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Abstract In this paper we discuss a simple model for the confinement of Saturn’s F
ring and present some preliminary numerical results. The model involves the grav-
itational interaction of independent test particles with Saturn, including its second
zonal harmonic, the shepherd moons Prometheus and Pandora, and Titan, the largest
of Saturn’s satellites. We perform accurate long-time integrations (3.2× 106 revo-
lutions of Prometheus) to check if the particle has escaped or remains trapped in
the region between the shepherds. A particle escapes if its orbit crosses the region
between the shepherds, or if it displays a physical collisions (lies with Hill’s region)
with them. We find a wide region of initial conditions of the test particle that remain
confined. We carry out a frequency analysis and use the ratio of the standard devi-
ation over the average main frequencies as stability index. This indicator separates
clearly the set of trapped initial conditions of the test particles, displaying some lo-
calised structures for the most stable ones. Retaining only those particles which are
more stable according to our indicator, we obtain a narrow elliptic ring displaying
sharp edges which agrees with the nominal location of Saturn’s F ring.

1 Introduction

Saturn’s F ring is a fascinating narrow eccentric ring with a very rich and dynami-
cal structure: beside its non-zero eccentricity and sharp-edges, it has multiple com-
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ponents entangled in a complicated way which show a variety of short-time fea-
tures Esposito (2006); Charnoz et al. (2009). This ring is located just outside the
main rings of Saturn, close to Roche’s limit for ice, and it is believed to be the result
of the action of accretion and disruptive process Charnoz et al. (2009). Aside from
the difficult questions related to its origin and evolution, its location and its highly
dynamical structural properties pose interesting questions. The current understand-
ing on the confinement of narrow planetary rings is based on the shepherd theory,
introduced by Goldreich and Tremaine (1979). In its original form, the shepherd the-
ory postulates the existence of two moons orbiting the central planet, the shepherd
moons. These moons repel away the ring particles through gravitational angular-
momentum exchange mechanisms, and induce ring-particle eccentric orbits which
are circularised by mutual ring-particle collisions. The ring is confined between the
shepherd moons where the angular-momentum torques balance, or by mean-motion
resonances. While the shepherd theory is successful for the ε ring of Uranus, its ap-
plication to Saturn’s F ring is not so straightforward, since there is no mean-motion
resonance that confines the ring, the masses of the shepherds moons Prometheus
and Pandora are too small, and the angular momentum torques are not balanced at
the actual location of the ring (see e.g. Esposito, 2006). In addition, the eccentricity
of the ring and its sharp edges pose further questions. The confinement of Saturn’s
F-ring remains unexplained.

In this paper we discuss a model to understand from a dynamical point of view
the confinement of Saturn’s F ring. We argue that a minimal model for Saturn’s F
ring needs to include at least the gravitational interactions of Saturn (we also include
corrections due to its flattening), the shepherd moons, and Saturn’s most massive
moon, Titan. We follow the scattering approach to narrow rings (Merlo and Benet,
2007) where ring particles are treated within a particle-independent model, i.e., ring
particle collisions are neglected. In this approach, the location and structure of the
ring follows from an ensemble of ring particles that remains trapped despite the ex-
istence of escaping and leaking mechanisms in the system, which in the present case
are mainly physical collisions with the shepherd moons. We compute the orbits of
an ensemble of non-interacting test particles during 3.2×106 periods of innermost
shepherd moon, Prometheus. Test particles that remain trapped between the orbits
of the shepherds are filtered with respect to a dimensionless stability index which
we use as a dynamical indicator for the possibility of escape. After this filtering, we
obtain a narrow eccentric ring that displays sharp edges, located close to the nominal
observations for Saturn’s F ring.

The paper is organized as follows: In section 2 we introduce and motivate the
(4+ 1)-body problem considered as a model for the F ring of Saturn. Section 3
describes some of our numerical simulations, including the definition of the stability
index and the motivation for filtering out the particles whose associated dynamical
indicator is too large. Finally, section 4 summarizes the main results of the paper.
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2 A ‘minimalist’ model for Saturn’s F ring

A complete description of the dynamics of Saturn’s F ring includes the gravitational
interactions of Saturn with its flattening, its major moons including the influence of
the shepherd moons Prometheus and Pandora, and the interactions among the ring
particles themselves. The latter involves non-trivial processes associated to physical
collisions among the particles of the ring, such as accretion and fragmentation pro-
cesses. Clearly, the understanding of such a system is a monumental task. Here we
shall thus address a simpler problem which is the understanding of a possible mech-
anism for confinement of Saturn’s F ring and, once this is settled, we shall consider
the structural properties of the resulting confined ring.

The starting point of our model is the assumption that the F ring consists of
an ensemble of non-interacting test particles, which are dynamically trapped by
their interactions with Saturn and its major moons. We study the dynamics of an
ensemble of test particles defined by its initial conditions in phase space; their time
evolution determines whether a test particle remains dynamically trapped and hence
belongs to the ring, or if it simply escapes. This is the framework of the so-called
scattering approach to narrow rings (Benet and Seligman, 2000; Merlo and Benet,
2007). The crude assumption of considering non-interacting test particles allows
us to treat each particle independently. This assumption is therefore equivalent to
disregard any effects related to collisions among the ring particles and the dynamical
effects related to their actual shape and size, processes that are important for the
detailed understanding of the fine structure and life-time of the ring (Poulet et al.,
2000; Murray et al., 2008; Charnoz et al., 2009). In addition, we shall neglect the
influence of the whole ring in the motion of any of the major bodies considered or
of the particles of the ring; this is tantamount of having massless test particles. We
shall assume for simplicity that the motion of all bodies takes place on the equatorial
plane of Saturn. These assumptions allow us to consider a planar restricted (N+1)-
body problem, where one test particle is influenced by the motion of N massive
bodies including Saturn and its flattening, but does not influence the motion of the
latter.

Our model is naturally divided into two parts. First, the motion of the N-
interacting massive bodies is given in an inertial frame by the many-body Hamilto-
nian
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Here, G denotes the gravitational constant, m0 = MS = 5.68319×1026 kg (Jacobson
et al., 2006) is Saturn’s mass, RS = 60268.0km (Seidelmann et al., 2007) denotes its
equatorial radius, and J2 = 16290.71×10−6 is the value of first zonal gravitational
coefficient (Jacobson et al., 2006). The latter is included since we are interested
in somewhat long-time integrations; higher-order terms related to the flattening are
ignored since they do not provide further physical insight and simply slow down
significantly the numerical calculations. The mass of the i-th body is denoted by mi ,
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its position from the origin (which is the center of mass of N-body problem) by Ri,
and its momentum by Pi. Then, Ri, j = |Ri−R j| denotes the distance between the i-th
and the j-th bodies, with the convention that i = 0 represents Saturn, and the moons
included in the model are ordered increasingly with respect to their semi-major axis.

The second part of the model is related to the motion of the test particles, whose
Hamiltonian reads

Hrp(t) =
1
2
(p2

x + p2
y)−

G m0

r0(t)

(
1+

J2

2
R2

S

r2
0
(t)

)
−

N−1

∑
i=1

G mi

ri(t)
, (2)

where ri(t)= |r−Ri(t)| denotes the distance from the test particle to the i-th massive
object, r denotes the position of the ring particle and p its momentum. Notice the
explicit appearance of time in the test-particle Hamiltonian through the positions
Ri(t); hence, the energy of the test particle is not a constant of motion.

What massive bodies shall we include in a simple model for the F ring? Clearly,
we must include the shepherd moons Prometheus and Pandora (m1 = 2.4×10−10 MS ,
a1 = 2.312RS , e1 = 0.0024; m2 = 2.3× 10−10 MS , a2 = 2.352RS , e2 = 0.0042),
which are known to influence the dynamics of the ring, though they do not con-
fine it completely (see Esposito, 2006). The resulting (3+ 1)-body model defined
by Saturn, the shepherd moons and the test particle, yields a broad ring instead of
a narrow one, which spans essentially all the available initial condition space be-
tween the orbits of the shepherd moons. This follows from the fact that the masses
of shepherd moons are exceedingly small, so their influence on the test particles is
essentially local: Test particles either collide with them, or essentially do not feel
their influence at all; their motion is a precessing Kepler ellipse which is too weakly
perturbed by the shepherds. Therefore, our minimalist model must include at least
another moon, thus becoming a planar restricted (4+1)-body problem.

There is no obvious choice for such a third moon in the model, since there is
no resonance that actually confines the ring (Esposito, 2006). Two possible op-
tions are Titan and Mimas: Titan is the most massive moon of Saturn’s satellite
system (MTitan = 2.3669×10−4 MS ), with a nominal eccentricity of eTitan = 0.0288,
but it is located rather far away from the ring, aTitan = 20.27RS . In turn, Mimas is
the major moon of Saturn closest to the F ring (aMimas = 3.076RS ) and may play
an important role, since Pandora is close to a 3 : 2 co-rotation eccentric resonance
with Mimas (French et al., 2003). Yet, the mass of Mimas is comparatively small,
MMimas = 6.6× 10−8 MS . We notice that the ratio of the force exerted by Titan on a
test particle at the nominal semi-major axis of the F ring (aFring = 2.324RS ) is ∼ 4
times larger than the force exerted by Mimas, when Titan is at its furthest location
from the particle and Mimas is at the closest one. For this reason we shall consider
in our model the influence of Titan on a precessing Kepler eccentric elliptic orbit.
Finally, due to the small mass ratio between Titan and Saturn and the shepherds
and Titan, we simplify the numerics by computing the precessing Kepler motion of
Titan due to the gravitational attraction of Saturn and its J2 coefficient, and for the
shepherds we include the additional perturbations by Titan; we further consider that
Saturn remains at the origin.
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We are interested in the existence of regions of trapped motion between the or-
bits of the two shepherd moons. Note that our model can be seen as a central field
(with a central oblate mass) under a time dependent perturbation coming from the
motion of the moons and Saturn. If the motion of these bodies (described by Hamil-
tonian (1)) is quasi-periodic, then the time dependent perturbation that appears in
Hamiltonian (2) is also quasi-periodic. This means that, if all these peturbations
are small enough and some generic conditions hold, a version of the KAM theo-
rem (Jorba and Simó, 1996; Jorba and Villanueva, 1997) can be used to ensure the
existence of plenty of quasi-periodic motions for a particle between the two shep-
herd moons. As these conditions are very difficult to check in this model, we will
use numerical simulations to study the dynamics of a test particle.

Therefore, let us define the conditions for escape: We consider that a test particle
escapes if it leaves the region defined by the orbits of the shepherds, i.e., if it is not
located within the region defined by innermost radial position of Prometheus’ orbit
and the outermost of Pandora’s. In addition, a test particle is said to collide if it is
located within Hill’s radius of a shepherd moon, that is, ri < RHi

= ai(mi/3m0)
1/3

(with i= 1,2 for Prometheus and Pandora respectively). In this case, the test particle
will be treated as an escaping particle, since such an event corresponds to a physical
collision with one of the shepherds (Ohtsuki, 1993). In either case, the integration of
the orbit shall be terminated and the test particle is disregarded. On the other hand,
if the test particle does not fulfill any of these requirements before the end of the
numerical integration at tend , the test particle is considered to be trapped and, in that
sense, a particle of the ring. We shall see below that an additional criterion related to
the stability properties of the orbits and the possibility to escape must be imposed.

In the following, mass units shall be expressed in terms of Saturn’s mass MS ,
distances in terms Saturn’s equatorial radius RS , and time is given in terms of TProm =
T1 = 2π , which corresponds to a full Kepler period of Prometheus.

3 Numerical results

A dynamical problem is fully defined once the initial conditions are set. Since we
are interested in the dynamics of the test particles, we shall fix the initial condi-
tions of the massive bodies, and consider a region of the phase space for the test
particles; different initial conditions correspond to independent test particles. The
initial conditions of the test particles are defined by the initial semi-major axis a, the
eccentricity e, and two angles defining the initial orientation of the instantaneous
precessing ellipse ω , the argument of pericenter, and the position along the ellipse
φ , the true anomaly. In the following we shall focus in the phase-space region de-
fined by a ∈ [2.318RS ,2.345RS ], e ∈ [0,0.00145] and φ ,ω ∈ [−π,π]. We note that
this region in phase space, after projection into the coordinate space, spans the (pla-
nar) region between the orbits of Prometheus and Pandora. Therefore, this region
includes the orbital elements compatible to particles belonging to Saturn’s F ring,
but is not restricted to those orbital elements only.
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Fig. 1 Projection into the semi-major axis vs eccentricity plane of the initial conditions of test
particles that remain trapped at least for tend = 2.4× 106T1 . The color code is the stability index
∆ f in logarithmic scale associated to the mean motion. Notice that there are two localized regions
where the particles exhibit an enhancement of the stability index (blue stripes).

The numerical results presented below have been computed using a high-order
Taylor’s method (maximum order of the Taylor expansion is 28) for the numerical
integration; see Jorba and Zou (2005) for details on the method. The accuracy of
the integrations is such that the energy and the angular momentum of Titan’s Kepler
motion is conserved to machine precision throughout the integration.

Figure 1 shows the projection into the initial semi-major axis a and eccentricity
e plane of test particles that remain trapped at least for tend = 2.4× 106 periods of
Prometheus. In these simulations, the orientation of the initial Kepler ellipses was
varied considering 10 equally spaced values, while the true anomaly was set to 0;
the semi-major axis and the eccentricity were set on a grid of 256 points for each
value of ω . The results in Fig. 1 show that the particles that remain trapped still form
a wide and seemingly connected region of both a and e. The result seems deceiving:
While the inclusion of Titan in the model foments further collisions with the shep-
herds, it does not yield a narrow ring that could be compared with the observations,
at least after the end of the integration considered. However, contrary to the (3+1)-
body model (the shepherd moons and Saturn), in the present case the trapped test
particles do not a priori move along essentially stable precessing Kepler ellipses,
due to the presence of Titan. Indeed, since the motion of Titan is eccentric, there is
no conserved quantity similar to the Jacobi integral in the circular restricted three-
body problem. Then, the eccentric motion of Titan allows test particles to explore
radially more extended regions, and thus allows them to fulfill one conditions to
escape. As we shall see below, some test particles happen to explore radially more
extended regions than others; we shall argue that these are particles that eventually
escape.
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Fig. 2 Same as Fig. 1 for test particles that remain trapped at least for tend = 3.2× 106T1 close
to the observed semi-major axis for Saturn’s F ring. In this case, the color code corresponds to
base-10 logarithm of the stability index ∆a constructed with respect to the mean semi-major axis.

It is in this sense that we address the stability properties of the test particles that
remain trapped, and consider a frequency type analysis Laskar (1992, 1993). More
specifically, motivated from the fact that the motion of the test particle is a small per-
turbation from an integrable system (the Kepler problem with flattening), we study
the stability index defined by the ratio of the standard deviation of a frequency and
its average value, computed along the whole trajectory; in particular, we consider
the stability index associated to the mean motion ∆ f = σ f / f . In terms of ∆ f , quasi-
periodic motion yields ∆ f = 0; hence, non-zero values of ∆ f indicate a departure
from stable (quasi-periodic) motion.

From the numerical integration of the orbits, we compute the main frequencies of
the motion every 200 revolutions of Prometheus using a collocation method (Gómez,
Mondelo, Simó, 2010), from which f and σ f are calculated whenever the test par-
ticle remains trapped. The color code in Fig. 1 is based on log10(∆ f ). Figure 1
displays some vertical blue-violet stripes localized around a∼ 2.324 and a∼ 2.340,
where the particles exhibit an enhancement of the stability index (∆ f ∼ 10−5) in
comparison to the rest of the trapped particles, i.e. roughly two orders of mag-
nitude. Interestingly, the first group of blue-violet stripes quoted above lies close
to the nominal semi-major axis of Saturn’s F ring; Fig. 2 displays more extended
(tend = 3.2×106T1 ) and detailed simulations focusing on this region, where the ini-
tial angles of the test particles are chosen at random. The logarithmic color code in
Fig. 2 is defined now through the stability index ∆a associated to the mean semi-
major axis of the orbit (during 200 revolutions of Prometheus), which is a measure
of the radial excursion performed by test particles up to tend .
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Fig. 3 Frequency histogram of log10(∆a) for the data used for Fig. 2; the normalization corre-
sponds to the total number of trapped test particles. Note that ∆a is clearly separated in two disjoint
ranges.

Groups of localized (blue-violet) stripes can again be distinguished in Fig. 2
among the trapped orbits; our simulations suggest that there is no particular, or
only a weak dependence, on the initial angles for these test particles. We observe
that according to the stability index ∆a, the trapped test particles display two well-
separated scales, which correspond to radial excursions of few kilometers and few
hundreds of kilometers. This is illustrated in Fig. 3 where we show the frequency
histogram of log10(∆a) for the data used in Fig. 2.

We interpret the results of Fig. 3 as follows: A test particle moves along a per-
turbed precessing ellipse; the orbit displays an additional but quite limited radial
excursion due to Titan’s interaction. Titan’s eccentric orbit may create conditions
which permit, in a rather short-time scale, an abrupt change in the semi-major axis
and eccentricity, which in turn results in more extended radial excursion of the orbit.
This increment of the radial excursion may provide eventually the conditions for the
escape of the test particle; in our simulations, this corresponds typically to a colli-
sion with one of the shepherd moons. Test particles that experience these events but
are still trapped at time tend are those that correspond to the orange–yellow points in
Figs. 1 and 2. The blue-violet dots correspond to test particles that may have expe-
rienced very few or even none abrupt changes in their semi-major and eccentricity
values; therefore, the associated value of ∆a is very small.

According to this interpretation, it is a question of time that the test particles be-
longing to the orange–yellow region will eventually escape. Note that this does not
exclude that test particles with very small values of ∆a finally escape, but suggests
that the time required may be comparatively longer. The structure of Fig. 3 sug-
gests to filter the trapped test particles according to the stability index, and retain
only those particles whose stability index is small enough. In particular, we shall
consider as ring particles those that satisfy the criterion ∆a < 10−5.
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Fig. 4 Snapshot of the ring particles after filtering near the end of our simulations. The x-axis
is the azimuthal angle, and the y-axis is the radial location. The blue middle line represents the
best-fit of the particles of the ring to a Keplerian ellipse; the outer lines correspond the same ellipse
shifted upwards or downwards by 0.002RS and serve to obtain a rough estimate of the width of the
ring. The black dot close to the bottom-right of the figure is Prometheus.

Using this filtering, we present in Fig. 4 a snapshot of the ring obtained close to
the nominal location of Saturn’s F ring. The ring is clearly narrow, eccentric and dis-
plays sharp edges. Fitting a Keplerian ellipse to the data used in Fig. 4 we obtain esti-
mates for the semi-major axis afit ≈ 2.3241RS and the eccentricity efit ≈ 2.32×10−4.
A rough estimate for the width of the ring is obtained by shifting radially this Kep-
lerian ellipse; we obtain that within a width δ r . 0.005RS ≈ 300km contains more
than 90% of the ring particles. There is indeed a remarkable correspondence of these
values with the observations for Saturn’s F ring. Yet, we must emphasize that this
a posteriori consistency check of comparing our results with the observational data
is not a proof of the dynamical consistency of the filtering; only longer numerical
integrations, which are quite time consuming, can prove or disprove if the filtered
test particles indeed escape. With this proviso, the result is quite rewarding.

4 Discussion

In this paper, we have introduced a simple (4+ 1)-body model for Saturn’s F ring,
consisting of four bodies (Saturn, Prometheus, Pandora and Titan) which influence
the dynamics of a massless test-particle. The model includes the flattening of Saturn
through its second zonal coefficient J2 . We argue that a realistic model for the under-
standing of the confinement and stability of Saturn’s F ring requires at least include
these interactions. We found that after long integration times (tend = 3.2× 106T1 )



10 Luis Benet and Àngel Jorba

there is a wide region in the initial conditions plane (a vs e, essentially independent
of the initial angles) which remain trapped. These test particles show a separation of
scales (about two orders of magnitude) with respect to a stability index defined as
the ratio ∆ f of the standard deviation of the mean-motion frequency to its average
value; the frequencies are computed during a fixed interval of time 200T1 and the
average is performed including all the orbital data. Similar results are obtained for
a related indicator ∆a, defined on the mean semi-major axis, which is a measure of
the radial excursion of the orbit of the test particle during the integration time. In the
initial condition plane, the regions of enhanced stability appear as localized stripes
immersed in a wide region of trapped test particles.

We have argued that test particles with larger values of ∆ f or ∆a eventually es-
cape from the neighborhood of the ring, or simply collide with one of the shepherds.
By filtering out those test particles which are not too stable according to the stability
index, we end up with a set of particles that form a narrow ring in the vicinity of
the observed Saturn’s F ring. Beside being narrow, the ring obtained is eccentric and
displays sharp edges. Our estimates for the semi-major axis, eccentricity and width
of the ring agree with the observational data. Although the filtering has to be further
validated by longer integrations of the orbits, we claim that this model including the
stability with respect to escapes may help to understand the confinement of Saturn’s
F ring as well as some of its structural properties. The basic dynamical mechanism
is related to the existence of invariant structures of the dynamics which build trans-
port barriers that effectively trap and confine the particles of the ring; test particles
that in our simulations remain trapped but do not survive the filtering procedure, are
particles whose dynamics is very slowly drifting away by exploring radially more
extended regions, until they eventually collide with one of the shepherd moons.
Note that this mechanism explains dynamically the confinement of Saturn’s F ring:
the organizing object which gives rise to the confining invariant structures explains
the observed semi-major axis and eccentricity; the invariant structures which are
barriers for the ring particles explain the sharp edges observed in the ring.
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Systems With Three or More Degrees of Freedom, NATO Adv. Sci. Inst. Ser. C
Math. Phys. Sci., vol 533, pp. 134-150. Kluwer Acad. Publ., Dordrecht, (1999).

Merlo, O., Benet, L.: 2007, “Strands and braids in narrow planetary rings: A scat-
tering system approach”, Celest. Mech. Dyn. Astr. 97, 49-72.

Murray, C.D., Beurle, K., Cooper, N.J., Evans, M.W., Williams G.A., Charnoz, S.:
2008, “The determination of the structure of Saturn’s F ring by neraby moonlets”,
Nature 453, 739-744.

Ohtsuki, K.:1993, “Capture probability of colliding planetesimals - Dynamical con-
straints on accretion of planets, satellites, and ring particles”, Icarus 106, 228-246.

Poulet, F., Sicardy, B., Nicholson, P.D., Karkoschka, E., Caldwell, J.: 2000, “Sat-
urn’s ring-plane crossings of August and November 1995: A model for the new
F-ring objects”, Icarus 144, 135-148.

Seidelmann, P.K., et al.: 2007, “Report of the IAU/IAG Working Group on carto-
graphic coordinates and rotational elements: 2006”, Celest. Mech. Dyn. Astr. 98,
155-180.


