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Abstract

Many times in dynamical systems one wants to understand the bounded motion

around an equilibrium point. From a numerical point of view, we can take arbitrary

initial conditions close to the equilibrium points, integrate the trajectories and plot

them to have a rough idea of motion. If the dimension of the phase space is high, we

can take suitable Poincaré sections and/or projections to visualise the dynamics. Of

course, if the linear behaviour around the equilibrium point has an unstable direction,

this procedure is useless as the trajectories will escape quickly. We need to get rid, in

some way, of the instability of the system.

Here we focus on equilibrium points whose linear dynamics is a cross product of one

hyperbolic directions and several elliptic ones. We will compute a high order approxi-

mation of the centre manifold around the equilibrium point and use it to describe the

behaviour of the system in an extended neighbourhood of this point. Our approach is

based on the graph transform method. To derive an efficient algorithm we use recurrent

expressions for the expansion of the non - linear terms on the equations of motion.

Although this method does not require the system to be Hamiltonian, we have

taken a Hamiltonian system as an example. We have compared its efficiency with a

more classical approach for this type of systems, the Lie series method. It turns out

that in this example the graph transform method is more efficient than the Lie series

method. Finally, we have used this high order approximation of the centre manifold

to describe the bounded motion of the system around and unstable equilibrium point.
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1 Introduction

Our aim is to understand the dynamics in an extended neighbourhood of an unstable equilib-

rium point. We focus on those points whose linear dynamics is the cross product of a saddle

and several complex directions with zero real part. We mainly want to describe the bounded

motion around them. Due to the instability produced by the saddle, taking arbitrary initial

conditions and integrating them numerically to produce plots of the orbits, is not a good

option as the trajectories will escape quickly. To get rid of the instability produced by the

saddle, we propose to perform the so - called reduction to the centre manifold.

We call centre manifold to an invariant manifold that is tangent to linear subspace gen-

erated by the different pairs of complex eigenvectors. We know that this invariant manifold

might not be unique, although the Taylor expansion of the graph of this invariant manifold

is [1, 14, 17]. The reduction to the centre manifold process consists in finding a high order

approximation of this invariant manifold. The main idea is to uncouple the saddle direction

from the other directions up to high order. Then, neglecting the reminder we have a high

order approximation of the flow on an invariant manifold that does not contain the saddle.
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In this way we can do numerical integrations and study the motion around the equilibrium

point on the centre manifold.

If the system is Hamiltonian we can compute this manifold using a partial normal form

scheme of the Hamiltonian [7]. Nevertheless, we are interested in a more general procedure,

that does not take into account the Hamiltonian structure of the system. To deal with

systems that are not Hamiltonian we propose the graph transform method. Here the idea is

to compute, formally, the power expansion of the graph of the centre manifold around the

equilibrium point [1, 15]. In Section 2 we describe the main ideas of these two methods.

As we will see, to apply the graph transform method we need to compose multivariate

power series expansions, which can have a high computational cost. We will use recurrent

expressions for the series expansion to derive an efficient algorithm. In section 2.1.2 we will

show how this can be done.

We have applied this method to describe the dynamics of a solar sail close to equilibria

in the Earth - Sun system. A solar sail is a proposed form of spacecraft propulsion, that

takes advantage of the impact of the photons emitted by the Sun on large membrane mir-

rors to impulse the spacecraft. In the past years, the space industry has been testing the

technology and studying possible near term mission applications for a solar sail. Although

the acceleration due to the sail is very small compared to the acceleration that an engine

can produce, it is continuous and unlimited. Hence, it opens a new range of possible mission

applications that cannot be achieved by a regular spacecraft, for instance, remaining around

a fixed point above of the ecliptic plane [3, 10, 11].

To model the dynamics of a solar sail we have considered the Circular Restricted Three

Body Problem, taking the Earth and Sun as primaries, and added the effect of the solar

radiation pressure (RTBPS). As we will see in Section 3 if the sail is oriented perpendicular

to the Sun - line the system is Hamiltonian and has three equilibrium points of the type

centre × centre × saddle. Moreover, there are other sail orientations where the system is

no longer Hamiltonian, but it still has centre × centre × saddle equilibrium points. Hence,

we need a procedure that allows us to study these other cases. In [2] we have used the

techniques presented here to understand the dynamics around different equilibrium points

when the system is not Hamiltonian.

We have consider the particular case of a solar sail oriented perpendicular to the Sun - line

to compare the two different methods. We have taken the public domain software in [6] that

performs the reduction to the centre manifold for the RTBP around L1,2,3 [7, 8] and adapted

it to our model. This software performs a partial normal form scheme on the Hamiltonian of

the system using the Lie series method. We use this software to compare the two algorithms.

Surprisingly as it might seem, a suitable implementation of the graph transform method

is more efficient than the Lie series method, in terms of computational time. Plus, it is a

more general procedure that can be applied to any set of equations, Hamiltonian or non-
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Hamiltonian. In Section 3.3 we discuss the efficiency of both methods.

Finally, we have applied the reduction to the centre manifold around two unstable equi-

librium points of the RTBPS to describe the bounded motion in an extended neighbourhood

of these points. In Section 3.4 we will show the existence of families of periodic and quasi-

periodic orbits around them.

2 Reduction to the Centre Manifold

From now on we focus on a fixed point whose linear dynamics is the cross product of hyper-

bolic and elliptic directions. Our aim is to describe the dynamics on an extended neighbour-

hood of this point. In particular we are interested in those trajectories that remain close to

the equilibrium point.

Usually, to have a first guess of the dynamics, we take a certain Poincaré section, iterate

the Poincaré map for several initial conditions and plot suitable projections of the trajectory.

If the system is Hamiltonian, we can do the same, taking initial conditions for a fixed energy

level. In this way we reduce the phase space dimension by 2 and we can get an idea of the

evolution of the system w.r.t the energy level.

It is a known fact that, close to an unstable equilibrium point, if we take arbitrary initial

conditions and just integrate them numerically, the solution will escape from a vicinity of

the equilibrium point with probability one. For this reason, we propose to do the reduction

to the centre manifold around the equilibrium point and get rid of the hyperbolic character

of the system.

The main idea is to expand the equations of motion around the equilibrium point and

uncouple up to high order the hyperbolic directions from the elliptic ones. Then, neglecting

the reminder we have a high order approximation of the centre manifold. We will use this

approximation for numerical integrations and have a complete understanding of the bounded

motion.

If we consider a Hamiltonian system, one can take advantage of its structure to compute

the reduction to the centre manifold. We can expand the Hamiltonian around the equilib-

rium point and perform canonical transformations on the Hamiltonian to uncouple the two

behaviours. This procedure is similar to the computation of the normal form, but here we

kill less monomials. In [7, 8], this procedure was used to describe the motion around the

collinear equilibrium points of the classical RTBP.

Nevertheless, we are interested in a more general scheme for the problem, without tak-

ing into account the Hamiltonian structure of the system. Then, we propose to compute,

formally, the power series of the graph of the centre manifold at the equilibrium point [1].

This is known as the graph transform method and is a general procedure that can be used
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for a general set of equations [15]. In Section 2.1 we give the details for the computation of

the centre manifold using the graph transform method.

In this method one deals with the composition of power series, which can have a high cost

in terms of computational time. We will use recurrent expressions to expand the non-linear

terms, and use them to compose the power series in an efficient way. In Section 2.2 we recall

the main ideas for the reduction to the centre manifold using this approach. Further on, in

Section 3.3, we will compare the efficiency of this algorithm with the Lie series method for

Hamiltonian systems.

For the sake of simplicity, from now on, we will always consider that we have a fixed point

of the type centre × centre × saddle. However, the same techniques can be extended in an

easy way for a more general case when the system has several “centres” and “saddles” [15].

As the general purpose algebraic manipulators are not efficient enough to deal with big

expansions, we have written our own software from scratch, using ANSI C language. The

algebraic manipulator that we have used is explained with full detail in [7]. These programs

are built in different layers. In the bottom layer we have the routines corresponding to handle

polynomials. Built on top are the routines using the algorithms for the actual reduction to

the centre manifold that we will explain in the following lines.

In what follows, we will use the following notation. If z = (z1, . . . , z`) is a vector of

complex numbers and k = (k1, . . . , k`) a vector of natural numbers, we denote zk = zk1
1 · · · z

k`
`

(here, 00 = 1). Moreover, we define |k| = k1 + · · ·+ k`.

2.1 Graph Transform

Let ż = F (z), with z ∈ R6 and F smooth enough, be an ordinary differential equation

with a fixed point of the type centre × centre × saddle. Without loss of generality we can

assume that the fixed point is at the origin. It is well known that with an appropriate linear

transformation, the equations of motion can be written as:

ẋ = Ax+ f(x, y),

ẏ = By + g(x, y),
(1)

where x ∈ R4, y ∈ R2, the eigenvalues of the matrix A have zero real part and the eigenvalues

of the matrix B are real. The functions f and g are sufficiently smooth and satisfy,

f(0, 0) = 0, Df(0, 0) = 0, g(0, 0) = 0, Dg(0, 0) = 0.

Note that y = 0 is the linear approximation to the centre manifold. We want to find y = v(x)

with v(0) = 0 and Dv(0) = 0, the local expression of the centre manifold. If we substitute
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this on equations (1), we have that v(x) must satisfy:

Bv(x) + g(x, v(x)) = Dv(x)[Ax+ f(x, v(x))], (2)

and the flow restricted to the manifold is given by,

ẋ = Ax+ f(x, v(x)). (3)

For further details see for instance [1]. Although the centre manifold might not be unique,

its Taylor expansion at the equilibrium point is.

We want to find the Taylor expansion of the graph of the centre manifold at the equi-

librium point, v(x), truncated at high order. We call this high order approximation v̂(x).

Then we can take, ẋ = Ax + f(x, v̂(x)), to have a high order approximation of the motion

on the centre manifold.

2.1.1 Scheme of the computation

Let us assume that we have already made a linear change of variables and set the equations

as in (1) and let ±λ, ±iω1 and ±iω2 be the eigenvalues of DzF . We want to find y = v(x)

that satisfies equation (2).

We take v(x) =
∑
|k|≥2 vkx

k, with vk ∈ R2, the formal power expansion of v(x) around

the origin. We are interested in knowing the values vk = (v1
k, v

2
k) up to high order to

have a good approximation of the centre manifold near the point. For instance, if we have

v̂(x) =
∑N
|k|=2 vkx

k that satisfies equation (2) up to order N , then v̂(x) approximates the

graph of the centre manifold up to the same order, i.e. ||v(x)− v̂(x)|| = O(||x||N).

Notice that equation (2) can be rewritten as,

Dv(x)Ax−Bv(x) = g(x, v(x))−Dv(x)f(x, v(x)), (4)

where, the left - hand side of this equation is a linear operator w.r.t v(x) and the right - hand

side a non linear one.

If we assume A and B to be in diagonal form, A = diag(iω1,−iω1, iω2,−iω2) and B =

diag(λ,−λ), then the left - hand side of equation (4) also takes a diagonal form,

Dv(x)Ax−Bv(x) =



∑
|k|≥2

(iω1k1 − iω1k2 + iω2k3 − iω2k4 − λ) v1,k x
k

∑
|k|≥2

(iω1k1 − iω1k2 + iω2k3 − iω2k4 + λ) v2,k x
k

 . (5)
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Let h(x) = g(x, v(x))−Dv(x)f(x, v(x)) be the right hand side of equation (4). We take

its expansion h(x) =
∑
|k|≥2 hkx

k around the origin (hk = (h1
k, h

2
k)), where the coefficients hk

depend on the coefficients vk in a known way. As we will see in Lemma 2.2, the coefficients

hk for |k| = n depend on vk with |k| < n. This allows us to find the vk in an iterative way.

Let us see how to arrange the terms vk of degree 2. We take the power expansion of

f(x, y) and g(x, y) around the origin,

f(x, y) =
∑

|k1|+|k2|≥2

fk1,k2x
k1yk2 , g(x, y) =

∑
|k1|+|k2|≥2

gk1,k2x
k1yk2 ,

where the fk1,k2 ∈ R4 and gk1,k2 ∈ R2 are known. Now we take v(x) up to degree 2,

v(x) =
∑
|k|=2

vkx
k,

and we substitute this on equation (4) and equalise the terms of degree 2. As Dv(x) and

f(x, v(x)) start with monomials of degree 1 and 2 respectively, their product Dv(x)f(x, v(x))

starts with monomials of degree 3. Hence, for |k| = 2 we have that hk = gk,0. Then the

degree 2 terms on equation (4) satisfy,∑
|k|=2

(iω1k1 − iω1k2 + iω2k3 − iω2k4 ∓ λ)vkx
k =

∑
|k|=2

gk,0x
k,

as λ 6= 0, we can find all the coefficients vk, by equalising each of the monomials with |k| = 2.

Having:

v1
k =

g1
k,0

iω1k1 − iω1k2 + iω2k3 − iω2k4 − λ
, v2

k =
g2

k,0

iω1k1 − iω1k2 + iω2k3 − iω2k4 + λ
.

To arrange the higher order terms we proceed in the same way. For a given degree ` > 2,

we:

1. Take v(x) up to degree `,
(∑`

|k|≥2 vkx
k
)

.

2. Substitute it on equation (4) and find the values of the coefficients hk for |k| = `. Notice

that the coefficients hk depend on the coefficients fk1,k2 , gk1,k2 with |k1|+ |k2| ≤ ` and

vk with |k| < `.

3. Finally, we equalise the degree ` terms on equation (4), and solve the diagonal system

to find the coefficients vk for |k| = `.

This process is carried out for ` = 3, 4, . . ., up to a sufficiently high order N . In the end we

have the expansion v̂(x) up to degree N , a high order approximation of the centre manifold
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(||v(x)− v̂(x)|| = O(xN)):

v̂(x) =
N∑
|k|≥2

vkx
k. (6)

Once we have v̂(x), we are ready to explore the phase space. We will we use ẋ = Ax +

f(x, v̂(x)), to integrate the flow, as it gives a high order approximation of the motion on the

centre manifold. Notice that during the reduction process we also compute f(x, v̂(x)), so we

can store it while we are computing it.

We must recall, that we can find the coefficients vk in an iterative way solving a diag-

onal linear system degree by degree, because the coefficients hk for |k| = `, depend on the

coefficient of vk with |k| < ` (Lemma 2.2) and the matrices A and B are in diagonal form.

Remark 1 The linear system can be solved if and only if

iω1k1 − iω1k2 + iω2k3 − iω2k4 ∓ λ 6= 0,

which is always true as λ ∈ R\{0} and iω1, iω2 are pure imaginary numbers.

Remark 2 It is not necessary to have A and B in their diagonal form, but then the linear

part of equation (4) will not take a diagonal form. Then, as we increase the degree, the

dimension of the linear system we have to solve increases and so does the computational cost

and error propagation to solve it.

Remark 3 To have A in its diagonal form, we need to take an initial complex change of

variables. Hence, we need to apply the inverse of this change to the final representation v̂(x)

in the real set of coordinates.

Remark 4 To have an efficient algorithm, we need to have an efficient way to compute the

coefficients hk. These coefficients come from the expansion around the origin of

h(x) = g(x, v(x))−Dv(x)f(x, v(x)).

Expanding g(x, y) and f(x, y) and then composing with v(x) is not an option, as the com-

position of multivariate series is very expensive in terms of computational time. Instead, we

will use recurrent expressions for the expansion of these functions to obtain a more efficient

algorithm. In the next section we give further details in this direction.

2.1.2 Efficiency considerations

Let us see how to use recurrent expressions for the expansion of functions f(x, y) and g(x, y)

around the origin to derive an efficient algorithm to compute the coefficients hk of the Taylor

expansion of h(x) = g(x, v(x)) +Dv(x)f(x, v(x)).
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Let us assume that we have:

f(x, y) =
∑
n≥2

Fn(x, y), g(x, y) =
∑
n≥2

Gn(x, y),

where Fn(x, y) and Gn(x, y) are homogeneous polynomials of degree n that are found in a

recurrent way. This means that there exist two functions R1(ζ1, . . . , ζj) and R2(ζ1, . . . , ζj)

such that,

Fn+1 = R1(Fn, . . . , Fn−j), Gn+1 = R2(Gn, . . . , Gn−j), (7)

where the F2, . . . , Fj andG2, . . . , Gj are known, andR1 andR2 only contain simple arithmetic

operations between polynomials (+/− /×).

Let us start with a couple of lemmas on these recurrences and polynomial expressions.

Lemma 2.1 Let f : U1 =
◦
U1⊂ R4 × R2 7→ Rm, with 0 ∈ U1, m > 0, and v : U2 =

◦
U2⊂

R4 7→ R2, with 0 ∈ U2 be two C∞ functions, such that,

f(x, y) =
∑
n≥2

Fn(x, y), v(x) =
∑
n≥2

Vn(x), on a neighbourhood of 0,

where Fn(x, y) and Vn(x) are homogeneous polynomials of degree n. Then,

(a) Fn(x, v(x)) is a polynomial that starts at degree n.

(b) the coefficients of Fn(x, v(x)) that depend on the coefficients of v(x) are of degree

r ≥ n+ 1.

(c) the coefficients of Fn(x, v(x)) of degree r depend on the coefficients of v(x) of degree

k < r.

It immediately follows that the coefficients of f(x, v(x)) of degree r depend on the coefficients

of v(x) of degree k < r.

Proof: Let us start by taking a homogeneous polynomial of f(x, y) of degree n. It is clear

that Fn(x, y) can be expressed as,

Fn(x, y) =
∑

|k1|+|k2|=n

fk1,k2x
k1yk2 , k1 ∈ (N ∪ {0})4, k2 ∈ (N ∪ {0})2

where fk1,k2 are the coefficients of the homogeneous polynomial. Then,

Fn(x, v(x)) =
∑

|k1|+|k2|=n

fk1,k2x
k1

(∑
i≥2

Vi(x)

)k2

.
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Notice that
(∑

i≥2 Vi(x)
)k2 is a polynomial that starts at degree 2|k2|. Hence, the coefficients

of Fn(x, v(x)) have at least degrees |k1|+ 2|k2|. Assuming that |k1|+ |k2| = n, the minimum

takes place for |k2| = 0, hence Fn(x, v(x)) is a homogeneous polynomial that starts at degree

n.

Let us now take a look on which coefficients of Fn(x, v(x)) depend on the coefficients

of v(x). It is clear that the monomials that depend on the coefficient of v(x) come from

the terms fk1,k2x
k1
(∑

i≥2 Vi(x)
)k2 with |k2| 6= 0. As we have already seen, these terms have

degree at least |k1|+ 2|k2|. As |k1|+ |k2| = n, then |k1|+ 2|k2| = n+ |k2|. Hence, the terms

fk1,k2x
k1
(∑

i≥2 Vi(x)
)k2 that depend on the coefficients of v(x) are of degree at least n+ 1.

Let f̃kx
k be a monomial of Fn(x, v(x)) of degree |k| = r ≥ n+ 1. Hence, as already seen,

it depends on the coefficients of v(x). We want to see that f̃k depends on coefficient of v(x)

of degree less that r.

Let us take a coefficient vk of degree |k| = s on v(x), and see to what degree it corresponds

after the composition. Notice that if we take a coefficient of degree s on (
∑

i≥2 Vi(x))k2 , it

ends up appearing in different monomials. As 1 ≤ |k2| ≤ n, we can say that the monomials

of minimum degree in which it will appear are of degree s for |k2| = 1 and s+ 1 for |k2| > 1.

We take fk1,k2x
k1
(∑

i≥2 Vi(x)
)k2 . Now the coefficients of v(x) are being multiplied by xk1 ,

hence the minimal degrees s for |k2| = 1 and s+ 1 for |k2| > 1, are now, s+ |k1| for |k2| = 1

and s + 1 + |k1| for |k2| > 1. Finally, as |k1| + |k2| ≥ 2 we can assure that a coefficient of

degree s on v(x) will end up appearing on a coefficient of degree s+1 on Fn(x, v(x)). Hence,

if f̃k is a coefficient of degree |k| = r on Fn(x, v(x)), it can only depend on coefficients of

v(x) of degree at most r − 1.

�

Lemma 2.2 Let h : U =
◦
U⊂ R4 7→ R2, with 0 ∈ U be a C∞ function defined as:

h(x) = g(x, v(x))−Dv(x)f(x, v(x)),

where f : U1 =
◦
U1⊂ R4 × R2 7→ R4, g : U2 =

◦
U2⊂ R4 × R2 7→ R2, v : U3 =

◦
U3⊂ R4 7→ R2,

with 0 ∈ Ui for i = 1, 2, 3, f, g, v ∈ C∞ and that satisfy,

f(0, 0) = 0, Df(0, 0) = 0; g(0, 0) = 0, Dg(0, 0) = 0; v(0) = 0, Dv(0) = 0.

Then, the coefficients of the Taylor expansion of h(x), of degree n depend on the Taylor

coefficients of v(x) of degree k < n.

Proof: It is clear that the Taylor expansions of f(x, y), g(x, y) and v(x) around the origin
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can be written as:

g(x, y) =
∑
n≥2

Gn(x, y), f(x, y) =
∑
n≥2

Fn(x, y), v(x) =
∑
n≥2

vn(x),

whereGn(x, y), Fn(x, y) and Vn(x) are homogeneous polynomials of degree n. From Lemma 2.1

we have that the coefficients of the Taylor expansion of g(x, v(x)) and f(x, v(x)) of degree

n depend only on the coefficients of the Taylor expansion of v(x) of degree r < n.

It is also clear that the coefficients on the Taylor expansion of Dv(x) of degree n now

depend on the coefficients of v(x) of degree n + 1. To prove the lemma we just need to see

that the coefficients of degree n of Dv(x)f(x, v(x)) depend only on the coefficients of v(x)

of degree k < n.

Notice that f(x, v(x)) starts at degree 2, then a monomial of degree s of Dv(x), will

contribute to the monomials of degree at least s + 2 on Dv(x)f(x, v(x)). Hence, the coef-

ficients of degree n on v(x), will appear only on the coefficients of degree at least n + 1 on

Dv(x)f(x, v(x)).

�

Lemma 2.2 assures that the algorithm for the reduction to the centre manifold, explained

above, can be applied in an iterative way.

Now, let us focus on the efficient computation of the coefficients of h(x). We recall that

h(x) = g(x, v(x)) +Dv(x)f(x, v(x)). (8)

We will use the recurrent expressions (7) for the coefficients of g(x, y) and f(x, y).

Let us assume that we know v(x) up to degree r and we want to find the coefficients of

degree r + 1. Hence, as mentioned in Section 2.1.1 we first need to find the coefficients of

h(x) of degree r + 1 and then solve the diagonal linear system (4). We start by finding the

coefficients of f(x, v(x)) and g(x, v(x)) of degree r + 1. Once this is done, we can compute

the coefficients of degree r + 1 of h(x) using equation(8). Let us focus on f(x, v(x)), the

same ideas apply for g(x, v(x)).

We recall that f(x, y) =
∑

n≥2 Fn(x, y), where the Fn(x, y) are homogeneous polynomi-

als of degree n. From lemma 2.1 we have that Fn(x, v(x)) is a polynomial that starts at

degree n, hence, if we want the coefficients of f(x, v(x)) of degree r + 1, we just need to

find, F2(x, v(x)), . . . , Fr+1(x, v(x)). Here is where the recurrent expressions for Fj play an

important role.

For the sake of simplicity, let us assume that F2(x, y) and F3(x, y) are known, and that

Fn(x, y) = R1(Fn−1(x, y), Fn−2(x, y)), for n > 3,
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where R1 are basic arithmetic operation between polynomials. We use this expression to

find the polynomials, F2(x, v(x)), . . . , Fr+1(x, v(x)) and then add them up to have f(x, v(x))

up to degree r + 1.

Once we have f(x, v(x)) and g(x, v(x)) up to degree r+ 1, we easily compute h(x) up to

degree r + 1 using equation (8) and operating with the full polynomials.

This process will be repeated up to the desired final degree N . At each step we need to

run this recurrent scheme up to the desired degree. For some particular recurrences one can

take advantage of its properties to save computational time. Notice that for each degree r

we are recomputing the terms of degree s < r that we already have.

In Section 3.1 we will show how to expand the RTBPS equations in a recurrent way. We

have used the Legendre polynomial recurrences to find such expressions. Although there are

other ways of expanding the equations in a recurrent way, one can considered, for instance,

automatic differentiation tools [9, 5].

2.2 The Lie Series Method

When the system is Hamiltonian, we can uncouple the hyperbolic from the elliptic behaviour

by performing the changes of variables directly on the Hamiltonian (one equation) instead

of doing it to the whole set of equations. Hence, we save computational effort. To do this,

we need the changes of variables to be canonical to preserve the Hamiltonian structure of

the system.

In [4, 7, 8] this procedure is applied to the RTBP around the collinear points L1,2,3, and a

public domain software for this purpose is available in [6]. In [13] we find a way to implement

these algorithms using parallel computation. We have adapted the public domain software

in [6] to our system of a Solar sail in the RTBP. We will use it to compare and contrast

the results given by the graph transform method. Let us summarise the main ideas of this

algorithm, for further details see [7].

Let H be a real analytic Hamiltonian of 3 degrees of freedom, that has an equilibrium

point of the type centre × centre × saddle. Let ±λ,±iω1 and ±iω2 be the eigenvalues of the

linearised system. Without loss of generality we can assume that the fixed point is at the

origin. We start by expanding the Hamiltonian H around the origin, taking the complex

coordinates for which the second degree terms take the diagonal form,

H(q, p) = H2(q, p) +H3(q, p) +H4(q, p) + · · · , (9)

where Hj(q, p) are homogeneous polynomials of degree j in the variables (q, p), where q

12



corresponds to the position and p to the momentum, and

H2(q, p) = λq1p1 + iω1q2p2 + iω2q3p3. (10)

Notice that the linear hyperbolic character is given by the couple (q1, p1) while the other

variables define the centre behaviour. In order to decouple the hyperbolic direction from the

elliptic one up to high order, we do not need to kill all the possible monomials, just the ones

such that the exponent of p1 is different from the one of q1. There are other killing criteria

that can be considered, (see [4]), but this one allows us to end up having a first integral.

The changes of variables are implemented by means of the Lie series method. If G(q, p)

is a Hamiltonian system, the change of variables given by the time one flow corresponding

to G is a canonical change of variables. The result of applying this change on H is:

Ĥ = H + {H,G}+
1

2!
{{H,G}, G}+

1

3!
{{{H,G}, G}, G}+ · · · , (11)

where G is usually called the generating function. These are the kind of canonical transfor-

mations that we deal with.

Now we can start the reduction to the centre manifold. The main idea is to perform a

sequence of transformations like (11) in order to kill degree by degree the desired monomials

of H. To see how this is done, let us give the ideas on how to arrange degree three.

Let us select as a generating function G3(q, p), a homogeneous polynomial of degree three.

It is not difficult to see that if P and Q are two homogeneous polynomials of degree r and s

respectively, then {P,Q} is also a homogeneous polynomial of degree r + s− 2. Hence, the

terms of Ĥ satisfy

degree 2: Ĥ2 = H2,

degree 3: Ĥ3 = H3 + {H2, G3},

degree 4: Ĥ4 = H4 + {H3, G3}+
1

2!
{{H2, G3}, G3},

...

We just want to kill those monomials of degree three such that the exponents on q1 and

p1 are different. We look for a G3 such that, {H2, G3} + H3 has these monomials equal to

zero. For the monomials that we do not want to kill we take the coefficients gkq ,kp = 0. One

can be checked that [7],

G3(q, p) =
∑

(kp,kq)∈S3

−hkq ,kp

〈kp − kq, η〉
qkqpkp ,

13



where Sn, n ≥ 3 is the set of indexes (kp, kq) such that |kp| + |kq| = n and have the first

component of kp different from the first component of kq.

With this change we end up having,

Ĥ(q, p) = H2(q, p) + Ĥ3(q, p) + Ĥ4(q, p) + · · · ,

where Ĥ3(q, p) has the prescribed form. We proceed in an iterative way, killing the monomials

qkqpkp with (kq, kp) ∈ Sn, for n = 4, 5, . . .. This process is carried up to sufficiently high order

N . After all the transformations the Hamiltonian takes the form,

Ĥ = H(N)(q1p1, q2, p2, q3, p3) +R(q1, p1, q2, p2, q3, p3),

where H(N) is the part of the Hamiltonian that we have arranged and R denotes the reminder.

If we neglect the reminder and take q1p1 = 0, we are skipping the hyperbolic part of H(N).

The resulting Hamiltonian is the Hamiltonian of the flow inside an approximation of the

centre manifold. So near the origin the phase space of the original Hamiltonian must be the

phase space of H(N)(0, q2, p2, q3, p3) times the hyperbolic direction.

It is important to notice the absence of small divisors in all the process. One can check

that if (kp, kq) ∈ Sn, as λ ∈ R \ {0} then |〈kq − kp, ν〉| ≥ |λ|. Hence, the divergence

of this process is very mild. This makes the reminder to be small in a sufficiently large

neighbourhood of the equilibrium point when this process is stopped for a certain N .

We recall that to have H2 in a diagonal form we entered the complex phase space. So

once we have finished the reduction process we need to apply the inverse of this change of

variable to have the Hamiltonian H(N) in real coordinates. Notice that this is not necessary

to do numerical integrations and understand the dynamics, but it is useful, as the operations

with real arithmetic are faster than with complex arithmetic.

3 The RTBP for a Solar Sails

To describe the motion of a solar sail in the Earth - Sun system, we have taken the Restricted

Three Body Problem for a Solar Sail (RTBPS). We have assumed that the Earth and Sun

are point masses moving in a circular orbit around their common centre of mass, and the

sail is a massless particle that is affected by the gravitational attraction of both bodies and

the solar radiation pressure. The units of mass, distance and time are normalised so that

the total mass of the system is 1, the Earth - Sun distance is 1 and the period of its orbit is

2π. We use a rotation reference system so that Earth and Sun are fixed on the x - axis, z

is perpendicular to the ecliptic plane and y defines an orthogonal positive oriented reference

system (Figure 1).
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1− µ µ

~FEarth

~FSun

Sail~n

X

Y

Z

Earth
Sun

Figure 1: Schematic representation of model and forces acting in the RTBPS. Here ~FEarth and
~FSun refer to the gravitational attraction due to the Earth and Sun respectively, and ~n is the normal
direction to the surface of the sail.

We will consider the solar sail to be flat and perfectly reflecting. This means that the

force due to the solar radiation pressure is in the normal direction to the surface of the sail.

In such case, the force due to the sail is given by,

~Fsail = β
1− µ
r2
PS

〈~rs, ~n〉2~n,

where β represents the sail lightness number, ~rs is the Sun - line direction and ~n is the normal

direction to the surface of the sail (both vectors have norm 1). In this paper we consider

the particular case of a sail oriented perpendicular to the Sun - line, where the system is

Hamiltonian and with lots of similarities with the RTBP as we will see. We will use this

example to compare the two different methods explained in the previous Section.

The equations of motion are,

Ẍ − 2Ẏ =
∂Ω

∂X
, Ÿ + 2Ẋ =

∂Ω

∂Y
, Z̈ =

∂Ω

∂Z
, (12)

where,

Ω(X, Y, Z) =
1

2

(
X2 + Y 2 + Z2

)
+

(1− µ)(1− β)

rPS

+
µ

rPE

.

We can appreciate a resemblance with the RTBP, they only differ in a factor (1− β) on the

potential force due to the Sun. Notice that setting the sail perpendicular to the Sun - line,

is like reducing the Sun’s gravitational attraction. This system also has a first integral,

JC = Ẋ2 + Ẏ 2 + Ż2 − 2Ω(X, Y, Z).
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Figure 2: Left: Schematic representation of the position of the equilibrium points SLi for i =
1, . . . , 5 for a fixed β, where S stands for Sun, E for Earth and d = (1−β)1/3. Right: x component
of the fixed points for β ∈ [0, 1], we can see that they come closer to the Sun β → 1.

If we define the momenta PX = Ẋ − Y , PY = Ẏ +X and PZ = Ż, as in the classical RTBP,

the equations can be written in a Hamiltonian form. The corresponding Hamilton equation

is,

H =
1

2

(
P 2

X + P 2
Y + P 2

Z

)
+ Y PX −XPY −

(1− µ)(1− β)

rPS

− µ

rPE

. (13)

It can be seen that in synodical coordinates this model has five equilibrium points, named

SL1,...,5, that lie on the ecliptic plane. Three of them lie on the X - axis, they are called

collinear points or SL1,2,3 and are linearly unstable. The other two are the third vertex of

an isosceles triangle with the two primaries on the other vertexes, they are called triangular

points or SL4,5 and are linearly stable. On the left - hand side of Figure 2, we show a

schematic representation of the relative position of these points for a fixed β.

Following the same ideas as in [16] for the RTBP, we can find equivalent quintics to

determine the position of the fixed points with respect to β, and a closed form for the

position of SL4,5. Let ξ1,2 be the distance to the Earth and ξ3 the distance to the Sun, then

the three collinear points are,

SL1 = (µ− 1 + ξ1, 0, 0), SL2 = (µ− 1− ξ2, 0, 0), SL3 = (µ+ ξ3, 0, 0),

where ξ1,2,3 are the unique positive solution of the quintics.

ξ5
1 − (3− µ)ξ4

1 + (3− 2µ)ξ3
1 − (µ+ β − µβ)ξ2

1 + 2µξ1 − µ = 0,

ξ5
2 + (3− µ)ξ4

2 + (3− 2µ)ξ3
2 − (µ− β + µβ)ξ2

2 − 2µξ2 − µ = 0,

ξ5
3 + (2 + µ)ξ4

3 + (1 + 2µ)ξ3
3 − (1− µ)(1− β)ξ2

3 − 2(1− µ)(1− β)ξ3 − (1− µ)(1− β) = 0.
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The other two fixed points SL4,5 are,(
µ− (1− β)2/3

2
, ±(1− β)1/3

(
1− (1− β)2/3

4

)1/2

, 0

)
,

where the upper sign is for SL5 and the lower one for SL4. On the right - side of Figure 2,

we show the variation of the x coordinate of the fixed point w.r.t. β. We can see that they

all come closer to the Sun, where SL1,3,4,5 collide with it for β = 1. Notice that taking β = 1

is like considering a sail that exerts a force on the spacecraft of the same magnitude as the

Sun’s gravitational attraction.

We want to understand the dynamics in an extended neighbourhood of the unstable

equilibrium points SL1,2, as they are the most relevant positions for possible mission appli-

cations. For instance, SL1 lies between the Earth and the Sun and closer to the Sun than the

classical L1, it is an ideal position to make observations of the Sun’s geomagnetic storms.In

this paper we have considered β = 0.051689, which corresponds to a sail loading of 30g/m2.

This values are considered as realistic for a short term mission application, for instance the

Geostorm Mission, see [10].

3.1 Settings

To start the reduction to the centre manifold process we need to express the linear part

of the equations in a canonical way. Moreover, to have an efficient algorithm, we need a

recurrent expressions for the non - linear terms. We use the Legendre Polynomials for this

purpose, this recurrences are commonly used to expand the RTBP, see for instance [8, 7, 12].

We start by translating the origin of coordinates to one of the fixed points SL1,2,3, using

X = ∓ξix+ µ+ ai, Y = ∓ξiy, Z = ξiz, (14)

where the upper sign corresponds to SL1,2 and the lower to SL3, a1 = −1 + ξ1, a2 = −1− ξ2
and a3 = ξ3. To have good numerical properties for the coefficients of the Taylor expansion,

we scale the distance from the fixed point to the closest primary to one.

To find a recurrent expression for the expansion of the non - linear terms we use that:

1√
(x− A)2 + (y −B)2 + (z − C)2

=
1

D

∞∑
n=0

( ρ
D

)n

Pn

(
Ax+By + Cz

D

)
,

where D2 = A2 + B2 + C2, ρ2 = x2 + y2 + z2 and Pn is the Legendre polynomial of degree

n. As it is done for the RTBP in [8, 7, 12], after some computations one obtains that the

equations of motion around the equilibrium point in these new coordinates can be written
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as,

ẍ− 2ẏ − (1 + 2c2)x =
∑
n≥2

(n+ 1)cn+1(µ, β)Tn(x, y, z),

ÿ + 2ẋ+ (c2 − 1)y = y
∑
n≥2

cn+1(µ, β)Rn−1(x, y, z), (15)

z̈ + c2z = z
∑
n≥2

cn+1(µ, β)Rn−1(x, y, z),

where the left - hand side contains the linear terms and the right - hand side the nonlinear

ones, Tn(x, y, z) and Rn(x, y, z) are homogeneous polynomial of degree n that satisfies the

recurrences,

Tn =
2n− 1

n
xTn−1 −

n− 1

n
(x2 + y2 + z2)Tn−1, (16)

with T0 = 1 and T1 = x.

Rn(x, y, z) =
2n+ 3

n+ 2
xRn−1 −

2n+ 2

n+ 2
Tn −

n+ 1

n+ 2
(x2 + y2 + z2)Rn−2, (17)

with R0 = −1 and R1 = −3x. And the coefficients cn(µ, β) are given by,

cn(µ, β) =



1

ξ3
i

(
(±1)nµ+ (−1)n (1− µ)(1− β)ξn+1

i

(1∓ ξi)n+1

)
, for SLi, i = 1, 2

(−1)n

ξ3
3

(
(1− µ)(1− β) +

µξn+1
3

(1 + ξ3)n+1

)
, for SL3,

(18)

where the upper sign of the first equation is for SL1 and the lower sign for SL2.

Notice that the change of variables (14) is not canonical, i.e. it does no preserve the

Hamiltonian form. But if we apply this change to the equations of motion and introduce the

momenta px = ẋ−y, py = ẏ+x and pz = ż, the system can also be written in a Hamiltonian

form. The expanded Hamiltonian around SLi is,

HSLi
=

1

2
(p2

x + p2
y + p2

z) + ypx − xpy −
∑
n≥2

cn(µ, β)Tn, (19)

with cn and Tn(x, y, z) are as above.

To start the graph transform procedure we need to have the linear part of the system in

diagonal form. We take the linear change,

(x, y, z, ẋ, ẏ, ż)T = C(x1, x2, x3, x4, y1, y2)
T , (20)

where C is a matrix that has the eigenvalues of the linear system as columns. This change
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takes equation (15) to:

ẋ1

ẋ2

ẋ3

ẋ4

ẏ1

ẏ2


=



iω1 0 0 0

0 −iω1 0 0

0 0 iω2 0

0 0 0 −iω2

λ 0

0 −λ


+



f1(x̄, ȳ)

f2(x̄, ȳ)

f3(x̄, ȳ)

f4(x̄, ȳ)

g1(x̄, ȳ)

g2(x̄, ȳ)


. (21)

Here x̄ = (x1, x2, x3, x4) are coordinates that have the elliptic character and ȳ = (y1, y2) the

ones with the hyperbolic character, and

f1(x̄, ȳ)

f2(x̄, ȳ)

f3(x̄, ȳ)

f4(x̄, ȳ)

g1(x̄, ȳ)

g2(x̄, ȳ)


= C−1



0

0

0∑
n≥2(n+ 1)cn+1Tn(x̄, ȳ)

y(x̄, ȳ)
∑

n≥2 cn+1Rn−1(x̄, ȳ)

z(x̄, ȳ)
∑

n≥2 cn+1Rn−1(x̄, ȳ)


, (22)

are the non - linear terms of the system expressed in the canonical set of coordinates. Notice

that the homogeneous polynomials Tn(x̄, ȳ) and Rn(x̄, ȳ) are also found in a recurrent way

by composing the recurrences (16) and (17) with the linear change (20).

3.2 Results

3.2.1 For the Graph Transform Method

We have applied the graph transform algorithm to the collinear points SL1 and SL2 for

β = 0.051689. We have computed the reduction to the centre manifold, finding y = v̂(x) up

to degree N = 32. Using an Intel Xeon CPU at 3.40GHz this takes around 14min of CPU

time. We must mention that although the system has symmetries we have not taken them

into account to reduce the computational cost of this algorithm.

In Tables 1 and 2 we can find the first terms of the expansion around SL1 and SL2

respectively. To have an approximate idea of the radius of convergence of these series, we

have computed numerically the values,

ri,n = n
√
||vi

n||1, where ||vi
n||1 =

∑
|k|=n

|vi
k|, for 3 ≤ n ≤ N, i = 1, 2, (23)

where the vk = (v1
k, v

2
k) are the coefficients of the monomials xk. Due to the symmetries of the
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system, one can see that r1,n = r2,n. In Figure 3 we can see how these values behave for SL1

(left) and SL2 (right). They give an idea of the radius of convergence of the series, we can

appreciate that the divergence is very mild. We can see that the radius of convergence around

SL2 is larger than for SL1, but in both cases, for N = 32, we have a big neighbourhood

where v̂(x) gives a good approximation of the centre manifold.
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Figure 3: Graph transform method. In both pictures, the horizontal axis corresponds to the value
of n and the vertical axis the values of r1,n. From left to right: SL1 and SL2.

k1 k2 k3 k4 v1 v2
2 0 0 0 3.5503156002936700e-02 -3.5503156002936700e-02
1 1 0 0 1.7843417171635231e-02 1.7843417171635231e-02
0 2 0 0 -2.6573244051375060e-03 2.6573244051375060e-03
0 0 2 0 3.8147437616048621e-02 -3.8147437616048621e-02
0 0 1 1 2.3407017142791586e-02 2.3407017142791586e-02
0 0 0 2 2.8553303366754226e-02 -2.8553303366754226e-02
3 0 0 0 5.4460164162132164e-03 5.4460164162132164e-03
2 1 0 0 5.6846959570042113e-02 -5.6846959570042113e-02
1 2 0 0 2.0967349558704437e-02 2.0967349558704437e-02
0 3 0 0 1.0668187765301932e-02 -1.0668187765301932e-02
1 0 2 0 7.8717031446172217e-03 7.8717031446172217e-03
0 1 2 0 4.3276556790009330e-02 -4.3276556790009330e-02
1 0 1 1 2.2839087896562357e-02 -2.2839087896562357e-02
0 1 1 1 5.0473597730196974e-02 5.0473597730196974e-02
1 0 0 2 -2.0822825309227966e-02 -2.0822825309227966e-02
0 1 0 2 2.0724575602143303e-02 -2.0724575602143303e-02

Table 1: Graph transform method. Coefficients of the series y = v(x) truncated at degree 3 at
SL1 for β = 0.051689. The exponents (k1, k2, k3, k4) refer to the variables (x1, x2, x3, x4).

3.2.2 For the Lies Series Method

We have adapted the public domain library in [6] to the RTBPS for a perpendicular Solar

Sail. As before, we have computed the expansion of the Hamiltonian restricted to the centre
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k1 k2 k3 k4 v1 v2
2 0 0 0 -1.7506883374566809e-02 1.7506883374566816e-02
1 1 0 0 -1.2343035113662425e-02 -1.2343035113662429e-02
0 2 0 0 -7.2504422613208584e-03 7.2504422613208618e-03
0 0 2 0 -7.3684573354681898e-03 7.3684573354681907e-03
0 0 1 1 -5.2066907353733706e-03 -5.2066907353733715e-03
0 0 0 2 -3.8210740887108276e-03 3.8210740887108284e-03
3 0 0 0 9.3579427535247063e-04 9.3579427535247226e-04
2 1 0 0 7.3357172296303003e-03 -7.3357172296303046e-03
1 2 0 0 3.9348506952868612e-03 3.9348506952868630e-03
0 3 0 0 -9.2663856231447583e-04 9.2663856231447615e-04
1 0 2 0 3.9174272108506583e-04 3.9174272108506638e-04
0 1 2 0 1.9200159376202099e-03 -1.9200159376202108e-03
1 0 1 1 1.1589233890467723e-03 -1.1589233890467725e-03
0 1 1 1 1.8215774769214797e-03 1.8215774769214806e-03
1 0 0 2 -1.0501465169187070e-04 -1.0501465169187056e-04
0 1 0 2 -4.7627117583130449e-04 4.7627117583130439e-04

Table 2: Graph transform method. Coefficients of the series y = v(x) truncated at degree 3 at
SL2 for β = 0.051689. The exponents (k1, k2, k3, k4) refer to the variables (x1, x2, x3, x4).

manifold up to degree N = 32 at the collinear equilibrium points SL1 and SL2 respectively,

for β = 0.051689. Using an Intel Xeon CPU at 3.40GHz this takes around 33min of CPU

time. We must mention that this software does take into account the symmetries of the

problem to reduce the computational effort. It can be seen [7] that the computing time is

roughly doubled if the symmetries are not taken into account.

In Tables 3 and 4 we can find the first terms of these expansions. To have an idea of the

radius of convergence of the series we have computed numerically the values,

rn = n
√
||Hn||1, where ||Hn||1 =

∑
|k|=n

|hk|, for 3 ≤ n ≤ N, (24)

where the hk are the coefficients of the monomials xk. In Figure 4 we can see these values for

SL1 (left) and SL2 (right). They give an idea of the radius of convergence of the series, we

can appreciate that the divergence is very mild. Notice that for SL2 the radius of convergence

is larger than for SL1, but in both cases for N = 32 we have a big neighbourhood where the

modified Ĥ gives a good approximation of the dynamics.

3.3 Tests and Comparisons

First, we will discuss some checks that we have done on our programs. Second we will

compare the efficiency of both algorithms in terms of computational time.

Let us take an initial condition u0 on the centre manifold and let u1 be the result of

integrating u0 on the centre manifold up to time t1. We send these two points through the
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Figure 4: Lie series method. In both pictures, the horizontal axis corresponds to the value of n
and the vertical axis the values of rn. From left to right: SL1 and SL2.

k1 k2 k3 k4 hk k1 k2 k3 k4 hk

2 0 0 0 6.2265667517669143e-01 0 0 2 2 2.5079559432629472e-02
0 2 0 0 6.2265667517669143e-01 4 1 0 0 -9.5850794092866431e-01
0 0 2 0 5.8841603727373581e-01 2 3 0 0 8.9664076808524873e-01
0 0 0 2 5.8841603727373581e-01 0 5 0 0 -2.4981368648887291e-02
2 1 0 0 5.6396639629808476e-01 2 1 2 0 -7.9713058687831795e-01
0 3 0 0 -8.2384619895258443e-02 0 3 2 0 2.9651411265486743e-01
0 1 2 0 2.7889905508879165e-01 3 0 1 1 -1.4808514924214936e-01
4 0 0 0 -2.7269463441025565e-01 1 2 1 1 1.9692859885303951e-01
2 2 0 0 7.5895544668314852e-01 2 1 0 2 2.0424400532712889e-01
0 4 0 0 -4.8826949550717223e-02 0 3 0 2 -3.5255336989995716e-02
2 0 2 0 -2.7377958223456894e-01 0 1 4 0 -1.5996695825115495e-01
0 2 2 0 3.2741624078653092e-01 1 0 3 1 -7.4332299532813700e-02
1 1 1 1 5.7170659054552292e-02 0 1 2 2 1.1973274094713404e-01
2 0 0 2 5.0713792305465924e-02 1 0 1 3 1.3709284563953436e-02
0 2 0 2 -2.2224922601547636e-02 0 1 0 4 -8.0914094767427763e-03
0 0 4 0 -6.8702044013507921e-02

Table 3: Lie series method. Coefficients up to degree 5, of the Hamiltonian restricted to the centre
manifold at SL1 for β = 0.051689. The exponents (k1, k2, k3, k4) refer to the variables (q2, p2, q3, p3).

change of variables to the complete system. Let v0 and v1 be these points. Now we take v0

and integrate it up to time t1 on the full system, let us call this point w1.

Ideally, if the centre manifold, the change of variables and the numerical integrations

were all exact, the difference between w1 and v1 would be zero. As we know, this will not

be true due to the several sources of errors.

Let us define h0 = ||u0|| and we compute ||v1 − w1||2. This quantity is affected by the

truncation order of the reduction to the centre manifold process, the truncation error of

the integrating method and the roundoff error due to the operations. We can choose the

integration time t1 and the distance to the origin h0, in a way that ||v1 − w1||2 is mainly

affected by the truncation order of the centre manifold. Then this quantity should behave

as ξh
(N+1)
0 where N is the last order that we have taken into account in the centre manifold.
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k1 k2 k3 k4 hk k1 k2 k3 k4 hk

2 0 0 0 1.7322989883542399e+00 0 0 2 2 1.6866624170049516e-01
0 2 0 0 1.7322989883542399e+00 4 1 0 0 6.0646742774657904e-02
0 0 2 0 1.7090415995033998e+00 2 3 0 0 -1.4911538654097725e-01
0 0 0 2 1.7090415995033998e+00 0 5 0 0 1.3665081880113589e-02
2 1 0 0 -5.3481429234647238e-01 2 1 2 0 5.5825772462267019e-02
0 3 0 0 1.2941667603118245e-02 0 3 2 0 -6.9102572140442006e-02
0 1 2 0 -5.0214927846709145e-01 3 0 1 1 5.3708550049071303e-02
4 0 0 0 -2.4049000215462642e-02 1 2 1 1 -1.1553805534006134e-01
2 2 0 0 2.6749334664134067e-01 2 1 0 2 -9.5244592428503097e-02
0 4 0 0 -1.2415552501629217e-02 0 3 0 2 2.8431961390884643e-02
2 0 2 0 -4.3825787410913676e-02 0 1 4 0 -8.8476587697261728e-04
0 2 2 0 2.2438948116603341e-01 1 0 3 1 5.0249628386339631e-02
1 1 1 1 2.6832801596053099e-02 0 1 2 2 -1.0765378366189296e-01
2 0 0 2 1.7963804901434496e-01 1 0 1 3 -2.4034222457073172e-02
0 2 0 2 -1.3040877660634168e-02 0 1 0 4 1.4721820971207975e-02
0 0 4 0 -1.9948009163984572e-02

Table 4: Lie series method. Coefficients up to degree 5, of the Hamiltonian restricted to the centre
manifold at SL2 for β = 0.051689. The exponents (k1, k2, k3, k4) refer to the variables (q2, p2, q3, p3).

We can take two different initial conditions, u
(1)
0 and u

(2)
0 , and estimate N by,

N + 1 ≈
log

(
er1
er2

)
log

(
h

(1)
0

h
(2)
0

) , (25)

where eri = ||v(i)
1 − w

(i)
1 || and h(i) = ||u(i)

0 || for i = 1, 2.

We have taken the centre manifold around SL1 and SL2 computed using the graph

transform method and used it to integrate on the centre manifold. We have taken an initial

condition on the centre manifold u0 = (h0, h0, h0, h0) and computed v1 and w1 for t1 = 0.01.

In Table 5 we can see the local error of the numerical integration truncating the series at

degree 8. It illustrates the good approximation of the dynamics on the centre manifold that

this gives. In Table 6 we see the estimates of the truncation error.

We have done the same taking the transformed Hamiltonian around SL1 and SL2 com-

puted using the Lie Series method. In Table 7 we can see the local error of the numerical

integration taking the truncated Hamiltonian up to degree 8 and in Table 8 we see the esti-

mates of the truncation error using equation (25). Notice that we truncate the Hamiltonian

up to degree 8, hence the estimation of the truncation error will be 8 as the set of equations

that we are integrating are taken up to degree 7.

Notice that Tables 5 and 7 give us an idea of how good is the approximation of the motion

on the approximation of the centre manifold truncated at degree 8. The same computations

can be done taking the centre manifolds approximation truncated at a given degree N. The

higher the degree is, the better approximation will be. However, due to the divergence in
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h0 ||v1 − w1||
0.02 1.2139221824443741e-17
0.04 2.3643249923959272e-15
0.08 1.2618898774811476e-12
0.16 6.9534006796827247e-10
0.32 3.9879163406944996e-07

h0 ||v1 − w1||
0.02 2.5146775308808859e-17
0.04 1.8662949690767610e-16
0.08 9.6561350589145246e-14
0.16 4.8655084457371298e-11
0.32 2.4673928463137270e-08

Table 5: For the graph transform method: difference between the numerical integration on the
centre manifold and on the RTBPS taking initial conditions at a distance h0 from the origin. Taking
the series y = v(x) truncated at degree 8 at SL1 (left) and at SL2 (right) for β = 0.051689.

h
(1)
0 h

(2)
0 N + 1

0.02 0.04 4.44043
0.04 0.08 9.02389
0.08 0.16 9.10595
0.16 0.32 9.16370

h
(1)
0 h

(2)
0 N + 1

0.02 0.04 2.629343
0.04 0.08 8.764844
0.08 0.16 8.976466
0.16 0.32 8.986181

Table 6: For the graph transform method: estimations of the truncation order for v̂(x). For
β = 0.051689 at SL1 (left) and at SL2 (right).

the centre manifold, the distance in which we have a the good approximation for very large

N can be small.

As we have already mentioned, the graph transform method is a more general approach,

as it does not use any assumption on the set of equations, while the Lie series method can

only be applied to Hamiltonian systems. Now we will compare the efficiency in terms of

computational time of both methods.

We have computed the centre manifold up to degree 8, 16, 24, and 32 using the two

approaches. All the computations have been done on the same computer, with an Intel(R)

Core(TM)2 Quad CPU at 2.83GHz. In Table 9 we have the CPU time needed to compute

each of them. Notice that, despite not taking into account the symmetries of the problem,

the graph transform algorithm is more efficient, in terms of computational time, than the

Lie series approach.

With the Lie series approach, we take the Hamiltonian function, expand it around the

fixed point, and by means of canonical transformation decouple up to high order the hy-

perbolic directions from the elliptic ones. Hence, during the whole process we deal with

homogeneous polynomials with 6 variables and at the end of the process we set two of the

variables to zero, to end on a 4D phase space.

On the other hand, with the graph transform method, we compute the power expansion

of the local centre manifold (y = v(x)). We see that v(x) must satisfy an invariant equation,

that we solve equalising degree by degree. Now, during the whole process we deal with

homogeneous polynomials with 4 variables, which coincides with the dimension of the final

phase space.
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h0 ||v1 − w1||
0.02 3.6920450235560199e-15
0.04 9.4549612587473395e-13
0.08 2.4173024466492310e-10
0.16 6.4090169252390676e-08
0.32 2.1474173035560701e-05

h0 ||v1 − w1||
0.02 3.9057253333709475e-15
0.04 1.8756915513177915e-14
0.08 9.7024896946065764e-13
0.16 2.2668434557013075e-10
0.32 5.4714331083417134e-08

Table 7: For the Lie series method: difference between the numerical integration on the centre
manifold and on the RTBPS taking initial conditions at a distance h0 from the origin. Taking the
series HN truncated at degree 8 at SL1 (left) and at SL2 (right) for β = 0.051689.

h
(1)
0 h

(2)
0 N

0.02 0.04 8.001
0.04 0.08 7.998
0.08 0.16 8.051
0.16 0.32 8.388

h
(1)
0 h

(2)
0 N

0.02 0.04 2.263
0.04 0.08 5.692
0.08 0.16 7.868
0.16 0.32 7.915

Table 8: For the Lie series method: estimations of the truncation order for the reduction to the
centre manifold for H8. For β = 0.051689 at SL1 (left) and at SL2 (right).

N Lie Series Graph Transform

8 0m 0.085s 0m 0.057s

16 0m 3.876s 0m 2.943s

24 2m 10.251s 1m 13.965s

32 33m 22.000s 14m 35.475s

Table 9: Computational time for Lie Series vs the Graph Transform method to compute the
reduction to the centre manifold up to degree N .

Under general conditions, the cost of operating with polynomials of 4 variables is much

less than the cost of operating with polynomials of 6 variables.

Although it is less efficient, the Lie series approach is convenient when we have a Hamil-

tonian system, as we end up with a very good approximation of the Hamilton equation on

the centre manifold, and we preserve most of the interesting properties of the system. The

Hamilton equation is very useful to study the phase space, we use this first integral to reduce

the phase space dimension.

3.4 Dynamics on the Centre Manifold

Here we use the reduction to the centre manifold to understand the dynamics around the

equilibrium points SL1 and SL2. The results that we present are done considering the

reduction done by the graph transform method, although the same can be done with the

approximation of the centre manifold obtained with the Lie series method.

We recall that once we have found y = v̂(x), a high order approximation of the graph
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of the centre manifold, we take ẋ = Ax + f(x, v̂(x)) to integrate the flow on the centre

manifold. Now we are in a four dimensional phase space (x1, x2, x3, x4) where plots are hard

to visualise. We will take suitable sections to reduce the phase space dimension and make

this easier.

We have taken a Poincaré section x3 = 0 and fixed several energy levels h to determine

x4. Notice that taking x3 = 0 is like taking Z = 0, and x4 is related to Ż. Hence, the

subspace {x1, x2} is a linear transformation of a subspace in the {x, y, px, py} - space. We

will take different energy levels h, for each h we have taken different initial conditions and

computed 500 iterates on the Poincaré section. In Figures 5 and 6 we can see the results

around SL1 and SL2 respectively.
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Figure 5: Poincaré sections around SL1 for β = 0.051689, for different energy levels. From left to
right, top to bottom: h = 0.08, h = 0.12, h = 0.16, h = 0.2. The continuous line is the planar
Lyapunov periodic orbit for each that energy level.

We observe that the motion around both equilibrium points is qualitatively the same.

The two frequencies (ω1 and ω2) that define the central motion give rise to two families of

periodic orbits, the planar and vertical Lyapunov orbits, parametrised by the energy h. The

planar Lyapunov orbit is totally contained in the x3 = 0 plane, it is seen as a continuous line

in Figures 5 and 6. The vertical Lyapunov orbit crosses transversally the Poincaré section

and is seen as a fixed point close to the origin. The interaction of the two frequencies gives
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Figure 6: Poincaré sections around SL2 for β = 0.051689, for different energy levels. From left
to right, top to bottom: h = 0.2, h = 0.6, h = 1.0, h = 1.4. The continuous line is the planar
Lyapunov periodic orbit for each that energy level.

rise to a family of invariant tori around the fixed point, sometimes called Lissajous orbits.

As we can see in Figures 5 and 6, for each energy level the quasi - periodic motion on the

Poincaré section is bounded by the planar Lyapunov orbit. As the energy level increases,

the planar Lyapunov orbit changes its stability and gives rise to two Halo orbits, that are

transversal to this section and are the two symmetric fixed points w.r.t x1 = 0 that appear.

The main quantitative difference between the behaviour around SL1 and SL2 is when

the Halo orbits appear. We can see that around SL1 the bifurcation takes place between

h1 = 0.1 and h2 = 0.12, while for SL2 this happens h1 = 0.4 and h2 = 0.6.

4 Conclusions

We are interested in understanding the dynamics close to unstable equilibrium point. We

have used the graph transform method to compute reduction to the centre manifold. The

idea is to compute, formally, the power expansion of the graph of the local centre manifold

(y = v(x)). We have seen that v(x) must satisfy an invariant equation, that we solve by

expanding all of the terms of this equation and equalising degree by degree up to a sufficiently
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high order. This can be done in an iterative way by solving at each step a linear system.

In Section 2.1 we have described the main details of this algorithm. We have also shown

how to use recurrent expressions for the expansion of the non - linear terms to reduce the

computational effort of this algorithm.

In Section 3.3 we have compared this method with a more classical approach to this

problem. If the system is Hamiltonian one can also use a Lie series method, taking advantage

of the Hamiltonian structure of the system. We have taken the public domain software in [6],

that deals with the reduction to the centre manifold around a collinear equilibrium point for

the RTBP, and adapted it to our model.

We have seen that the graph transform method, using recurrent expressions for the non -

linear terms, is more efficient in terms of computational time than the Lie series method.

Moreover, this method gives a more general approach to the problem. It has been used to

study the non - linear dynamics around the equilibrium points when the sail is not orientated

perpendicular to the Sun - line [2].

Finally, we have used the reduction to the centre manifold to describe the motion of a

Solar sail in the RTBPS around the collinear points SL1 and SL2. We have computed the

reduction to the centre manifold up to degree 32 around these two points. To visualise the

phase space behaviour, we have fixed different energy levels and set the Poincaré section

Z = 0. Notice that this is the only point in the whole process that we take advantage of the

Hamiltonian structure of the system.

We have seen that the qualitative behaviour around the different equilibrium points is the

same. In both cases we have planar and vertical family of periodic orbits that are given by

the two frequencies defining the centre motion. For each energy level we also find families of

invariant tori around the equilibrium point, that are bounded on the Poincaré section by the

planar Lyapunov orbit. As the energy level increases, the planar Lyapunov family changes

its stability and gives rise to two Halo orbits. We must note that the system behaves very

similar to the classical RTBP around L1 and L2.
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