Index | Sequence | M | R |
of the central charge |
Videos |
---|---|---|---|---|---|
1 | [1 5 10 2 7 9 1] | 2 | 2 |
|
Link |
2 | [1 5 2 6 11 3 12 9 1] | 2 | 11 |
|
Link |
3 | [1 5 8 3 12 4 9 7 1] | 2 | 12 |
|
Link |
4 | [1 5 10 11 4 9 1] | 3 | 10 |
|
Link |
5 | [1 5 2 7 6 4 9 12 8 1] | 3 | 7 |
|
Link |
6 | [1 5 2 6 4 9 7 2 10 11 6 7 1] | 3 | 4 |
|
Link |
7 | [1 5 8 3 10 11 3 12 4 9 12 8 1] | 3 | 10 |
|
Link |
8 | [1 5 8 12 3 10 11 4 6 2 7 9 1] | 3 | 3 |
|
Link |
9 | [1 5 10 11 4 9 1 5 10 11 4 9 1] | 3 | 4 |
|
Link |
Index | Sequence | M | R |
of the central charge |
Videos |
---|---|---|---|---|---|
1 | [ 1 3 8 10 16 5 1] | 2 | 10 |
|
Link |
2 | [ 1 3 10 6 4 9 22 16 1] | 2 | 4 |
|
Link |
3 | [ 1 3 7 14 11 19 2 5 1] | 2 | 11 |
|
Link |
4 | [ 1 3 10 6 4 9 17 19 11 14 1] | 2 | 9 |
|
Link |
5 | [ 1 3 8 10 6 4 9 2 22 16 1] | 2 | 4 |
|
Link |
6 | [ 1 3 8 15 6 4 9 2 5 16 1] | 2 | 4 |
|
Link |
7 | [ 1 3 7 20 23 11 19 2 22 16 1] | 2 | 11 |
|
Link |
8 | [ 1 3 7 14 23 11 19 2 5 16 1] | 2 | 11 |
|
Link |
9 | [ 1 3 7 18 20 7 14 1 5 16 1] | 2 | 7 |
|
Link |
10 | [ 1 3 8 15 13 12 4 6 10 16 1] | 2 | 12 |
|
Link |
11 | [ 1 3 7 20 24 12 4 9 2 5 1] | 2 | 12 |
|
Link |
12 | [ 1 3 8 15 4 6 10 16 5 11 23 14 1] | 2 | 10 |
|
Link |
13 | [ 1 3 8 10 6 4 9 17 21 19 11 14 1] | 2 | 9 |
|
Link |
14 | [ 1 3 7 18 13 12 4 9 17 19 11 14 1] | 2 | 4 |
|
Link |
15 | [ 1 3 8 15 6 4 9 17 21 23 11 14 1] | 2 | 9 |
|
Link |
16 | [ 1 3 8 18 13 12 4 9 2 19 11 14 1] | 2 | 4 |
|
Link |
17 | [ 1 3 8 15 13 12 4 9 2 5 11 14 1] | 2 | 4 |
|
Link |
18 | [ 1 3 7 20 24 12 4 9 17 21 23 14 1] | 2 | 4 |
|
Link |
19 | [ 1 3 10 6 4 12 13 18 20 23 11 5 1] | 2 | 13 |
|
Link |
20 | [ 1 3 8 10 6 15 4 9 2 22 16 5 1] | 2 | 4 |
|
Link |
21 | [ 1 3 8 10 16 5 1 3 8 10 16 5 1] | 2 | 1 |
|
Link |
22 | [ 1 3 7 18 20 23 11 19 2 9 22 16 1] | 2 | 11 |
|
Link |
23 | [ 1 3 10 8 18 13 12 4 15 6 22 16 1] | 2 | 12 |
|
Link |
24 | [ 1 3 8 15 4 12 13 18 7 14 11 5 1] | 2 | 13 |
|
Link |
25 | [ 1 3 7 18 8 15 6 10 16 1] | 3 | 18 |
|
Link |
26 | [ 1 3 8 15 13 24 21 23 14 1] | 3 | 15 |
|
Link |
27 | [ 1 3 7 20 18 8 15 4 6 10 16 5 1] | 3 | 18 |
|
Link |
28 | [ 1 3 10 6 15 13 12 17 21 23 11 5 1] | 3 | 15 |
|
Link |
29 | [ 1 3 8 15 6 10 3 7 18 8 10 16 1] | 3 | 6 |
|
Link |
30 | [ 1 3 10 8 15 13 12 24 21 23 11 14 1] | 3 | 15 |
|
Link |
31 | [ 1 3 8 15 4 6 10 3 7 20 18 8 10 16 5 1] | 3 | 6 |
|
Link |
32 | [ 1 3 7 14 1 5 11 19 2 5 16 22 6 10 16 1] | 3 | 5 |
|
Link |
33 | [ 1 3 8 10 6 15 13 24 12 17 21 23 14 11 5 1] | 3 | 15 |
|
Link |
34 | [ 1 3 10 8 15 4 6 10 8 3 7 20 18 8 3 10 16 5 1] | 3 | 6 |
|
Link |
35 | [ 1 3 10 6 22 2 5 11 14 7 3 10 16 22 2 19 11 14 1] | 3 | 5 |
|
Link |
36 | [ 1 3 10 16 22 2 5 11 14 1 3 10 16 22 2 5 11 14 1] | 3 | 5 |
|
Link |
37 | [ 1 3 8 18 13 15 6 10 3 1 14 7 18 8 10 6 22 16 1] | 3 | 6 |
|
Link |
38 | [ 1 3 7 14 23 20 18 8 15 13 12 4 6 10 16 22 2 5 1] | 3 | 18 |
|
Link |
39 | [ 1 3 10 8 15 13 18 8 3 10 16 22 6 10 8 3 7 14 1] | 3 | 18 |
|
Link |
40 | [ 1 3 7 20 24 21 19 2 5 1 3 7 20 24 21 19 2 5 1] | 3 | 19 |
|
Link |
41 | [ 1 3 8 10 6 4 15 13 24 12 17 19 21 23 14 11 5 16 1] | 3 | 15 |
|
Link |
42 | [ 1 3 8 15 6 4 15 13 24 21 17 19 21 23 14 1 5 16 1] | 3 | 15 |
|
Link |
43 | [ 1 3 8 15 4 9 2 5 1] | 4 | 8 |
|
Link |
44 | [ 1 3 10 8 15 6 4 9 22 2 5 16 1] | 4 | 8 |
|
Link |
45 | [ 1 3 7 18 8 15 13 12 4 9 17 19 2 5 11 14 1] | 4 | 8 |
|
Link |
46 | [ 1 3 8 15 4 9 2 5 1 3 8 15 4 9 2 5 1] | 4 | 4 |
|
Link |
47 | [ 1 3 10 8 3 7 18 20 7 14 23 11 14 1 5 16 1] | 4 | 3 |
|
Link |
48 | [ 1 3 10 6 22 2 5 16 10 6 4 9 22 16 10 8 15 6 22 16 1] | 4 | 2 |
|
Link |
49 | [ 1 3 7 20 18 8 15 13 24 12 4 9 17 21 19 2 5 11 23 14 1] | 4 | 8 |
|
Link |
50 | [ 1 3 10 6 4 9 2 5 16 10 8 15 4 9 22 16 1 3 8 15 6 22 2 5 1] | 4 | 2 |
|
Link |
51 | [ 1 3 10 16 5 1 3 7 18 8 10 3 7 14 23 20 18 7 14 1 5 11 23 14 1] | 4 | 3 |
|
Link |
52 | [ 1 3 8 15 4 9 2 5 1 3 8 15 4 9 2 5 1 3 8 15 4 9 2 5 1] | 4 | 2 |
|
Link |
53 | [ 1 3 10 8 3 7 14 1 5 16 1 3 7 14 23 11 14 1 3 7 18 20 7 14 1] | 4 | 14 |
|
Link |
54 | [ 1 3 10 6 15 8 3 7 18 13 24 20 7 14 23 21 19 11 14 1 5 2 22 16 1] | 4 | 3 |
|
Link |
55 | [ 1 3 8 15 6 10 3 7 20 24 13 18 7 14 11 19 21 23 14 1 16 22 2 5 1] | 4 | 3 |
|
Link |
56 | [ 1 3 10 8 15 6 4 9 22 2 5 16 1 3 10 8 15 6 4 9 22 2 5 16 1] | 4 | 4 |
|
Link |
57 | [ 1 3 10 6 22 9 2 5 16 10 6 15 4 9 22 16 10 3 8 15 6 22 16 5 1] | 4 | 2 |
|
Link |
Index | Sequence | M | R |
of the central charge |
Videos |
---|---|---|---|---|---|
1 | [ 1 3 6 15 48 28 45 19 1] | 1 | 1 |
|
Link |
2 | [ 1 3 59 52 53 51 36 50 43 19 1] | 1 | 1 |
|
Link |
3 | [ 1 3 7 59 54 50 1 ] | 2 | 59 |
|
Link |
4 | [ 1 3 6 11 28 42 20 31 45 19 1 ] | 2 | 42 |
|
Link |
5 | [ 1 3 6 47 7 12 52 59 54 1 ] | 3 | 47 |
|
Link |
6 | [ 1 3 6 15 47 7 12 13 52 59 54 50 1 ] | 3 | 25 |
|
Link |
7 | [ 1 3 59 54 50 43 19 1 54 51 36 50 1 ] | 3 | 50 |
|
Link |
8 | [ 1 3 59 7 12 21 33 26 25 38 34 48 28 11 19 1 ] | 3 | 21 |
|
Link |
9 | [ 1 3 7 59 54 50 43 45 19 1 54 51 35 36 50 1 ] | 3 | 50 |
|
Link |
G. Fusco, G. F. Gronchi , P. Negrini: 2011. Platonic polyhedra, topological constraints and periodic orbits of the classical N-body problem, Invent. Math. Vol. 285, Num. 2, 283-332. DOI: https://doi.org/10.1007/s00222-010-0306-3.
M. Fenucci, G. F. Gronchi: 2018. On the stability of periodic N-body motions with the symmetry of Platonic polyhedra, Nonlinearity, Vol. 31, Num. 11, pp 4935-4954. DOI: https://doi.org/10.1088/1361-6544/aad644.