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Abstract. We consider some simple Hamiltonian systems, variants or gen-

eralizations of the Hénon-Heiles system, in two and three degrees of freedom,

around a positive definite elliptic point, in resonant and non-resonant cases.
After reviewing some theoretical background, we determine a measure of the

domain of chaoticity by looking at the frequency of positive Lyapunov expo-

nents in a sample of initial conditions. The question we study is how this
measure depends on the energy and parameters and which are the dynamical

objects responsible for the observed behaviour.

To the memory of Michel Hénon (1931–2013),
a pioneer introducing paradigmatic models.

1. Introduction. Many phenomena are described using a Hamiltonian formula-
tion. Integrable Hamiltonian systems are, for some problems, interesting approxi-
mations, which allow to guess some of the properties of the studied problem. There
are several tools to detect the lack of integrability of such a system, either based on
an algebraic approach, see Section 2.1, or based on numerical evidences obtained
from simulations, see Section 3.

But one of the key points is to have some quantitative information on the amount
of chaos to be found in a given system, providing a measure on how far it is from
integrable. It is relevant because if that amount is very small, below some threshold,
it can be neglected and the system can be considered as integrable for practical
applications. A related topic is that despite the amount of chaos can be important,
perhaps it takes a very large time to show up, even longer than the time of validity
of the model.

At that point there are crucial questions:

• Which are the dynamical objects responsible for the chaos?
• Can they be detected and measured in some reasonable way, to be able to

predict the amount of chaos of the system?
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• How do the answers to these questions depend on the level of energy and on
the parameters of the system?

In this work we present an approach to that topic, giving some answers and
suggesting several open problems.

In Section 2 we recall some quite well know theoretical facts, looking at the
algebraic aspects of integrability and at the regular motions which follow from
KAM theory.

Section 3 is devoted to describe some of the algorithms used to detect the fraction
of the phase space which can be considered that has chaotic behaviour.

Section 4 presents some simple examples, the first one being the classical Hénon-
Heiles Hamiltonian [15]. Other examples are based on variants of this model or
generalizations to 3 degrees of freedom (dof). For simplicity we consider the system
in the vicinity of a totally elliptic fixed point, with positive definite quadratic part,
and we restrict the study to values of the energy such that there is a compact
component of that energy level. After every example we try to give a theoretical
support to explain the observed behaviour, identifying the related dynamical objects
and making a quantitative analysis.

In all the presentation the systems are assumed to be analytical.

2. A review of some theoretical background. Let us consider a Hamiltonian
H(q, p) with n degrees of freedom (dof), where (q, p) belong to some domain in R2n

or, in some cases, in Tn × Rn. We refer to standard books [1, 29, 33] for basic
definition and facts. The dynamics is described by

dqj
dt

=
∂H

∂pj
(q, p),

dpj
dt

= −∂H
∂qj

(q, p), j = 1, . . . , n. (1)

Let F be a first integral of the system which makes zero the Poisson bracket

{F,H} =

n∑
j=0

(
∂F

∂qj

∂H

∂pj
− ∂F

∂pj

∂H

∂qj

)
. (2)

We recall that two functions F,G are said to be in involution if {F,G} = 0. A
system is said to be integrable in the Liouville-Arnold sense if it has n first integrals
F1, . . . , Fn, in involution, and functionally independent almost everywhere. In case
the joint level of the first integrals F−1

1 (c1)∩ . . . F−1
1 (cn) is compact, for some values

of c1, . . . , cn, a celebrated theorem by Arnold ensures that it is diffeomorphic to Tn.

2.1. Algebraic detection of the lack of integrability. There exist several al-
gebraic tools to detect the lack of integrability of a system like (1). The basic idea
is to derive necessary conditions for integrability and then to check that some of
these conditions fail. One can look at [23] as standard reference.

The starting point is to consider a solution of (1) of the form z(t), but looking at
t as a complex variable. Then z defines a Riemann surface Γ and we can consider
the first variational equations, VE1, associated to (1), say ξ̇ = A(t)ξ, when z(t)
moves along a path γ in Γ.

A first general approach was derived by Ziglin [45], looking at the monodromy
matrices, i.e., the solutions in matrix form of the VE1, using different paths γ1, γ2. If
we denote as M1 and M2 these matrices, a necessary condition for the integrability
is that they commute.

This was extended on the line of Picard-Vessiot theory. See, e.g., [27] for one
of the preliminary works in this direction. In the VE1 the entries in A(t) belong
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to some field of (meromorphic) functions K (depending on the equations of the
problem and on the selected solution). But, in general, the entries of a fundamental
matrix M of the VE1 belong to a larger field of functions, L, which can be seen as
an extension of K obtained by adjunction of the entries of M (if not in K). This
leads, in a natural way, to consider the Galois group G of the extension L/K, which
is an algebraic group. The key result, see [24, 25], tells us that a necessary condition
for integrability is that the identity component G0 (in the Zariski topology) of the
Galois group G must be commutative. See the above references for technical details.

Finally, the previous result was extended, see [26], to the case in which G0

turns out to be commutative and, hence, it is not producing any obstruction to
integrability. To this end one can consider not only the VE1 but the variational
equations to order m > 1, VEm or, in other words, the jet up to order m of the
solution as a function of the initial conditions. The system of VEm is not linear,
but it can be reduced to the study of a linear system by including some additional
variables, see [26]. Then, in a completely analogous way, one derives a necessary
condition for integrability involving the variational equations along paths γ in Γ up
to order m. A generalized Galois group, Gm, must have a commutative identity
component (Gm)0. Alternatively, one can require the commutativity, up to order
m, of the propagation of the jets along paths on Γ. Note that even in the case
(Gm)0 commutative for all m ≥ 1, one can not claim that H is integrable.

The Hénon-Heiles system to be studied in Section 4.1 leads in a natural way to
study a one-parameter family of 2 dof Hamiltonian systems. Ito [16] proved that all
of them, including the original system, are non-integrable by using Ziglin’s result,
except for 4 values of the parameter. For three of these values the systems have been
proved to be integrable. The fourth one was proved to be non-integrable using VE3
(see [26]). See [20] for methodology and other examples on the use of higher order
variational equations and [21] for a delicate case involving different singularities.

The main problem of the algebraic approach is that, up to now, it does not
offer any quantitative information on some measure of the amount of chaos to be
expected on a given system.

2.2. KAM theory. Consider now an integrable system for which the levels of the
n integrals F1, . . . , Fn are tori. Then it is possible to introduce angle-action variables
(ϕ, I) ∈ Tn × U, U ⊂ Rn and, in these variables, the Hamiltonian can be written
simply as H0(I). Hence, it can be integrated explicitly, giving I =ctant, ϕ(t) =
ϕ(0) + tω(I), where ω(I) = ∇(H0(I)) denotes the frequency vector. Therefore,
there are domains in which the phase space is foliated by invariant tori and, in
these tori, the dynamics is quasiperiodic if ω(I) is non-resonant, that is, if one has
(k, ω(I)) 6= 0 for all k ∈ Zn \ {0}.

The standing question is what happens when the system is perturbed to a new
Hamiltonian H(ϕ, I, ε) = H0(I) + εH1(ϕ, I, ε). The celebrated KAM theorem,
see for instance [1, 29, 33], tells us that the previous tori subsist, with a small
deformation, provided three conditions hold:

• The frequencies satisfy a Diophantine condition:

|(k, ω)| ≥ c/|k|τ for all k ∈ Zn \ {0}, (3)

for some c > 0, τ > 0 (in fact it should be τ ≥ n− 1), being |k| a norm of k.
• The unperturbed Hamiltonian satisfies a non-degeneracy condition, which

amounts to require that the passage from I to ω(I) is invertible: Hess(H0(I))
must be a regular matrix. This is called the torsion condition.
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• The value of the perturbation parameter ε is sufficiently small.

It should be clear that the conditions are related in some way. Having a strong
torsion can help to keep the tori if ε increases or if c decreases (for a fixed τ) in the
Diophantine condition.

Furthermore, one can ask which will be the measure of the set of points which
were in tori for ε = 0 and such that the tori have been destroyed due to the
perturbation. Typically one expects to have a measure O(ε1/2), assuming that
the torsion condition is satisfied in all the domain under consideration. This follows
from an estimate of the measure of the resonant domains, close to the hypersurfaces
in the action space, for which (k, ω(I)) = 0 for some k ∈ Zn \ {0}. However one
can expect to have Hess(H0(I)) singular around some hypersurfaces in the action
space. This will change the exponent 1/2 of ε to smaller values, giving, in principle,
a domain with larger measure without KAM tori.

But in the complement of the KAM tori can appear satellite tori which can fill
an important part of the measure previously excluded. This will be illustrated in
several of the examples in Section 4.

The KAM results apply to symplectic maps. An integrable symplectic map in
dimension 2n is obtained as Poincaré section, on a given level of energy, of an
integrable Hamiltonian with n+ 1 dof or as the time-1 flow of an integrable Hamil-
tonian with n dof. Under suitable conditions, most of the tori of the unperturbed
symplectic map are preserved (slightly deformed) under perturbation.

A particular case, relevant when studying Hamiltonian systems with 2 dof, are
the two-dimensional (2D) symplectic maps. A simple model are the so-called twist
maps, of the form (ϕ, I) 7→ (ϕ+α(I), I), where (ϕ, I) ∈ S× [a, b] for a fixed interval
[a, b]. The radius depending rotation α(I) is asked to satisfy the twist condition
dα(I)/dI 6= 0. Then, Moser theorem ensures the preservation of invariant circles
having Diophantine rotation number for sufficiently small perturbations.

But if dα(I)/dI(I∗) = 0 for some a < I∗ < b, some more complicated patterns
can appear, depending on the degree of degeneracy of α at I∗. In the generic case
d2α(I)/dI2(I∗) 6= 0 the so-called meandering curves [36] appear and they fill up
most of the domain not covered by the KAM invariant curves (despite the existence
of meandering curves also follows from KAM theorem).

3. Tools for detecting chaos and related topics. Faced to a given Hamiltonian
there are different tools to detect, for given initial conditions, whether the corre-
sponding orbit can be considered regular or chaotic. They are mainly based on the
so-called frequency analysis and on the estimates of Lyapunov exponents or some
related quantity. We refer to [37] for an overview and different examples.

Frequency analysis is a very popular tool since the systematic use made by Laskar
[17] for the study of the solar system. The key idea is to try to determine that a
given orbit can be assumed to be quasiperiodic for a given time interval [0, T1] and to
obtain a basis of the frequencies. The computation is repeated for another interval
[T2, T3], T2 ≥ T1 and then one checks if one can accept that the basis coincides with
the previous one within a prescribed tolerance. There are effective algorithms to
check for the quasiperiodicity of the orbit or to detect that the assumption is wrong.
We refer to [13, 14] for an efficient methodology, several examples and the theoretical
background. A very accurate and fast method has been recently introduced in [19].
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Another approach, in cases that can be reduced to check for a discrete map if the
orbit of an initial point is quasiperiodic in an invariant curve, is purely topological
and based on the order of the successive iterates. One can look at the appendix in
[32], where it has been applied to 2D tori of partial differential equations. It will be
used in Section 4.3.

3.1. Direct estimates of Lyapunov exponents. A widely used method to de-
tect chaos is to obtain estimates of the maximal Lyapunov exponent, that is, the
exponential rate of divergence of nearby orbits. This was, essentially, the method
used in the Hénon-Heiles paper [15]. One should mention, however, that while reg-
ular orbits have zero Lyapunov exponents, the converse is not true, despite can be
seen as exceptional. For simplicity we sketch the method in the case of discrete
maps (either conservative or not).

Let x0 be an initial point and x0, . . . , xn, . . . the orbit under a map F : xk+1 =
F (xk). Let v0 be a random unitary vector. We compute normalized images, vk, of
v0 and the related Lyapunov sums LSk for k ≥ 1, starting with LS0 = 0, as follows:

wk=DF (xk−1)vk−1, vk=
wk
||wk||2

, LSk=LSk−1+log(||wk||2), xk=F (xk−1). (4)

The maximal Lyapunov exponent Λ, if it exists, will be found, with probability 1,
as the limit slope of LSk as a function of k. If F comes from the passage through
a Poincaré section Σ, the values of LSk should be considered as a function of the
passage times tk through Σ.

The problem is how to decide to stop the computation. A possible solution is to
look for the slope of a fit of LSk as a function of k after N iterates, using differ-
ent fractions of the sample (say, last 70%, last 50% and last 30%) and accept the
estimated values if they differ in less than a prescribed tolerance. Otherwise the
computation is continued up to 2N, 3N, . . . iterates without exceeding a given max-
imum. And an additional problem, if we are interested in deciding if the dynamics
can be considered regular or chaotic, is to set up a threshold on the estimated Λ to
consider the orbit as chaotic. Typically this is guided by some preliminary tests.

However, if we are only interested in deciding if the dynamics is regular or chaotic,
there are shortcuts. For regular orbits the behaviour of the norm of vk (without
the scaling in (4)) is typically linear in k. For an integrable Hamiltonian system
with vector field XH , the integration of the VE1 dξ/dt = DXH(t)ξ gives, generi-
cally, a linear behaviour for the norm of ξ(t) as a function of t (with superimposed
quasiperiodic oscillations), the coefficient of the linear part being related to the
torsion. Hence, if we accept that the linear part has a coefficient bounded by κ
and after some transient one has LSk > log(κk), one can consider that the orbit is
chaotic.

3.2. MEGNO. As it has been mentioned, in the regular case there are quasiperi-
odic oscillations and, furthermore, if LSk behaves as log(k) because of the linear
terms (or LS(t) as log(t) in the continuous case) the convergence of the linear fits to
zero is slow. A methodology was proposed and used in [3] to filter the oscillations
and speed up the convergence.

A systematic methodology, for conservative systems, with fast convergence was
introduced in [4], where a weighted formulation was presented to study the Mean
Exponential Growth factor of Nearby Orbits (MEGNO). It turns out to be very
efficient when interested on the concrete value of Λ. See [18] for an example of a
systematic massive application where the object of study was the metric entropy of
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a discrete map as a function of a parameter. We recall that the metric entropy can
be recovered by integration of the Lyapunov exponent according to Pesin’s theory
[31].

Again, if we are only interested in deciding between regular or chaotic, a shortcut
used in the examples in Section 4 proceeds as follows. Let us denote as z the
variables in the Hamiltonian formulation, as XH the Hamiltonian vector field and
as ζ the variable in the first variational equations. We add an equation for an extra
variable Y

dz

dt
= XH(z),

dζ

dt
= DXH(z(t))ζ,

dY

dt
= t

(dζ/dt, ζ)

(ζ, ζ)
. (5)

Then the value of Y (t)/t tends to 1 for regular orbits, while it is divergent for
chaotic ones. Hence, one can compute Y (t) up to some time T and check if it is
below Tc1 with c1 a little bit greater than 1, or larger than Tc2 with c2 away from
1. In the first case the dynamics is considered as regular and in the second one as
chaotic. For values Tc1 ≤ Y (T ) ≤ Tc2 one can continue up to a larger time. This,
together with the checks on the values of LS(t) described in Section 3.1, has been
efficiently used in Section 4 where system (5) is integrated using high order Taylor
methods.

3.3. Detecting very small positive Lyapunov exponents. A critical case ap-
pears when the system under study has a large fraction of chaotic motion but the
related Lyapunov exponents are rather small. This will appear in Section 4.4 where
a generalization of the Hénon-Heiles system to a 3 dof Hamiltonian in 1:1:1 res-
onance is studied. A direct approach is extremely time consuming. But using a
suitable scaling of variables, a few steps of normal form, averaging and time scaling,
makes the computations quite easy. Details will be given in Section 4.4.

4. Examples: numerical results and theoretical explanations. As already
mentioned in this Section we study a few simple examples around a totally elliptic
fixed point, for two and three degrees of freedom, with resonant and non-resonant
frequencies at the fixed point.

Before proceeding to describe the results we can comment on the sampling. That
is, how the initial conditions have been taken on a given level of the energy. In the
case of 2 dof a simple method consists in taking a grid on a Poincaré section, but
one can also take initial conditions in an approximately equispaced grid on the
full level, close to S3 for small energies. In the case of 3 dof one can also take
points on a grid in a Poincaré section, or in an approximately equispaced grid in
S5. But because of the form of the Hamiltonian functions used for 3 dof, one can
take points on a level H−1(h) with zero velocity: px = py = pz = 0. The results
are slightly different, depending on the method and on the number of points in the
grids (ranging, roughly, from 105 for h such that there is a big amount of chaos,
to 107 when few orbits are chaotic). But the global trends, as a function of h, are
identical.

4.1. The classical Hénon-Heiles Hamiltonian. The first example is the cel-
ebrated Hénon-Heiles system, a model of the dynamics of stars in galaxies with
cylindrical symmetry and that provided strong numerical evidence of the lack of
first integrals beyond the energy. It is given by

H(x, y, px, py) =
1

2
(x2 + y2 + p2

x + p2
y) + x3/3− xy2, (6)
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and it has bounded components of H−1(h) until h = 1/6. Figure 1 shows a plot of
the Poincaré map P on the section y = 0, py > 0 on the level h = 0.1. The system
has 8 simple periodic orbits (p.o.), 5 of them elliptic and 3 hyperbolic. Four of the
elliptic p.o. are seen on the plot, surrounded by invariant curves, while the fifth one
lies at the boundary and, hence, P is not defined on it. The three hyperbolic p.o.
are marked as green points and are seen to be surrounded by chaotic domains.

-0.4

-0.2

 0

 0.2

 0.4

-0.6 -0.4 -0.2  0  0.2  0.4

Figure 1. Poincaré map P related to (6) on the level H−1(0.1).
The coordinates displayed are (x, px). See the text for details.

4.1.1. Numerical results. The three hyperbolic fixed points of P give rise to hete-
roclinic connections. In the Figure 1 we also display the left branch of the unstable
manifold Wu

+ of the left upper fixed point (in blue) and the left branch of the stable
manifold W s

− of the left lower fixed point (in magenta). Because of the symmetry
S : (x, px) ↔ (x,−px) one has S(Wu

+) = W s
− and an heteroclinic point lies on

px = 0. Note that, despite h is not close to zero, it is hard to distinguish Wu
+ from

W s
− near px = 0 but it becomes easier close to the fixed points.
Using the methods described in Section 3 the fraction of regular points

ψ(h) =
points considered regular in H−1(h)

total number of tested points in H−1(h)
(7)

has been computed. The results are shown in Figure 2. On the left plot the value
of ψ(h) as a function of h is displayed. One can see that for h = 0.07 it seems that
most of the dynamics is regular. In fact, for h = 0.06 the chaotic fraction is only a
little bit larger than 10−6. The right plot displays h log(1−ψ(h)) also as a function
of h and a fit by a function of the form

`(h) = ah+ bh log(h)− c (8)

with respect to the parameters a, b, c. Let us denote as ac, bc, cc the values obtained
in the fit, to stress that they refer to the measure of the chaotic domain. The reasons
to select the plotted function and the fitting function ` will be clear in what follows.
Some of the irregularities that one can see in Figure 2 left, for not so small values of
h, have a clear explanation. The sudden decrease in ψ(h) close to h = 0.12 is due
to the following. In Figure 1 one can see 5-periodic islands around the elliptic fixed
point on x < 0, px = 0. Increasing h the associated hyperbolic 5-periodic points
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create a chaotic zone which quickly increases just below h = 0.12 and then it merges
with the largest chaotic zone associated to the fixed hyperbolic points. See [22] for
a detailed study in the case of the Hénon map, which allows to identify most of the
irregularities in functions like ψ(h).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.07  0.1  0.13  0.16

-0.7

-0.4

-0.1

 0.06  0.08  0.1  0.12

Figure 2. Left: The fraction ψ(h) of regular dynamics, see (7),
as a function of h. Right: the function h log(1 − ψ(h)) also as a
function of h. In blue the fit by a function as in (8).

We want to compare the results displayed in Figure 2 with the splitting of the
branches Wu

+ and W s
−, given by the angle between them at the first intersection

with px = 0 on x < 0, as seen in Figure 1. To this end we compute the branch
Wu

+, the heteroclinic point and the tangent vector to Wu
+ as described in [34]. The

results are shown in Figure 3. In the left plot we show the splitting angle σ(h) as
a function of the energy. It goes quickly to zero when h decreases. In the middle
plot we show the values of h log(σ(h)), also as a function of h, in an intermediate
range, excluding values of h for which σ(h) is too small to be confident on the values
computed in double precision, and large values of h, for which the destruction of
invariant curves around 5-periodic orbits plays an additional role, as commented
before. We also plot, in blue, a fit of the data using a function ` as given in (8). In
the right plot we display the same data h log(1−ψ(h)) shown in Figure 2 right and
a modification of the last fit, by changing the values of a and b. For concreteness
we denote now the fitting values as as, bs, cs, to stress that they refer to the fit of
the splitting. The agreement is excellent.

 0

 0.3

 0.6

 0.07  0.1  0.13  0.16

-1

-0.7

-0.4

 0.06  0.08  0.1  0.12

-0.7

-0.4

-0.1

 0.06  0.08  0.1  0.12

Figure 3. Left: The splitting angle σ(h) between Wu
+ and W s

− as
a function of h. Middle: h log(σ(h)) is plotted vs h and a fit by a
function like (8) is plotted in blue. Right: The data in Figure 2
right and a minor modification of the fit in the middle part.

4.1.2. Theoretical support. First we present some preliminaries which will be also
used in other examples. Introducing the scaling

x = νX, y = νY, px = νPX , py = νPY (9)
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in the system coming from (6) and setting h = ν2/2, it is clear that to study the
dynamics of (6) is equivalent to look at the level H = 1/2 putting ν in front of the
cubic terms. With this scaling the level of energy is close to the unit sphere S3 and
tends to it when ν → 0. Furthermore for ν = 0 the Poincaré map P is the identity.

Hence, for small ν the map P will be a close to the identity map, except near the
boundary where P is not defined. This can be easily remedied by compactifying
the disk to S2, identifying all the points at the boundary. This leads us to consider
(analytical) maps close to the identity.

Consider, in general, a near the identity map Fε : z 7→ z + εF (z). Then, if ε is
sufficiently small, it can be realized as the time-1 map of a vector field εf(z, t, ε),
1-periodic in t, known as a suspension. Neishtadt’s averaging theorem [30] allows
to reduce it to an autonomous vector field g(z) plus a remainder with a bound of
the form a exp(−c/ε) for some a, c > 0, by selecting the optimal order of averaging.
See [2] for an example on the use of this idea. For bounds on averaging in the case

in which the dependence in t is quasiperiodic, say ż = εf(z, θ, ε), θ̇ = ω ∈ Rd, with
frequencies ω satisfying (3), see [35]. For upper and lower bounds, when there is a
strong control on the perturbation, see [5]. Note that in the quasiperiodic case one
requires also analyticity of f wrt θ. This is not at all needed in the periodic case.

If the family of maps Fε is 2D symplectic then the averaged field g is Hamiltonian
and it is possible to be more precise. Assume g has a hyperbolic fixed point P having
a separatrix. We assume the time is normalized so that the dominant eigenvalue
of Dg(P ) is equal to 1. Let β(t) be the solution corresponding to this separatrix:
limt→±∞ β(t) = P . Let ρ be such that β is analytical for |Im(t)| < ρ. The family of
symplectic 2D maps Fε : z 7→ z+ εF (z) will have associated hyperbolic fixed points
Pε whose invariant manifolds are close to the separatrix β, see [7], but generically
they do not coincide. Then, given a small fixed value η, it is possible to derive
a general upper bound for any measure µ(ε) of the splitting (like the angle at an
homoclinic point) of the form

µ(ε) < A exp

(
−2π(ρ− η)

ζ(ε))

)
, (10)

where ζ(ε) = log(λ(ε)), being λ(ε) the dominant eigenvalue of Fε at Pε. See [8]
for the details and [10] for additional information, several examples and the role of
the location of the singularities of β. We also refer to [10] for the methodology to
compute invariant manifolds and splitting for these problems.

It is relevant to note that expressions like (10) provide not only upper bounds
but, in many cases, the correct asymptotic estimates of µ(ε) if the singularities of
β are located at ±ρ i. These estimates are of the form

AεB exp(−2πρ/ζ(ε))(1 + o(1)) (11)

for suitable A,B. This is the reason which leads to use a fitting function like (8)
in the middle plot of Figure 3. Note that in that case the measure µ is replaced by
the angle σ and that the log of the dominant eigenvalue is O(h) (h being here the
energy), as it follows from a simple normal form computation.

But singularities located at ±ρ i± δ can give asymptotic estimates like

AεB exp(−2πρ/ζ(ε))(cos(2πδ/ζ(ε) + ϕ(ε)) + o(1)) (12)

or even more complex. Here ϕ(ε) denotes some suitable phase. See [10] for several
examples in this direction. This will be the case in Section 4.2.
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Remark. As all these estimates come from computing the relative positions of
the manifold in a fundamental domain, say Wu(Pε) wrt W s(Pε), this amounts to
obtain the Fourier coefficients of that relative position. It can happen that, due
to a symmetry, some of the harmonics which come from a singularity of β cancel
and the dominant terms in the splitting come from singularities which are not the
closest ones to the real axis.

Up to now we have presented the theoretical support for the behaviour of the
splitting. Why the chaotic fraction has a similar behaviour in this example?

To this end one should introduce the 2D separatrix map. As a guiding example
Figure 4 shows the manifolds of a hyperbolic fixed point A, which will appear in
Section 4.2, in the (x, px) variables and a detail of the upper part. The splitting
of the manifolds is clearly seen, but for the limit Hamiltonian flow they coincide.
Consider a strip, D+ around that limit separatrix, between the sections labeled
I and J , corresponding to homoclinic points with J = P(I). The separatrix map
describes the return to D+ after passing close to A (eventually it returns to a similar
domain D− in px < 0). Using in D+ coordinates ξ, like an angle increasing from 0
to 2π when going from I to J , and η, transversal to the limit separatrix, equal to
zero on W s and positive inside the loop, and similar coordinates in D−, the simplest
formulation for the separatrix map is

SepM :

 ξ
η
s

→
 ξ̄ = ξ + c− log(|η̄|)/ζ (mod 2π)

η̄ = η + µ sin(ξ)
s̄ = s× sign(η̄)

 , (13)

where s is a sign, to denote if the point belongs to D+ or to D−, µ is a measure of the
splitting (typically the maximum distance between Wu and W s in the fundamental
domain), ζ is the log of the dominant eigenvalue at A and c an additive constant.

-0.4

-0.2

 0

 0.2

 0.4

-0.2 -0.1  0  0.1  0.2

 0

 0.2

 0.4

-0.2 -0.1  0  0.1  0.2

I

J

KL A

Figure 4. Invariant manifolds of the hyperbolic fixed point A on
px = 0 for the Poincaré map P to be shown in Figure 5: Wu in red,
W s in blue. Left: A global view. Right: The upper part, showing
a fundamental domain from I to J .

Here we assume that the behaviour ofWu wrtW s is sinusoidal. This can be easily
extended to more general cases, and the same happens if, instead of a symmetric
case, one has different behaviour of the splitting in the upper and lower parts. See,
e.g., [41] for derivation in a general context.

Except by some multiplicative constants, in the present example ζ coincides with
the energy h and µ with the expression in (11). Similar expressions can be derived
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in the heteroclinic case assuming, as it happens for (6), that the hyperbolic points
are related by some symmetry.

Now we concentrate in the symmetric case and to points passing only through
D+ (i.e., η, η̄ > 0, s = 1). Assume that η is close to some fixed value, η0, and we
write η = η0 + ∆η, η̄ = η0 + ∆η and

log(η̄) = log(η0) + log(1 + ∆η/η0) ≈ log(η0) + ∆η/η0,

keeping only linear terms in ∆η. This is a good approximation if ∆η/η0 is small.
In the (ξ,∆η) variables the map becomes(

ξ
∆η

)
→
(

ξ̄ = ξ + c1 + b1∆η
∆η = ∆η + µ sin(ξ)

)
,

where c1 = c − log(η0)/ζ, b1 = −1/(η0 × ζ) and we do not write explicitly that ξ
is taken mod 2π. Finally, define new variables u = ξ, v = c1 + b1∆η and the map
becomes (

u
v

)
→
(

ū = u+ v̄
v̄ = v + κ sin(u)

)
, (14)

where κ = b1µ. The map (14) is the very popular standard map. It is well known
that (14) has rotational invariant curves up to the so-called Greene’s critical value
κG ≈ 0.971635406. For κ < κG, and not too close to the critical value, these
invariant curves occupy most of the phase space. The dynamics is mostly chaotic
for κ > κG which implies η0 < µ/(κGζ). See [43] for details and many examples
and [42] for the case in which the upper and lower part of the separatrix map (or
outer and inner parts) are different.

In the example (6) the small parameter is the energy h. Using an expression
for µ as given in (11) and the fact that ζ = O(h) justifies that the measure of the
chaotic domain can be fitted by an expression like (8). The value of bc is equal to
bs− 1, the values of ac and as differ by a constant related to scaling and the values
of cc and cs are identical.

4.2. A variant of the Hénon-Heiles system. An interesting variant of (6) is
found when the x3/3 is suppressed and we deal with

H0(x, y, px, py) =
1

2
(x2 + y2 + p2

x + p2
y)− xy2. (15)

Figure 5 shows the image of the Poincaré map, also for y = 0, py > 0 and on
the level of energy h = 0.1. The levels of energy have a compact component until
h = 1/8. The Poincaré plot shows 6 simple p.o., 4 of them elliptic and 2 hyperbolic,
one of them at the boundary. The plot also displays the invariant manifolds of the
hyperbolic p.o. located on px = 0, x > 0 that we shall denote as A. As for (6) there
is a symmetry wrt px = 0. But, in contrast, the homoclinic points are not located
in any symmetry line. Details on the manifolds were shown in Figure 4.

4.2.1. Numerical results. First we proceed to the computation of the fraction of
regular points as in (7) using the methods as described. The results are shown in
Figure 6. We also show, at the bottom part, a measure of the lack of coincidence
of Wu(A) and W s(A). In the present case one can not use some splitting angle as
a measure. The reason is simple. If we consider an homoclinic point, as the one
clearly seen in Figure 4, and do continuation wrt h, one can check that for some
values of h the manifolds have a cubic tangency and new primary homoclinic points
are created (or destroyed) in a fundamental domain. Details on the evolution will
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Figure 5. Poincaré map P related to (15) on the level H−1(0.1).
The coordinates displayed are (x, px). See the text for details.

be shown in Figure 8 below. Hence, as a measure of the lack of coincidence of the
manifolds we have used the sum of the absolute values of the areas of the lobes in
a fundamental domain. We keep the name σ(h) for that measure.

The first surprising thing is that, for values of h that can be already considered
as small, the chaotic fraction is not tending to zero in a monotonous way. The
second one is the similitude of the upper right plot and the lower one.

 0.4

 0.6

 0.8

 1

 0.06  0.08  0.1  0.12

 0

 0.05

 0.1

 0.15

 0.06  0.08  0.1

 0

 0.0004

 0.0008

 0.04  0.06  0.08  0.1

Figure 6. Top: On the left (resp. right) we show the regular
(resp. chaotic) fraction ψ(h) (resp. 1 − ψ(h)) as a function of h.
The bottom plot shows a measure of the lack of coincidence of the
invariant manifolds, also as a function of h. See the text for details.

This suggests to go back to an splitting formula as (12). If the dominant part of
the splitting has cos(2πδ/ζ(ε)) as a factor, next harmonic will be relatively small
(due to a prefactor containing exp(−4πρ/ζ(ε))) and would explain the fact that the
measures of the chaotic domain and of the lack of coincidence of the manifolds seem
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to be zero when the cos term is zero. To check the suspected behaviour a fit has
been done, of the log of both measures multiplied by h, but replacing a function
like `(h) in (8) by

ˆ̀(h) = ah+ bh log(h)− c+ h log(cos(d/h+ e)), (16)

wrt the parameters a, b, c, d, e, where e should be seen as a phase. The results are
shown in Figure 7.
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Figure 7. Left: Values of h log(1 − ψ(h)) for (15) and a fit (in
blue) of the form (16) as a function of h. Middle: a similar plot
using the measure σ instead of 1 − ψ(h). Right: The values of
h log(1 − ψ(h)) and a multiple of the fit for σ, changing only the
values of a, b as done in Section 4.1. Compare with Figure 3.

To further illustrate the behaviour of the measure σ of the lack of coincidence
of Wu(A) and W s(a), we show in Figure 8 the evolution of the relative position of
Wu(A) wrt W s(a) around the minimum which can be seen in the middle part of
Figure 7 near h = 0.09.
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Figure 8. A movie of the position of Wu wrt W s, as a function of
h, around the rightmost minimum seen in Figure 7. It shows cubic
tangencies and the creation/destruction of additional homoclinic
points. We use h ∈ [0.090150, 0.089850] with step 25× 10−6.

To compute the values of σ for this figure (and the two previous ones and next
one) we use the following method. Many points are computed in Wu(A) and W s(A)
using a continuation parameter method with small stepsize, see [34], roughly on a
range as seen in Figure 4 between the sections I and J . Then one looks at the
computed points in polar coordinates from the elliptic point in x = 0, px > 0 that
can be seen in Figure 5. Points in both manifolds, along the same radius and
for equispaced arguments, are obtained from the previous data by local Lagrange
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interpolation (using a suitable order to minimize the error). The difference of values
of the radii allows to obtain plots as in Figure 8 and to estimate the value of σ.

4.2.2. Theoretical support. Around a value of h∗ such that the dominant term in
(12) becomes zero (we recall that h takes now the role of ε), compare also with (16),
the contribution of the next harmonic is of the form

A2ε
B2 exp(−4πρ/ζ(ε))(cos(4πδ/ζ(ε) + ϕ2(ε))).

We can assume, generically, that it is different from zero and with negligible varia-
tions around h∗. Hence, the splitting function sf , which measures the position of
Wu(A) wrt W s(A) in a fundamental domain, can be written as

sf(ξ,∆H) = γ(∆ sin(ξ) + sin(2ξ)), (17)

where ∆ is a multiple of h−h∗ and ξ is an angular variable ranging in [0, 2π] when
the points in the manifolds move in a fundamental domain. The function sf in (17)
has a triple zero at π for ∆ = 2 and at 0 for ∆ = −2, values which can be identified
with the results for h ≈ 0.0901 and h ≈ 0.0899 in Figure 8. Note that the horizontal
variable in Figure 8 is not the angle ξ in (17), but the auxiliary angle introduced
when taking polar coordinates for the computation of σ, as described before.

Using an expression for sf as in (17) the value of σ is easily computed to be
4 + ∆2 for |∆| ≤ 2 and 4|∆| for |∆| ≥ 2. The Figure 9 shows the results near
the two rightmost minima seen in the middle plot in Figure 7, showing a perfect
agreement with the theoretical behaviour. In the left plot the behaviour of σ(h)
around the rightmost most minimum in the middle plot in Figure 7 is shown in
the range [0.0898, 0.0902] with step 10−6. The blue points correspond to the h
for which triple zeros occur. In the right one a similar plot for next minimum, for
h ∈ [0.069415, 0.069418] with step 10−8. The minimum is found for h ≈ 0.06941635.
For simplicity we display h− 0.0694165, the blue points have the same meaning as
above and a fit with the theoretical prediction coincides with the results within the
present resolution.
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 4e-10
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Figure 9. The behaviour of σ(h) around the two rightmost min-
ima in the middle plot in Figure 7. See the text for details.

In Section 4.1.2 we discussed the role of the separatrix map and, later, the stan-
dard map (14), in bounding regions which contain most of the chaotic dynamics.
From Greene’s value κG we related the size of the splitting with the measure of the
chaotic domain. We can question the changes to be introduced using (17) instead
of κ sin(ξ) in (14). This replacement leads to one of the many generalizations of
(14). To check the effect we study a normalized version of the form(

u
v

)
→
(

ū = u+ v̄
v̄ = v + κ(cos(2πψ) sin(u) + sin(2πψ) sin(2u))

)
, (18)
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where ψ ∈ [0, 1/4] is a parameter of the family. In this way we expect, given
ψ, to find a critical value κ(ψ) such that at this value (18) has all the rotational
invariant curves destroyed. Obviously κ(0) = κG and a scaling shows κ(1/4) =
κG/2. However the behaviour is a little bit more complicated. Figure 10 shows
the couples (ψ, κ) for which (18) has rotational invariant curves. Outside the gray
domain they are all destroyed. Note that for some ψ we can recover invariant curves
by increasing κ. But these details do not change, except by a multiplicative factor,
the estimates of the measure of the chaotic domain.

 0

 0.5

 1

 1.5

 2

 0  0.05  0.1  0.15  0.2  0.25

Figure 10. Domain of existence of rotational invariant curves for
(18) where the horizontal (resp. vertical) variable corresponds to
ψ (resp. κ).

4.3. A non-resonant 2 dof Hamiltonian. After the two resonant cases in pre-
vious sections it can be interesting to look at a non-resonant case. An elementary
example is obtained by a minor change in (15)

Hnr(x, y, px, py) =
1

2
(x2 + y2 + p2

x + 2p2
y) + xy2, (19)

with frequencies 1,
√

2 at the origin and with energy levels having a compact com-
ponent until h = 1/8. According to Lyapunov theorem, there are only two simple
p.o. for small h: one on y = py = 0, as before, and the other with one point on
px = 0, x < 0 on the Poincaré section y = 0, py > 0. Both p.o. are elliptic.

Before showing the results on the fraction of chaotic dynamics it is instructive so
show a plot on the evolution of the rotation number ρ as a function of the energy
and the initial condition, taking this condition on the Poincaré section with px = 0.
As done in (9) we can scale variables by a factor ν: x = νX, etc, which amounts
to putting ν in front of the cubic terms in (15). Taking ν2 = 2h implies that the
boundary of the Poincaré section is X2 + P 2

X = 1.
The results are shown in Figure 11 using (X,h) as variables. The red curve

starting at (0, 0) shows the location Xpo of the p.o. The initial conditions are taken
in X ∈ (Xpo, 1). Except for extremely tiny domains the points in white correspond
to ρ /∈ Q. The curves in black correspond to extrema of ρ. For small h the value
of ρ, that we can denote as ρh(X), is decreasing. The maximum located in the p.o.
becomes a minimum at h ≈ 0.03 and a curve of maxima of ρh(X) wrt X emerges.
We denote it as nt1, to stress that around it a non-twist behaviour appears, see
Section 2.2. Another non-twist curve, corresponding to minima of ρh(X), shows up
from the boundary X = 1 at h ≈ 0.0534 and will be denoted as nt2.
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Figure 11. Information obtained from the rotation number as a
function of position and energy. The lines show location of p.o.
and places where the twist condition fails. The wedges correspond
to islands and the black domains to chaos. See text for details.

Periodic orbits, the elliptic ones giving rise to stability islands, emerge from the
simple p.o. or from nt1,2. The blue and magenta domains correspond to p.o. with
ρ = 1/4 and ρ = 2/7, respectively. The yellow domains to p.o. with periods between
9 and 19, mainly dominated by the p.o. with ρ = 3/11, 3/13, 5/19 and 3/10. Higher
order p.o. are marked in light blue. The green and black domains correspond to
period 3 and chaos, respectively.

4.3.1. Numerical results. In Figure 12 we display the results concerning the fraction
1− ψ(h) of points with chaotic dynamics. It becomes extremely small for h < 0.1,
not detectable unless one uses an enormous amount of points with the methods of
Section 3. Some tiny domains appear near h = 0.0834 but the detected chaotic
fraction is, at most, 0.002 and disappears by increasing h.
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Figure 12. Results concerning the chaotic fraction for (19). Left:
the values of 1− ψ(h) vs h. Middle: Same plot using log scale for
1 − ψ(h). Right: A part of previous plot and an adapted fit. See
the text.

The reason of this fact is easy to understand at the light of Figure 11. It turns
out that the minimum value of ρ which occurs at the nt2 curve reaches the value
ρ = 1/4. Then the right blue domain in Figure 11 is born, but initially there are
some meandering curves (see the end of Section 2.2) and the related hyperbolic p.o.
give a little amount of chaos. This phenomenon was found to occur also in Hill’s
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problem [38]. Increasing h the interaction between the p.o. of period 4 disappears
and most of the chaos is gone.

On the other hand, in the right part of Figure 12 a fit is shown in a selected
range, starting when chaos becomes visible on the left plot. Some little peaks are
mainly due to the effect of chaotic zones associated to hyperbolic p.o. with ρ = 3/11
and ρ = 3/13 and the possible effect of the sampling. But the main effect in the
displayed range is due to the fact that the elliptic p.o. of period 4, mentioned in
the above paragraph, becomes hyperbolic. This corresponds to the end of the right
blue domain in Figure 11.

To check this behaviour a fit of the data in Figure 12 right has been done using
a function of the form

log(1− ψ(h)) = a+ b log(h− hc)−
c

(h− hc)d
, (20)

where we consider as parameters to fit not only a, b, c but also hc and the exponent
d. The best fit has been found for hc = 0.09850650 with d = 1. But the value
hc coincides with the passage of the 4-periodic orbits from elliptic to hyperbolic.
This shows that the main contribution to the chaos is an exponentially small effect
related to the main hyperbolic p.o.

4.3.2. Theoretical support. Beyond the facts and explanations just presented we
want to discuss why so small amount of chaos is detected even for relatively large
values of the energy h.

The basic idea is that being the source of chaos the existence of splitting of the
manifolds of hyperbolic p.o., one should look when they appear. If the frequencies
ω1, ω2 at the origin satisfy a Diophantine condition (3), as in (19), a given resonance
appears at some distance from the origin.

Given a Hamiltonian H around a fixed point, one of the basic tools to try to have
a nearby integrable system are the normal forms. If H = H(ϕ, I) in angle-action
variables, one can try to get rid of the dependence wrt ϕ by means of a sequence of
transformations. If the frequencies at I = 0 satisfy the non-resonant condition

(k, ω(0)) 6= 0 for all k ∈ Zn \ {0}, (21)

this is always formally possible for all N . The changes of variable to cancel, succes-
sively, the terms which are not depending only on the Ij coordinates, can be easily
obtained as the time-1 flow of auxiliary Hamiltonian systems, these changes being
then canonical (and close to the identity). It is clear that the domain of analyticity
of the current Hamiltonian after every change can have successive reductions [12].

In all the above cases one can write the transformed Hamiltonian as

H = NFN +R>N , (22)

where NFN stands for the normal form truncated to order N included (in the
Cartesian coordinates, order N/2 in I) and which is integrable, and R>N denotes
the remainder and which can be considered as a perturbation of NFN to apply KAM
results in a small vicinity of the fixed point if Hess(NFN (0)) is regular. There are
also results for the singular case when some non-degeneracy condition appears at
higher order.

For our purpose it is enough to consider NF4 and we restrict, for the moment,
to n = 2 dof. Then ω(I) = ω(0) +AI +O(|I|2), where AI is the linear part coming
from the terms of degree two in I in NF4. To have a resonance (k, ω(I)) = 0 for
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some k ∈ Z2 \ {0}, using (3) for ω(0) and the fact that |I| = O(h), it is found that
if the order k is |k|1 the energy should satisfy

h > ĉ/|k|1+τ
1 , (23)

where τ is the exponent in (3) for ω(0) and ĉ depends also on the Diophantine
condition and on the norm of A. Reciprocally, given h, small, the minimal order of a
harmonic (k, ϕ) giving rise to a resonance is of the form |k|1 = O(h−1/(1+τ)). These
harmonics appear in the remainder R>4 and have bounds of the form exp(−ρ|k|1),
where now ρ stands for the width of the analyticity domain of H wrt ϕ.

Summarizing: The amplitude of the resonant harmonics is exponentially small
in the energy and, furthermore, the measure of the chaotic domain they create is
exponentially small with respect to the distance to the creation of the hyperbolic
p.o. A type of bounds similar to the ones derived in [28] for KAM tori.

4.4. A family of resonant 3 dof Hamiltonian systems. Now we pass to 3 dof.
The following family of Hamiltonian systems is considered

H(x, y, z, px, py, pz) =
1

2
(x2 + y2 + z2 + p2

x + p2
y + p2

z) +Ax2y+By2z+Cz2x, (24)

with A2 + B2 + C2 > 0. It is not restrictive to assume A,B,C ≥ 0 and, clearly,
we can normalize the coefficients to satisfy A + B + C = 3. It can be seen as
a generalization of (6) to 3 dof; it allows to study the 1:1:1 resonance, and it
also allows to break all symmetries if A < B < C. It contains symmetric and
limit cases. The levels of energy have a compact component, in all cases, provided
0 < h ≤ hm(A,B,C), where the critical value hm(A,B,C) is minimum (1/72) for
A = B = 0 and maximum (1/18) for A = B = C.

As a preliminary step we can check for integrability. One possibility is to look
for rectilinear solutions, that is, for solutions such that x = β1ϕ(t), y = β2ϕ(t), z =
β3ϕ(t), with β1, β2, β3 ∈ C. For every set of values of (A,B,C) there exist several
such solutions. In the case of (24) the equation for ϕ has elliptic functions as
solutions. Another possibility is to implement the general methodology given in
[20], select two closed paths, γ1, γ2 in the Riemann surface Γ and check for the
monodromy along γ−1

2 ◦ γ−1
1 ◦ γ2 ◦ γ1. Any of the two methods shows that (24) is

non-integrable for all (A,B,C). We remark that, for some symmetric cases, it can
be necessary to check different rectilinear solutions. Some of the solutions can give
no obstructions to integrability using VE1.

A problem which appears immediately is the following: The terms in a normal
form are in involution with the quadratic part H2. In the 1:1:1 resonance, as it
happens in the 1:1 case, a normal form NF can be computed to any order, including
resonant terms which are of even degree in (q, p). With 2 dof the NF truncated to
any order, as approximation to the full Hamiltonian, is an integrable system (NF
and H2 being the two first integrals, except in the extremely degenerate case in
which NF is a function of H2). This is no longer true with 3 dof. Hence, we should
face a non-integrable normal form.

Another way to realize this is that a Poincaré map in the 3 dof case is close to
the identify because of the 1:1:1 resonance. The 4D symplectic map obtained in any
level H−1(h) can be approximated by the time-1 map of a slow Hamiltonian with 2
dof, but this one is non-integrable in general. As a conclusion, we can expect that
the chaotic fraction tends to a positive limit when h→ 0.
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But, at the same time, the maximal Lyapunov exponents are O(h), which can
require a long integration time to decide about being positive or zero. This problem
has an easy solution, looking for the behaviour of a limit Hamiltonian. We describe
the steps:

1) First we scale variables as in (9) in the 3 dof and divide H by ν2.
2) A normal form is computed and the Hamiltonian has the form H2 + ν2H4 +

ν4H6 + . . ., where Hk denote homogeneous terms of degree k. It is clear that
the H4, H6, . . . parts contain resonant terms.

3) Passing to angle-action variables (ϕ, I) the term H2 becomes H2 = I1+I2+I3.
From this it follows ϕ̇j = 1 + O(ν2), j = 1, 2, 3. As usual, this suggest to

introduce new variables ϕ̄j = ϕj−t. The equations obtained for ˙̄ϕj , İj contain
the factor ν2 and are 2π-periodic in t.

4) Then we apply averaging wrt t. This produces an slow autonomous system
which has ν2 as factor. Scaling time by ν2 the factor cancels and the system
has the form H4(ϕ̄, I) + ν2H6(ϕ̄, I) + . . .. Taking the limit ν → 0 only H4

remains.
5) We note that, because of the resonant part of the NF, H4 can contain terms

in which some of the factors I
1/2
1 , I

1/2
2 , I

1/2
3 appear. This is not convenient

for the numerical integration. Hence, we return to Cartesian coordinates, to
be denoted as (u, v, w), and the corresponding momenta. Note that, after the
scaling and passage to the limit, one has that I1 + I2 + I3 is constant. But
this is only used as a check.

The limit Hamiltonian, homogeneous of degree 4, is found to be

4H4(u, v, w, pu, pv, pw) =
A2(−5u4+(−20v2−10p2

u+4p2
v)u

2−48uvpupv−5p4
u+(4v2−20p2

v)p
2
u)

+B2(−5v4+(−20w2−10p2
v+4p2

w)v2−48vwpvpw−5p4
v+(4w2−20p2

w)p2
v)

+C2(−5w4+(−20u2−10p2
w+4p2

u)w2−48wupwpu−5p4
w+(4u2−20p2

u)p2
w)

+AB((−20vw − 28pvpw)u2 + 8(vpw + wpv)upu + (−28vw − 20pvpw)p2
u)

+BC((−20wu− 28pwpu)v2 + 8(wpu + upw)vpv + (−28wu− 20pwpu)p2
v)

+CA((−20uv − 28pupv)w
2 + 8(upv + vpu)wpw + (−28uv − 20pupv)p

2
w).

(25)

Note that, due to the scaling and passage to the limit, the level of H4 is irrelevant.

4.4.1. Numerical results. To estimate the value of the limit integrable fraction
ψ(0) = limh→0 ψ(h), depending on A,B,C, we proceed as described in Section
3 but, as announced in 3.3, using the formulation in (25). The Figure 13 shows the
result. As expected, the values of ψ(0) are away from 1 for most of the values of
the parameters, except for the cases (0, 0, 3) and (1, 1, 1), to be discussed in Section
4.4.2.

The behaviour of ψ(h), proceeding directly with (24), has been checked for several
values of (A,B,C). In Figure 14 we illustrate the results with a small sample
of cases, for values of (A,B,C) equal, from left to right, to (0, 1, 2), (1/2, 1, 3/2)
and (0, 3/2, 3/2). In Figure 15 we display the behaviour of the estimates ψ(h)
for h = 10−4 as a function of the maximal time tm used to estimate whether the
dynamics is regular or chaotic. The values for tm ≈ 108, from top to bottom,
correspond to the cases of Figure 14 from left to right. It is clear that using, e.g.,
tm = 106 can produce wrong estimates. The size of the samples used in these
computations exceed 105 initial points, going up to a value close to 106 in critical
cases.
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Figure 13. The limit fraction of integrability ψ(0) as a function
ofA ≤ B ≤ C. The horizontal variables areA,B and C = 3−A−B.
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Figure 14. Behaviour of ψ(h) using directly (24). From left to
right the values used for (A,B,C) are (0, 1, 2), (1/2, 1, 3/2) and
(0, 3/2, 3/2).
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Figure 15. Behaviour of the estimates of ψ(h) for h = 10−4 as a
function of the maximal time tm used in the computations, shown
in log10 scale. The estimated limit values are 0.192, 0.139 and
0.078, approximately. See the text for details.

4.4.2. Theoretical support. It has already been explained why ψ(0) is different from
zero for most of the (A,B,C) values, due to the lack of integrability of the nor-
mal form at order 4. It remains to explain the exceptional cases. The case
(0, 0, 3) decouples as two independent Hamiltonian systems H(1) = 1

2 (y2 + p2
y) and

H(2)(x, z, px, pz) = 1
2 (x2 + z2 + p2

x + p2
z) + 3z2x. Hence, the dynamics is the prod-

uct of an harmonic oscillator times the system considered in (15) (the effect of the
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scaling parameter is irrelevant). Hence, 1− ψ(h) tends exponentially to zero when
h → 0. This fact is not detected by (25), which is able to detect chaos O(h) and,
therefore, it gives ψ(0) = 1.

In the case A = B = C, due to the symmetry, one has that the variable u =
x + y + z is leaded by the 1 dof Hamiltonian H(1)(u, pu) = (u2 + p2

u)/2 + u3/3.
Hence, the system (and also the normal form) has an extra integral. The behaviour
is similar to the 1:1 case. As before, (25) is not able to detect the exponentially
small lack of integrability. The Figure 16 shows the values of 1 − ψ in that case.
They are very small even for h close to the limit value 1/18.
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Figure 16. Values of 1− ψ(h) vs h for the case A = B = C.

As it can be expected the case A = B = C has a strong similitude with a resonant
Hamiltonian with 2 dof. In the Poincaré section Σ defined by x = 0, px > 0 there are
three fixed points Pj , j = 1, 2, 3 of the Poincaré map P. They are of centre×saddle
type. The invariant manifolds Wu,s(Pj), j = 1, 2, 3 also lie on Σ. Figure 17 shows
these fixed points, their invariant manifolds and some details, projected on the (z, ẏ)
variables. The level of energy is h = 0.3332/2, very close to the limit 1/18. We see
that the plots are reminiscent of the resonant 2 dof case.
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Figure 17. The three fixed points of the map P on Σ, projected
on (z, ẏ). Top left: The fixed points and the unstable manifolds (in
red). Top right: A magnification close to one of the fixed points.
The bottom plots are similar, but they include the orbit of a nearby
initial point (in red) and the manifolds are plotted in blue.



22 SIMÓ

As the fixed points of P are of centre×saddle type, they have 2D centre manifolds
W c(Pj), j = 1, 2, 3. They are a particular, but relevant, case of normally hyperbolic
invariant manifolds (NHIM). On these manifolds KAM theorem generically applies
and there are invariant circles. They have unstable and stable manifolds that,
generically, do not coincide, see [11] for typical examples near a double resonance
in 4D symplectic maps and [6] for estimates of the splitting.

On can take an initial point close to one of the invariant circles Cj in W c(Pj)
for some j and look at the successive Poincaré iterates on Σ. We expect that the
points will move close to Wu(Cj) and return to a vicinity of the same circle or of
some other circle, either nearby (in the same W c(Pj)) or in another centre manifold
W c(Pk), k 6= j.

This is what is observed in Figure 18. It gives evidence of the homoclinic and
heteroclinic connections between the three centre manifolds W c(Pj), j = 1, 2, 3.
But despite the large number of iterates done (109, showing one point every 5000
iterates) the chaos looks confined in very narrow domains. This has to be expected
because there is no possibility of diffusion due to the existence of the additional
integral H(1)(u, pu). The same behaviour is observed for many other initial points
close to some of the invariant curves in one of the centre manifolds. This is in strong
contrast with the example to be presented in Section 4.6.

Figure 18. Iterates of an initial point close to one of the centre
manifolds around one of the three fixed points of P in Σ. The
points in Σ are projected on the variables (y, z, ẏ) and a 3D view
is shown. See the text for details.

To have further evidence of the lack of diffusive properties for the case A = B = C
we have proceeded as follows. One can take a vertical slice in Figure 18. This means:
select a value y0 of y and keep only the iterates which fall within a distance of y0

less than some small value η. This is an approximation of a 3D section of the 4D
Poincaré section. If the diffusion is irrelevant we expect to have points in circles, as
it would be the case if the invariant circles Cj in the W c(Pj) would have separatrices
connecting them.

We should expect 6 sets of points close to circles, corresponding to the two
connections from Cj to Ck where k 6= j, j, k ∈ {1, 2, 3}. Suitable choices for y0 and
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η are y0 = 0, η = 2.5 × 10−5. This has been done starting near several invariant
circles in W c(P1), at different distances from P1. Even doing 109 Poincaré iterates,
the number of points falling in the slices ranges from 19,000 to 25,000, depending
on the distance from the curve to P1. The results are shown in a 3D view in Figure
19 for a choice of three sets of data, using a small, intermediate or larger distance
to P1. Note that one of the sets of points appears broken. This is due to the fact
that Σ is not a global transversal section.
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Figure 19. Slices of three cases like the one in Figure 18 using
|y| < 2.5 × 10−5 and considering the full set of 109 iterates. The
variables displayed are (z, ẏ, ż) in the domain [−0.3, 0.3]× [−1, .8]×
[−1, 1]. See the text for additional information.

4.5. A simple non-resonant 3 dof Hamiltonian system. As a last example
in that series we consider a non-resonant Hamiltonian, obtained from (24) with
A = B = C = 1 by simple changes in the coefficients of the momenta

H(x, y, z, px, py, pz) =
1

2
(x2 + y2 + z2 + p2

x + 2p2
y + 3p2

z) + x2y + y2z + z2x, (26)

with frequencies 1,
√

2,
√

3 at the origin. The energy is also restricted to h ≤ 1/18
to have a compact level.

4.5.1. Numerical results. Figure 20 shows the values of 1 − ψ(h) as a function of
h. The values go quickly to zero as h decreases, as happened in Section 4.3. In the
right plot we also display a fit to the numerical data. But in contrast to the 2 dof
case now the fitting function used for log(1−ψ(h)) is not like the one used in (20),
but of the form

log(1− ψ(h)) = a+ b log(h− hc). (27)

The exponentially small term is missing. The best fit has been found for hc =
0.01656. The reasons for that change in the local behaviour of the chaotic fraction
will be given in 4.5.2.

For h = 0.035 the chaotic fraction is ≈ 0.063. Figure 21 shows the location
of the chaotic zones for a simple set of initial data. One can distinguish different
diffusive channels, associated to simple resonances, that is, places where there are
2D tori whose frequencies satisfy (k, ω) = 0 for some k ∈ Z3 \ {0}. But one can
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Figure 20. Left: Values of 1 − ψ(h) as a function of h. Middle:
A magnification on the interval [0.019, 0.032]. Right: On the same
interval the values of 1−ψ(h) are shown in log scale and a fit. See
the text and Section 4.5.2.
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Figure 21. Location of the chaotic zones (in red) starting at a
point of coordinates (x, y) with px = py = pz = 0 and z > 0
derived from (26) for the energy level h = 0.035.

also see places where these channels meet, associated to double resonances, where
(k, ω) = 0 holds for two independent vectors k(1) and k(2). This is equivalent to
the condition ω1(I)/p = ω2(I)/q = ω3(I)/r for some integers p, q, r. If the level of
energy is reduced to h = 0.025 the chaotic fraction decreases to ≈ 0.0035 and only
a few spots of chaos are seen in Figure 22.

By looking at the middle of the red spot near x = −0.0916, y = −0.1864 in
Figure 22, it is easy to find a periodic orbit. A 3D view is shown in Figure 23. It is
clearly seen that it has two points with zero velocity. Other similar orbits emerge
from the other red spots.

For this p.o. each one of the x, y, z variables oscillates in a close to sinusoidal
way. The number of oscillations in one period, T ≈ 122.461344, is 19, 27 and 33,
respectively. The ratios 27/19 and 33/19 are rather close (differences below 0.007)

to
√

2 and
√

3, respectively. The orbit has an elliptic-hyperbolic character and,
therefore, there exists an associated 2D centre manifold on a Poincaré section.
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Figure 22. Similar to Figure 21 on h = 0.025.
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Figure 23. A periodic orbit of (26) in the middle of one of the
red spots in Figure 22. See the text for details.

4.5.2. Theoretical support. First of all, as we did in Section 4.3, we can look for the
distance to the origin to have a given resonance, either simple of double. Assume
that the frequencies ω(0) at the origin are 1, ω2, ω3. It is not restrictive to assume
ω1 = 1 because this can always be achieved by scaling time. For the simple reso-
nance we assume ω(0) satisfies (3). We shall use τ1 instead of τ , to stress that it
refers to simple resonance. Proceeding as in Section 4.3.2 it is found a condition
like (23) for the energy to have a resonance of order |k|1.

To measure the distance to double resonance one can use the simultaneous Dio-
phantine approximation and look, in our present case, for

δm(ω2, ω3) = min
p≤m
{ min

(q2,q3)∈Z2
|(q2 − pω2, q3 − pω3)|∞}, (28)
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where a Diophantine condition is written now as δm(ω2, ω3) ≥ c/mτ2 . As in the
case of the simple resonance it is easy to obtain that to have a simultaneous ap-
proximation of order m requires h > c̃/m1+τ2 . Again, as in Section 4.3.2, the
harmonics q2ϕ1 − pϕ2 and q3ϕ1 − pϕ3 have amplitudes which satisfy bounds of the
form < exp(−c∗h−1/(1+τ2)) for some c∗ > 0.

This leads, either in the case of simple or double resonance, to exponentially
small bounds of the chaotic domains as a function of h.

As an example, and using the frequencies (1,
√

2,
√

3) the Figure 24 shows, for
increasing values of |k|1 and m, respectively, the places at which the bounds in
(3) and in (28) decrease. The vertical variable represents the linear combination
in (3) or the minimum in (28). Both variables are represented in log10 scale. The
blue lines represent linear fits. The slopes found are τ1 ≈ −2.035 for the simple
resonance (lower data) and τ2 ≈ −1.524 for the double resonance (upper data).

-15

-10

-5

 0

 0  2.5  5  7.5  10

Figure 24. Values of |k|1 and m, for simple and double resonance,
at which the Diophantine bounds decrease, using the frequencies
of (26) at the origin and fits of the decreasing rate. Variables
represented in log10 scales. See the text for details.

When in a 4D symplectic map a resonance shows up, either simple or double,
starting at a critical value of the energy h = hc it creates a NHIM. We can think of
the vicinity of an elliptic-hyperbolic fixed point or the product of a cylinder times a
pendulum-like map. These are the typical models. In both cases, either in the centre
manifold of the fixed point or in the cylinder, one finds, generically, a Cantor set
of invariant curves, with relative large measure. The size of the NHIM will change
as a function of h − hc and one can expect that it behaves as a power of h − hc.
Despite the splitting of the manifolds of the invariant curves is exponentially small
under reasonable conditions, see [6], the measure of the chaotic domain behaves as
the size of the NHIM if there is no additional restriction, against what was found
in Section 4.4 for A = B = C.

This explains why the fit of the form used in (27) gives good results in Section
4.5.1.

4.6. Motion in the 3D RTBP evolving from a vicinity of L3. In this part we
illustrate the dynamical consequences of the behaviour of the unstable and stable
manifolds of a NHIM: the centre manifold W c(L3) of the libration point L3 in the
3D restricted three-body problem. See [39] for equations and motivation, related
to the role that the manifolds play in the practical confinement of the motion in a
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large vicinity of the L4,5 libration points. The selected values of the mass parameter
and the Jacobi constant C are µ = 0.0002 and C = C∗ = 2.95998466228.
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Figure 25. Left: Invariant curves on the section Σ={z=0, ż >0}
lying on W c(L3) at the Jacobi level C∗. Right: Starting close to the
blue curve in the left plot, the projections on (x, y) of the first 105

Poincaré iterates are shown. For reference a part of the manifolds
of the vertical Lyapunov p.o. is displayed in blue.

The Figure 25 left shows several of the invariant curves in Σ (2D tori in phase
space) contained in W c(L3) on the level C∗. The so-called vertical Lyapunov p.o.
is marked as a blue dot. The planar Lyapunov p.o., contained in Σ, is located
slightly outside the outer displayed invariant curve. Taking an initial point close
to the curve shown in blue, the Poincaré iterates move along the red cloud shown
in Figure 25 right. At the successive returns near W c(L3) the points can move up
(i.e., to the domain y > 0) or down, in a typical quasirandom way. For reference
the initial parts of Wu,s for the vertical Lyapunov p.o. are shown in blue.

To give evidence of diffusion, with the quasirandom passages near different in-
variant curves as the ones shown in Figure 25 left, the Figure 26 shows the evolution
of the successive passages through a narrow 3D slice, near x = 0, inside Σ when we
continue the iterations for the orbit partially shown in Figure 25 right. Note the
strong contrast with Figure 19.
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Figure 26. Passages through a narrow slice near x = 0 of the
Poincaré iterates of an initial point near the blue curve in Figure 25
left. The points in green, blue and red correspond to the passages
after 105, 8× 105 and 5× 106 iterates, respectively.
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We can question what happens when the number of iterates increases. To this
end several points have been taken near W c(L3) close to the point corresponding
to the vertical Lyapunov p.o. Looking at the iterates, they visit, in a quasirandom
way, the different invariant curves shown in Figure 25 left, as it was illustrated in
Figure 26, until they approach the planar Lyapunov p.o. and a escape is produced.
Here escape means: a) either the points go to the outer part (say, radius greater
than 2 in the (x, y) projection), or b) the points come close to the central body (say,
radius less than 1/2). In all these cases this escape is preceded by a close approach
to the secondary mass located at (µ− 1, 0, 0).

For concreteness the Figure 27 shows how many points, from a sample of 625,
taken initially extremely close, have not yet escaped as a function of the number
of iterates. Up to 109 iterates only 13 points have not yet escaped. This gives a
strong evidence of the diffusion taking place on the problem, which ends in escape.
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Figure 27. Number of non-escaping points as a function of the
number of Poincaré iterates. The units in the number of iterates
are expressed in millions.

It is worth to add that, during the trips of the iterates, one can observe the
passage near 3D invariant tori. Due to the stickiness properties of these tori one
checks that these passages, close to 3D tori, can occur for hundreds of millions of
consecutive iterates. See [40] for additional information.

5. Conclusions and Outlook. Several simple Hamiltonian examples, resonant
and non-resonant, in two and three degrees of freedom, have been studied around a
totally elliptic, positive definite, fixed point located at the zero level of the energy
h. The main goal has been to detect some measure of the set of points with chaotic
behaviour and the dynamical objects responsible of the chaos. Cases ranging from
a measure exponentially small in h to a large amount of chaos in the limit h → 0
have been analyzed.

It has been stressed, for 2 dof, the role played by models like the separatrix map
and the standard map or its variants. A similar task in the higher dimensional case,
starting with the study in [44] and leading to models like the one introduced in [9]
or its variants, should allow to derive careful quantitative estimates of the amount
of chaos and to estimate the distance to resonance at which maximal dimension
invariant tori exist.

Acknowlegments. The author has been supported by grants MTM2010-16425
(Spain) and 2009 SGR 67 (Catalonia). A massive usage has been made of the com-
puting facilities of the Dynamical Systems Group of the Universitat de Barcelona.



MEASURING THE CHAOS IN HAMILTONIAN SYSTEMS 29

REFERENCES
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[9] C. Froeschlé, Numerical study of a four-dimensional mapping, Astronom. and Astrophys., 16
(1972), 172–189.
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