the system has to be integrated is moderate.

C. The rate of increase of the size of the boxes is moderate.

Even if these condition hold, it is quite convenient to try to avoid the computation of rough
enclosures and replace them by analytical estimates. This can decrease in a significative
way the computing time.

5) Another possibility, yet to be explored, is the use of Taylor based methods, not only for
the time integration but also for the propagation of an initial set of points. That is,
at every time step one should produce a Taylor expansion with respect to the variation
of the initial conditions plus a (hopefully) small box containing the propagated effect of
remainders (in the time step and in the phase space variables) plus the effect of the errors
in the operations.

From a mathematical point of view what is done is a propagation of the solution as a
truncated jet (a polynomial) representation in terms of the initial conditions, with control
on all errors.

This method allows to decrease most of the problems due to dependency and wrapping.
The price to be payed is the computational cost. In some sense it can be considered
as a Lohner-like method of high order in which boxes are kept to a minimal size. The
implementation also differ. While Ck Lohner methods integrate variational equations, the
propagation of the jet in Taylor based methods is done symbolically, using routines for all
the required operations as polynomials in several variables.

Anyway, even these methods require subdivision when the size of the propagated box is
too large and the intervals bounding the remainder exceed a given size.

6) An important point is the optimality of the algorithms used, not only considering sharpness
of the results, but also computing time. Preliminary attempts are included in Appendices
A and B.

The fact that both time integration and dependence with respect to initial conditions are
obtained by Taylor methods (or, equivalently, integration of variational equations) raises
the problem of optimal orders with respect to each one of the variables, both time step and
phase space variables. If the sizes of an initial box are quite different in different directions
the orders of the expansion must adapt to that fact.

Careful a priori operation counts, which strongly depend on the algorithms used, allow to
discuss the optimal strategy concerning subdivision. This also gives the optimal step size
to be used to achieve optimal performance keeping an admissible bound on errors.
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6.2 Future work

The study of the literature on the topic, the experience gained in this project, the difficulties
encountered during its realisation and the analysis we have done of the problem suggest several
lines of future work. We consider that they are quite promising.

i) Definitely gain also experience by implementing Taylor based methods. The dependence
and wrapping effects seem to influence too strongly Lohner-like algorithms for the transport
of big boxes during long time intervals.

ii) Items 4) and 5) in the Conclusions give a first indication about when it is suitable to use
one of the two main approaches to deal with a given problem. After i) above, explicit
comparisons of the relative performance should be done in a battery of problems.

iii) Analytical methods to obtain estimates for radius of convergence in the time integration,
in bounding the remainder and in the domain of validity and remainder in the phase
space variables should provide an alternative to other estimates. This requires location of
singularities of the vector field in the complex phase space, Cauchy estimates for bound
of the rates of increase of the coefficients in a polydisc, etc. Even for entire vector fields
(e.g., a polynomial vectorfield) the solutions display generically singularities, perhaps for
some complex time, which give the local radius of convergence.

iv) A delicate point is the optimality of the expansions used concerning efficiency. The vector
field can be the sum of different contributions, like in the asteroid case. The main effect
is the solar attraction and the effect of the other bodies is a perturbation, except in close
approaches to a planet or moon, where the roles exchange.

Taylor series for time integration can be computed to a different order for each one of the
contributions, taking into account, of course, the couplings between the different terms
(the so-called indirect effects in Celestial Mechanics). Optimality can then require s subtle
strategy. We consider worth to explore this.

A similar thing appears with the suitable orders to be used in the expansions in the phase
space variables, with respect to each one of the variables.

v) Final topic of future work can be the inclusion of random terms in the vector field, such
as uncertainties in some forces, errors in the execution of manoeuvres, etc. This is easily
done in Lohner-like algorithms, while it requires the inclusion of additional variables in
Taylor based methods.

Uncertainties and errors in manoeuvres, as mentioned, have typically a statistical distri-
bution, according to a given probability law. In the case of compact support this can be
approximated by a distribution of probabilities in a finite set of small boxes. This is also
true, for instance, in the propagation of a set of initial conditions for an asteroid, where
orbit determination provides a statistical distribution of errors.

Rigorous methods should be able to deliver a (discrete) approximation of the propagated
distribution of probability. This is really important but still seems to be far in the future
and will require a strong use of parallelism. But one should keep the point in mind.
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Appendix A

N-body variationals, asteroid case

A.1 Set up and variational equations

We want to integrate the variational equations for an asteroid, at the same time that the motion,
correcting the position of the N main bodies by using the JPL 405 ephemerides (or not).

The equations of motion for the asteroid can be written as

ẍA = fx =

N
∑

j=1

mj(xj − xA)r−3
j,A, r2j,A = (xj − xA)2 + (yj − yA)2 + (zj − zA)2,

and similar equations for the other coordinates: ÿA = fy, z̈A = fz.

Let ξ, η, ζ denote the first three components of the solution of the first order variational
equations, written in vector form. It is clear that it is enough to obtain the Taylor solutions of
these. Then, the first derivatives with respect to time, easily computable from the jets of ξ, η, ζ,
give the remaining 3 components, and starting with the different columns of the identity matrix
we recover the full first variational matrix.

Note that the effect of the changes of velocities appears due to the fact that the velocities
give the terms of order 1 in the jet of the coordinates. This means that, instead of 6×6 equations
we need only to integrate 3 × 6.

To this end we write

ξ̈ = Dxfxξ +Dyfxη +Dzfxζ, η̈ = Dxfyξ +Dyfyη +Dzfyζ, ζ̈ = Dxfzξ +Dyfzη +Dzfzζ,

which gives the recurrences to be used in Taylor’s method. ObviouslyDxfx denotes the derivative
of fx w.r.t. xA and similar for the others. As the 3 × 3 matrix containing the D∗f∗ is minus
the Hessian of the Hamiltonian w.r.t. the position coordinates of the asteroid, it is symmetric:
Dxfy = Dyfx, etc.

A trivial computation gives

Dxfx =

N
∑

j=1

mj

(

−r−3
j,A + 3(xj − xA)2r−5

j,A

)

, Dyfx =

N
∑

j=1

mj3(xj − xA)(yj − yA)r−5
j,A,

and similar for the other cases.

To obtain the second (and higher) order variational equations it is better to use indices. Let
w = (w1, w2, w3)

T = (x, y, z)T and denote as w0 the initial values. The values w4, w5, w6 denote
the respective time derivatives. As mentioned these velocities appear as initial conditions (i.e.,
in w0) but in w only the position coordinates are necessary. We shall use the shorter notation
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wn,i, wm,ij , wm,ijk, etc to denote
∂wn

∂w0
i

,
∂2wn

∂w0
i ∂w

0
j

,
∂3wn

∂w0
i ∂w

0
j∂w

0
k

, etc. From the first variational

equations

d2

dt2
∂wm

∂w0
i

=

3
∑

k=1

∂fwm

∂wk

∂wk

∂w0
i

, or
d2

dt2
wm,i =

3
∑

k=1

∂fwm

∂wk
wk,i,

we obtain immediately

d2

dt2
wm,ij =

3
∑

n,p=1

∂2fwm

∂wn∂wp
wn,iwp,j +

3
∑

n=1

∂fwm

∂wn
wn,ij .

Recall that the initial conditions are wm,ij = 0 and the same happens for the initial conditions of
higher order variational equations. These solutions differ because the equations contain wn,iwp,j

or similar terms, which do depend on the initial changes in both positions and velocities. Also
the symmetry w.r.t. the indices i, j allows to reduce dimension. Instead of 36 different sets of
initial conditions for the initial variations of the positions and velocities w0

i , w
0
j , it is enough to

use 21. This has to be done for each one of the 3 variables wm. These considerations reduce the

total number of second order variationals from 216 to 63, that is 3 ×
(

7
5

)

.

The equations involve second derivatives
∂2fwm

∂wk∂wn
, which can be computed as

∂2fx

∂x2
=

N
∑

j=1

mj

(

−9(xj − xA)r−5
j,A + 15(xj − xA)3r−7

j,A

)

,

∂2fx

∂x∂y
=

N
∑

j=1

mj

(

−3(yj − yA)r−5
j,A + 15(xj − xA)2(yj − yA)r−7

j,A

)

,

∂2fx

∂y∂z
=

N
∑

j=1

mj15(xj − xA)(yj − yA)(zj − zA)r−7
j,A,

the remaining ones being obtained from the symmetries or by cyclic permutation of indices.
These formulas can be computed in different ways, to minimise the number of operations, as
shall be discussed later.

If we go to third and fourth order variationals (we shall refrain to go farther explicitly) the
equations become

d2

dt2
wm,ijk =

3
∑

n,p,q=1

∂3fwm

∂wn∂wp∂wq
wn,iwp,jwq,k+

3
∑

n,p=1

∂2fwm

∂wn∂wp
(wn,ijwp,k +wn,ikwp,j + wn,jkwp,i) +

3
∑

n=1

∂fwm

∂wn
wn,ijk ,

d2

dt2
wm,ijkl =

3
∑

n,p,q,r=1

∂4fwm

∂wn∂wp∂wq∂wr
wn,iwp,jwq,kwr,l +

3
∑

n,p,q=1

∂3fwm

∂wn∂wp∂wq
×

(wn,ijwp,kwq,l+wn,ikwp,jwq,l+wn,ilwp,jwq,k+wn,jkwp,iwq,l+wn,jlwp,iwq,k+wn,klwp,iwq,j) +

3
∑

n,p=1

∂2fwm

∂wn∂wp
(wn,ijwp,kl + wn,ikwp,jl + wn,jkwp,il +wn,ijkwp,l) +

3
∑

n=1

∂fwm

∂wn
wn,ijkl .
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Furthermore the number of equations to be integrated, taking into account the symme-

tries, for the variational equations of order s is 3 ×
(

s+ 5
5

)

. For orders 3, 4, 5, . . . we obtain

168, 378, 756, . . ., respectively.

It has to be stressed that, while in the second and third variational equations a factor

which comes from a derivative of fwm, like
∂2fwm

∂wn∂wp
, multiplies products of the solutions of the

previous variationals equations of the same type, like wn,ijwp,k in the third order variational, for
variationals of order greater than 3 this is not true in general. For instance, in the fourth order

variationals
∂2fwm

∂wn∂wp
multiplies both terms of the forms wn,ijwp,kl and wn,ijkwp,l. This comes

from the fact that, in general, in the partitions of a number there exist several partitions in the
same number of pieces. In the example 4 = 2 + 2 = 3 + 1.

A.2 A count on operations

Let us start a count on operations. Assuming that we work up to order M in the Taylor series
and that the order is kept fixed for all the computed variationals, we assume that the cost of a
product, a square and a power are, respectively,

M2,
1

2
M2 and 2M2.

A first part of the cost comes from the integration of the motion of the N massive bodies.
Even if we use JPL ephemerides, the jet for the asteroid depends on the jets of the N bodies. For
every term in the sums we have to compute: ∆xi,j = xj−xi, ∆yi,j = yj−yi, ∆zi,j = zj−zi,∆x2

i,j,

∆y2
i,j, ∆z2

i,j , that is, 3 squares. Then we have immediately r2i,j and it remains to compute a

power (r2i,j)
−3/2 and then its products by ∆xi,j, ∆yi,j, ∆zi,j, etc. In all we have an estimate

(

N
2

)

× (3 × 1

2
+ 2 + 3) ×M2 =

13

2
M2

(

N
2

)

.

Next step is the computation of the jet of the asteroid. Instead of following the above method,
we compute in a slightly different order which is a little bit better when including variationals.
For each one of the N bodies we compute the contributions as:

∆xj,A, ∆yj,A, ∆zj,A, ∆x2
j,A, ∆y2

j,A, ∆z2
j,A, r

2
j,A, 1/rj,A, 1/r2j,A,

∆xj,A/r
2
j,A, ∆yj,A/r

2
j,A,∆j,A/r

2
j,A, ∆xj,A/r

3
j,A, ∆yj,A/r

3
j,A, ∆j,A/r

3
j,A.

In all, 4 squares, 1 power and 6 products, with a cost 10NM2.

Then the successive derivatives,
∂fwm

∂wn
,
∂2fwm

∂wn∂wp
,

∂3fwm

∂wn∂wp∂wq
are computed, recurrently, by

multiplication of jets already available by the jet of one of the expressions 1/r2j,A, ∆xj,A/r
2
j,A,

∆yj,A/r
2
j,A, ∆j,A/r

2
j,A. The cost for the derivatives of increasing order of f which appear in

the first, second, third, fourth, fifth, ... order variationals is, in multiples of NM2, equal to
1 + 6 = 7, 3 + 10 = 13, 1 + 6 + 15 = 22, 3 + 10 + 21 = 34, 1 + 6 + 15 + 28 = 50, etc. It will
be clear in a moment that this cost becomes negligible, for a fixed N , when the order of the
variationals increases.

The computation of the right hand sides of the variationals requires several steps:

1) Computing the derivatives of fwm, already discussed in last paragraph.
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2) The computation of all the intermediate products, that is, terms of the form wn,iwn,j,
wn,iwn,jwp,j, wn,ijwn,k, wn,iwn,jwp,jwr,l, wn,ijwn,kwp,l, wn,ijwn,kl, wn,ijkwn,l, etc. It is
clear that all these products can be obtained recurrently from the previous ones by a
single multiplication. Hence the cost is just the number of products of each one of the
types, taking into account the symmetries. Some of them are squares, but the fraction is
small and we shall not take advantage of that fact.

Up to order five there are 13 types of products. Each type of product is identified as a
partition. So, the partition 2 + 1 + 1 identifies products of the form wn,ijwn,kwp,l. The
table summarises the count.

1+1 171
1+1+1 1140
2+1 63 × 18 = 1134
1+1+1+1 5985
2+1+1 63 × 171 = 10772
2+2 2016
3+1 168 × 18 = 3024
1+1+1+1+1 26334
2+1+1+1 63 × 1140 = 71820
2+2+1 2016 × 18 = 36288
3+1+1 168 × 171 = 28728
4+1 378 × 18 = 6804
3+2 168 × 63 = 10584

3) The products of the intermediate ones by the derivatives of fwm. It is clear that all the
intermediate products that multiply the same derivative of fwm, taking into account the
symmetries of these derivatives in each equation, can be added before doing the corre-
sponding product. Hence, in each one of the first variationals one needs 3 such products,
in each one of the second ones 6 + 3 = 9, etc.

In general, in each one of the variational equations of order s the number of these final

products is

(

s+ 3
3

)

− 1. This has to be multiplied by the number of equations, as given

in next table, which presents order, number of equations, final products per equation and
total number of final products.

1 18 3 54
2 63 9 567
3 168 19 3192
4 378 34 12852
5 756 55 41580

4) As final step we have to add all costs found till now. This is given as a function of the order
s of the variationals (from 0 to 5) and the cost is expressed in multiples of M2, where we
recall that M is the order of the Taylor method. One could also consider different Taylor
orders for the successive variationals.

In the third column of next table we produce the values for N = 10 massive bodies
(rounded to next integer) and in the fourth one the accumulated values C(s). One can
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check that the role of N is negligible for s > 2. Furthermore, for s > 3 most of the cost
comes from the computation of the intermediate products.

0 13N(N − 1)/4 + 10N 393 393
1 7N + 54 124 517
2 13N + 738 868 1375
3 22N + 5466 5686 7061
4 34N + 34650 34990 42051
5 50N + 222138 222638 264689

A fit of the accumulate results shows that the rate of increase for s > 1 behaves roughly like
C(s) = c1 exp(c2s), but that value of c2 increases slowly when only the last 3 or 2 points are
taken. A working value of c2 can be 1.85.

A.3 On the optimal variational order to propagate a box

Now we face the problem of the optimality of the order of the variationals when we want to
propagate a given box. We start with a suitable set up and assumptions:

a) We start at some time t0 = 0 and want to arrive at a time tf . The goal is to transport
a box with sides of typical size ℓ. The analysis can be easily modified if not all of the
sides are equal. There is freedom in the selection of the order of the variationals used to
transport boxes.

b) We assume that the error in the representation of the map time-tf using up to order s in
the variationals, is of the type Kf (ℓ/Rf )s+1, where Rf is the radius of convergence and
Kf the factor in the Cauchy estimates. One desires a bound of the error of the form

Kf (ℓ/Rf )s+1 ≤ ε,

for some fixed value of ε.

c) Independently of the dimension of the problem we assume that the problem has mainly
d unstable directions, either because of positive Lyapunov exponents or because there is
a strong shear in one or more directions. For instance, in Kepler’s problem or mildly
perturbed Kepler’s problems one has d = 1 because of the shear along the orbit.

d) To achieve the goal it is possible to subdivide the box of size ℓ in boxes of size ℓ/m in each
one of the d directions. Of course, the values of m can be different in each direction, but
we shall take them equal for simplicity. An increase of the order of the variationals allows
to take less subboxes, at the price of a higher cost. We want to optimise.

e) We also assume that the number of steps Sf is independent of the order of the variationals
used. Furthermore, for simplicity, we assume the subdivision is done at t0. Other strategies
are possible, using different subdivisions at different stages of the integration.

Then the value of m is selected as m =
ℓ

Rf

(

ε

Kf

)−1/(s+1)

and the total cost is

SfC(s)

[

ℓ

Rf

(

ε

Kf

)−1/(s+1)
]d

.
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We assume C(s) = c1 exp(c2s), introduce ε̂ = ε/Kf and take logarithms. Skipping all terms not
depending on s, we obtain

c2s+
d

s+ 1
log(ε̂−1),

for which the minimum is attained for s+ 1 =
√

d log(ε̂−1)/c2.

A rough application to the asteroid problem assuming d = 1, c2 = 1.85, ε̂ = 10−20 gives s ≈ 4.
One can check the behaviour of C(s)ε̂−1/(s+1) using the available values of C(s). The figures
obtained for s = 2, 3, 4, 5 are, respectively, 6.38× 109, 0.706× 109, 0.420× 109, 0.570× 109. This
shows that, indeed, s = 4 is a good choice but that also one could use s = 3 with a larger cost,
still admissible, and easier to implement.

A.4 On the integration of a finite jet

Another possibility is to transport a jet. More concretely, assume that some equation x′ = f(x)
starts at an initial point (t0, x0). At every step of the time integration, say, at time t, we
can assume that if at time t0 we start at point x0 + ξ one has a truncated Taylor expansion
representation of the solution of the form

ϕt(x0 + ξ) = ϕt(x0) + Pk(ξ) +O(|ξ|k+1),

where Pk(ξ) denotes a polynomial of degree k in the ξ variables, without independent term.

Of course, the coefficients in Pk depend on time. We want to propagate this representation
to a new time.

An alternative to the use of variational equations, much on the spirit of Taylor methods is
as follows.

In the formulas for the integration of the differential equation one can start, not with initial
conditions x0 but with x0 + ξ, keeping ξ as formal variables. Then all the computations are
carried out as polynomials in ξ up to some prescribed order, say k. Hence, instead of computing
a jet with respect to t having numbers as coefficients, we have polynomials in n variables up to
order k. It is possible to assign weights to the ξ variables to do the computations up to a given
weighted order. But we shall confine the description to the usual weights.

Starting with linear data (x0)i +ξi, i = 1, . . . , n the propagation up to a final time t produces
the desired ϕt(x0 + ξ) up to order k.

A.4.1 Operation count

A key point is the count on the number of operations in contrast to the previous counts using
variational equations. It is clear that now every arithmetic operation (∗,+) we had before, is
replaced by operations with polynomials of degree k in n variables, with the result truncated
to order k. The computation of sums can be neglected in front the one of the products. Let
c(n, k) be the cost of one product in n variables to order k. This cost denotes the number of
arithmetic operations (1 sum and 1 product) to be done. The table gives, as an example, the
values of c(n, k) for n = 6 as a function of k.

The main task when integrating N -body problems is the computation of squares, power
−3/2 and products. As the sums can be neglected, if we keep order M with respect to t the
cost of every square is, roughly, c(n, k)/2 and the products and powers is c(n, k). The total cost
depends on M .

To fix ideas we start with the 3D Kepler’s problem. The cost of one step will be 11
2 M

2c(6, k).
For k = 4, 5 this amounts, respectively, to 10010M2, 34034M2 , which compares in a very
favourable way to the previous table if we skip the contribution of the N bodies.
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1 13 7 50388
2 91 8 125970
3 455 9 293930
4 1820 10 646646
5 6188 11 1352078
6 18564 12 2704156

However, if we integrate an asteroid under the influence of N bodies, even if the jets of the
N bodies are only needed for their contribution to the one of the asteroid (and then we recover
the “correct” data for the N from JPL ephemerides, the computation with the 6 variables ξ
must be done in each one of the terms of the form (xj − xA)r−3

j,A. Essentially this multiplies by
N the cost of carrying out the computation, even taking into account that we only want the
expansion in ξ for the motion of the asteroid.
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Convergence and remainder

We consider the problem of rigorous integration of Kepler’s problem. Of course everything is
known analytically. But trying to extend this to the integration of a planetary system, it is
convenient to derive estimates, even rough estimates, which can be extended to the general
case.

The main idea is similar to the ideas used in the proof of Cauchy’s theorem for analytic
vector fields by majorant method.

The equations of motion can be written as

ẍ = fx = −xr−3, ÿ = fy = −yr−3, z̈ = fz = −zr−3,

where r2 = x2 + y2 + z2. We are assuming that the factor µ = GM = 1. This can always be
achieved by selection of units. We also assume that the initial distance, at t = 0 is 1 and from
now on we replace x, y, z by x0 − x, y0 − y, z0 − z, that is, the point (x0, y0, z0) is the initial
location (in fact, the location at the beginning of every time step) and x, y, z denote the changes
with respect to that point. Furthermore, as the equations are invariant under the action of
SO(3), it is not restrictive to take (x0, y0, z0) = (1, 0, 0).

As a first thing we want to obtain estimates of the rate of increase of the coefficients in the
equations of motion. We start with the term r−3/2 = ((1 − x)2 + y2 + z2)−3/2. Assume that we
take x, y, z as complex variables in a disc or radius R. It is clear that the worst situation consists
in taking x ∈ R, y ∈ i R, z = i R. If x = R, y = iR, z = iR then the condition |r2| > 0 implies
implies R <

√
2−1. Hence, the rate of increase of the coefficients in fx, fy, fz is c = 1/R =

√
2+1,

that is fw is majorated as follows:

|Cm,n,p| ≤ Kcm+n+p,

where Cm,n,p is the coefficient of xmynzp and w denotes any of the variables x, y, z.
In fact we are not only interested in r−3/2 but on (1 − x)r−3/2, yr−3/2, zr−3/2. It is easy to

obtain the expansions of these functions and an elementary (but tedious) computation involving
combinatorial numbers gives that the constant K above can be taken equal to 1 for the three
functions. This proves, in particular

|fw| ≤
∑

m,n,p≥0

|x|m|y|n|z|pcm+n+p =
1

(1 − c|x|)(1 − c|y|)(1 − c|z|) .

Let v ≥ 0 be the maximum of the absolute values of the components of the velocity at the
initial time, say t = 0. The majorant method shows that the variables x, y, z have a common
bound given by the solution of

ẍ =
1

(1 − cx)3
, x(0) = 0, ẋ(0) = v.
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This is a Hamilton equation with Hamiltonian H(x, p) =
1

2
p2 − 1

2c(1 − cx)2
. It is immediate

to find the explicit solution. Let γ = v2c− 1. Then

x(t) =
1

c

[

1 −
(

1 − 2cvt+ γct2
)1/2

]

.

This has two applications: a lower (and quite rough) estimate of the radius of convergence of
the solution of the initial system is given by value of t for which 1 − cx = 0 in the expression

above, that is t = tf =
1

vc+
√
c
. We also introduce, for later use, the value tg =

1

vc−√
c

and

note that x(t) = 1
c

[

1 − ((1 − t/tf )(1 − t/tg))
1/2

]

.

Second application is the estimate of the remainder. Expanding
(

1 − 2cvt+ γct2
)1/2

=

(1 − t/tf )1/2(1 − t/tg)
1/2 one finds, for the coefficient of tn, say an, the expression

|an| = c−1

∣

∣

∣

∣

∣

n
∑

k=0

(

1/2
n− k

) (

1/2
k

)

t−k
g tk−n

f

∣

∣

∣

∣

∣

.

In particular, one also obtains |an| ≤ c−1t−n
f .

As an example we can consider the case v = 1. Then the radius of convergence is bounded
from below by 1/(

√
c + c) ≈ 0.252. The values |an|tnf decrease from some point on. If one uses

order 30, it is enough to take a step 0.1 to have a bound of the error below 10−15.
As said before this approach is easily extended to N -body problems, by adding to the

majorant of the vector field all the contributions. Anyway, the estimates are relatively pessimistic
because we are considering the worst case in a complex ball around the initial point.

Similar results can be applied to general analytic equations. If we assume ẋ = f(x), x ∈ R
n,

it is possible to produce estimates of the radius of convergence and of the tail of the Taylor
series from the Cauchy estimates of f in a complex ball around the given point. Rough values
of these estimates can be obtained from bounds of f in a ball and the residue theorem.

Anyway, this approach has to be compared to the use of variational equations of moderate
order to obtain a good and accurate enclosure. This should allow better time steps.


