
ADVANCED MATHEMATICS
MASTER’S FINAL PROJECT

Study of volume-preserving flows guided by the Michelson system

Author: Supervisor:
Ainoa Murillo López Arturo Vieiro Yanes

Facultat de Matemàtiques i Informàtica

September 7, 2020



Abstract

We consider three-dimensional volume preserving flows and we study aspects of its dyna-
mics. We describe the geometry of flows having a volume-preserving symmetry. Pertur-
bations of such flows are reduced to Poincaré (not necessarily canonical) area-preserving
maps. We present a detailed study of the phase space of area-preserving maps through
Birkhoff normal form. These results are illustrated for the Michelson system. Comments
on the asymptotic behaviour of the splitting of the invariant manifolds of this system are
given. Finally, we include a preliminar description of the dynamics of a discretization of
the Michelson flow. It shows up a richer dynamics than the flow that we try to show
through some numerical investigations.

Resum

Es consideren fluxos tridimensionals que preserven volum i estudiem aspectes de la seva
dinàmica. Es descriu la geometria dels fluxos que admeten una simetria que preserva vo-
lum. Les pertorbacions d’aquests fluxos es redueixen a mapes de Poincaré que preserven
una forma d’àrea no necessàriament canònica. Es presenta un estudi detallat de l’espai
de fase de mapes que preserven l’àrea a través de la forma normal de Birkhoff. Aquests
resultats es mostren pel sistema de Michelson i es comenta el comportament asimptòtic
de l’escissió de les varietats invariants del sistema. Finalment, s’inclou una descripció pre-
liminar de la dinàmica d’una discretització del flux de Michelson. Aquesta, mostra una
dinàmica més rica que la del flux que intentem il·lustrar a través de diverses investigacions
numèriques.
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The aim of this work is to study the dynamics of three-dimensional volume-preserving
flows. This flows are of interest in applications since they appear naturally from fluid con-
vection problems. In 1966, Arnold observed that in a three-dimensional flow associated
to a fluid convection problem, the Poincaré map was chaotic and that the topology of the
orbits was not trivial. Later, Hénon did some numerical studies to confirm this behaviour,
see [4] and [21].

In this work we will present some results that allow us to understand the topology of
those orbits. Indeed, we will present most of the results through the study of the Michel-
son flow. We will see that the Michelson system can be seen as a perturbation of an
integrable system showing up a Hill’s spherical vortex. This spherical vortex is a rota-
tional solution of the Euler equations [7] of an incompressible flow without viscosity.

The Michelson system is a paradigm of three dimensional flows of this type that it has
been extensively studied in the literature. Due to the fact that it is related to steady state
solutions of the Kuramoto-Shivashinsky equation it drew the attention of researches in
physical and mathematical areas. Mathematically, it is an important model that appears
at the unfolding of the Hopf-zero bifurcation, see [15], where dissipative versions of the
model studied here appear for suitable parameters in the unfolding of such codimension
two bifurcation. Even though the Michelson system is a simple quadratic three dimen-
sional conservative flow, it shows up different phenomena, including homo/heteroclinic
phenomena, which makes its dynamics very rich.

On the other hand, the dynamics of a time-periodic incompressible flow can be described
by a three-dimensional volume-preserving map, so in the last Chapter of this work we
will present some preliminary results and discuss the main difficulties that we found
when studying the dynamics of a discretization of the Michelson flow.

Besides, the study of three-dimensional volume preserving flows with a recurrence in the
phase space leads to the study of two-dimensional maps that preserve an area form. This
reduction is achieved by choosing a suitable Poincaré section. Hence, we have also used
different techniques to study the dynamics of area preserving maps. Since we do not have
the map explicitly, we have also used numerical techniques to study the Poincaré map, as
for example the jet transport method to get the Taylor expansion of this map, that we can
use to reduce it to normal form. In the study of three dimensional flows and maps, we
include computations of the invariant manidolds that lead us to use multiprecision arith-
metics. Also several of the algorithms used require the implementation of an algebraic
manipulator to deal with polynomials. We have used the internal routines of PARI/GP,
[10], to simplify the implementations.

In Chapter 1 we will introduce three dimensional volume-preserving flows with volume-
preserving symmetries, and we will see that under certain conditions, the system could
have some Hamiltonian structure. Moreover, we will give a general overview on the
Michelson system, and in particular, we will see that for small enough values of the pa-
rameter it can be seen as a perturbation of a system that possesses a rotational symmetry.

In order to study the dynamics of a three-dimensional conservative flow, the reduction to
a Poincaré map will be considered in Chapter 2. We will prove that this Poincaré map is
indeed an area preserving map. In general, this two-dimensional map does not preserve
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the canonical area form. Nevertheless, as a consequence of Darboux’s theorem, we know
that there exists a change of coordinates that locally relates any two symplectic forms. We
include the corresponding statement and the proof of the theorem. There are different
ways to prove this theorem, here we will use the so-called Moser trick.
Moreover, in chapter 2, we also include a description of the main properties of the phase
space of the Poincaré map through illustrations obtained for different values of the pa-
rameter for the Michelson system.

Chapter 3 is devoted to study the dynamics of area preserving maps around an ellip-
tic fixed point using the Birkhoff normal form reduction. The Birkhoff normal form, in
general, is not convergent, but we will see that truncated to a suitable order, allow us to
obtain a detailed description of the phase space around the fixed point. In particular, we
will prove that the truncated Birkhoff normal form can be written as a rotation composed
with a near-the-identity map, that can be interpolated by a time-1 flow of a Hamiltonian.
This expression of the BNF in terms of the Hamiltonian allow us to study the existence of
periodic fixed points and the structure of resonant islands. In addition, we will discuss
the persistence of invariant curves of the Poincaré map when perturbing the system, or
equivalently, the persistence of invariant tori of the flow.

Moreover, for the Michelson flow, we will see that the two-dimensional invariant mani-
folds of the fixed points confine a family of invariant tori around an elliptic periodic orbit.
The intersection of the invariant manifolds and the asymptotic behaviour of their splitting
are described in Chapter 4.

Chapter 5 attempts to illustrate some aspects of the dynamics of the Michelson map,
which is a volume-preserving map obtained as a discretization of the Michelson flow. In
particular, we perform different computations of the invariant manifolds and compute
some orbits of the continuum of heteroclinic orbits of the map. These orbits lie in the
intersection of the two-dimensional invariant manifolds of the saddle-focus fixed points.

Also in Chapter 5 we will discuss the differences with the Michelson flow, and state several
questions that remain open in this setting. Some extra general conclusions are given at
the end of the work.
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Chapter 1

Conservative 3D flows with
volume-preserving symmetries

The aim of this chapter is to give a general overview of volume-preserving flows with
symmetry. Moreover, we will also provide a general study of the Michelson system and
will see that it can be seen as a perturbation of a volume-preserving system with symme-
tries.

1.1 Basic properties of the Michelson system

The Michelson system 
ẋ = y
ẏ = z
ż = ε(1− x2)− y

(1.1)

is a three dimensional system ẋ = Xε(x) of ordinary differential equations with a parame-
ter ε > 0, that appears as the equation for travelling wave solutions of a non-linear partial
differential equation called the Kuramoto-Sivashinsky equation, [30]

ut + uxxxx + uxx +
1
2

u2
x = 0.

The Michelson flow is clearly volume-preserving since it is divergence free

divXε = trDXε = tr

 0 1 0
0 0 1
−ε2x −1 0

 = 0,

by Liouville’s theorem, that we briefly recall here for three dimensional flows (it holds in
Rn as well)1.

1We will omit several proof of standards theorem that can be found in common references on ordinary
differential equations or dynamical systems, see [6, 3, 32, 37].

1



2 Conservative 3D flows with volume-preserving symmetries

Theorem 1.1 (Liouville). Let F : U ⊂ R3 −→ R3 be a three dimensional vector field Cr, r > 1
such that ϕt is the flow induced by ẋ = F(x) and Ω(t) is the volume of the image, ϕt(D) of any
region D of its phase space. If divX ≡ 0, then ϕt preserves volume, i.e. Ω(t) = Ω(0) for all t.

The Michelson system has the property of being a reversible system. Concretely, is invari-
ant under the involution R(x, y, z) = (−x, y,−z) and the time reverse t 7−→ −t. This can
be easily checked since

R ◦ Xε(x) = (−y, z,−ε(1− x2) + y) = −Xε ◦ R(x).

This property of being reversible imposes some intrinsic symmetries in the set of solutions
of the system that, in particular, can be exploited to simplify computations.

In order to study the dynamics of the system, we will start doing the analysis of the fixed
points, local bifurcations and the invariant manifolds.

For ε > 0, the Michelson system has fixed points x+ = (1, 0, 0) and x− = R(x+) since
Xε(x±) = 0. To study the stability of these points with respect to the parameter ε, one
consider the linearised system at x± and study the eigenvalues of

DXε(x±) =

 0 1 0
0 0 1
−2εx −1 0

 .

Thus the eigenvalues are solutions of the equation P(λ) = λ3 + 2εx + λ = 0.

The characteristic polynomial P has a real root and, since the discriminant ∆ = −4 −
27(2εx)2 = −4− 108ε2x2 < 0 is negative, the other two roots are complex conjugated.
Therefore the eigenvalues of DX(x±) are

λx± ∈ R, µ±x± =
−λx± ± i

√
3λ2

x± + 4

2
∈ C.

In this case both fixed points x± are hyperbolic and then Hartman-Grobman theorem, see
for example [32, 37], guarantees that the dynamics of the linearized system is topologically
conjugated to the local dynamics of the system around x±.

Since λx± satisfies λ3 + λ = −2εx and , µ±x± =
−λx±±i

√
3λ2

x±+4
2 we have

λx+ < 0, Re(µ±x+) > 0, for x+ = (1, 0, 0),

λx− > 0, Re(µ±x−) < 0, for x− = (−1, 0, 0).

Thus x± are saddle-focus fixed points and the stable manifold theorem, see for example
[32], gives the existence of the corresponding stable and unstable invariant manifolds,
denoted as Ws and Wu respectively. In this case the dimension of these manifolds are
dim Wu(x+) = dim Ws(x−) = 2 and dim Ws(x+) = dim Wu(x−) = 1. These manifolds
are smooth (analytic) and tangent at the hyperbolic point x± to the eigenspaces of dimen-
sion two, and one respectively, generated by eigenvectors of DXε(x±).
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When ε = 0, the Michelson system has the origin as a fixed point having eigenvalues 0
and ±i. Moreover Michelson proved in [30] the existence of a periodic orbit for ε > 0
sufficiently small, which tends to the origin when ε tends to zero. That is the Michelson
system has a Hopf-zero bifurcation at the origin for ε > 0 sufficiently small.
See comments on the Hopf-zero bifurcation and its unfolding in section 4.2. An analytic
proof of the existence of this bifurcation is given in [23].

For ε small enough, the two-dimensional invariant manifolds confine a Cantor family of
invariant tori around an elliptic invariant circle. Since they almost coincide for small ε,
the previous structure resembles a bubble of stability of the system (1.2). In section 4.2
we will describe the asymptotic behaviour of the splitting of theses manifolds as ε −→ 0.
It behaves in an exponential small way in ε, as expected in the analytic category for con-
servative systems. This justifies the previous assertion that they bound a "bubble" of
stability. The Michelson flow has heteroclinic orbits given by the intersection of the two-
dimensional invariant manifolds as we will see in section 4.1.

In order to obtain a qualitative description of the phase space of the Michelson when ε
tends to zero, we introduce variables s = x + z, y = R cos θ and z = R sin θ,

θ̇ =
d
dt

arctan(z/y) =
ży− zẏ
y2 + z2 = −1 +

ε(1− x2)R cos θ

R2 = −1 +O
( ε

R

)
,

ṡ = ẋ + ż = ε(1− (s− R sin θ)2),

Ṙ =
yẏ + zż

R
= ε sin θ(1− (s− R sin θ)2).

We observe that the angle θ is a fast angle. Performing one step of averaging over this fast
angle, we obtain

θ̇ = −1, ṡ = ε

(
1− s2 − R2

2

)
, Ṙ = εRs. (1.2)

where we have used the fact that sin is an odd function and only those terms in sin(θ)2

contribute to the averaged system (1.2) with a factor 1/2. In the previous expression
(1.2), the omitted terms add a relative error ε/R that will be ignored in the qualitative
description below.
Due to the uncoupled structure of (1.2) we can study the evolution of the s, R coordi-
nates independently. The corresponding two-dimensional system is Hamiltonian, with
H(s, R) = R2(1− s2 − R2/4) and with the symplectic 2-form ε(dx ∧ dy). In Figure 1.1 we
can see the main features of the reduced system, it has two fixed points of saddle type
with one-dimensional heteroclinic connections.
The periodic orbits observed in the figure are two-dimensional invariant tori of the inte-
grable system (1.2). This system has rotational symmetry, see related comments below.
Since the Michelson system, for small ε, can be seen as a perturbation of (1.2), we expect
the system to have bounded orbits. This is a consequence of perturbation results based on
KAM theory 3.5. Hence when ε decreases, the measure of the set of orbits of (1.1) grows.
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Figure 1.1: Phase space of the reduced two-dimensional system in variables s, R.

1.2 Geometric structure of three dimensional flows with
symmetry

Three-dimensional flows are relevant in applications, for example, the study of chaotic
advection leads naturally to a three-dimensional flow, see [4, 21]. Here, we want to inves-
tigate geometrical properties of such flows.

The odd dimension of the phase space imposes some restrictions of the structure. For
example, the zero-energy level of a two degrees of freedom autonomous Hamiltonian de-
fines a three dimensional flow on a suitable manifold. Nevertheless it is not true that
any three dimensional flow is realised as a zero-energy level of a two-degree of freedom
autonomous C2 Hamiltonian, because the Hamiltonian structure implies preservation of
area in pairs of symplectic conjugated components.

The fact that a general three dimensional flow does not posses a Hamiltonian structure,
difficult the analytical study of transport properties. Fortunately, in several situations, the
flow under considerations can be seen as a perturbation of a system having a volume
preserving symmetry (see definition below). When the three dimensional flow possesses
a volume preserving symmetry, then, in a suitable 3d manifold, one can introduce sym-
plectic conjugated coordinates, so that the reduced flow becomes Hamiltonian. The level
set of this Hamiltonian are surfaces through which one can attempt to study the flux of
the system.

To state the result properly we introduce some general background in Lie group theory.
Let us consider the system ẋ = F(x, t) defined on an open domain U × I ⊂ R3 ×R.

Definition 1.2. Consider the family of maps

g :U ×R× I −→ U ×R
(x, t; λ) 7−→ g(x, t; λ)

which depend of the parameter λ ∈ I. We say that this family of maps forms a one-
parameter Lie group G acting on U ×R if it satisfies the following properties:

1. For each λ ∈ I, g is one-to-one and onto U×R. The maps are infinitely differentiable
with respect to (x, t) ∈ U ×R and analytic in λ ∈ I.
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2. I forms a group with an analytic law of composition φ(λ, δ) : I × I −→ I.

3. (x, t) = g(x, t; e), where e is the identity element in the group (I, φ).

4. If (x1, t1) = g(x0, t0; λ0) and (x2, t2) = g(x1, t1; λ1), then (x2, t2) = g(x0, t0; φ(λ0, λ1)).

Let gi, i = 1, . . . 4 be the components of G.

Definition 1.3. The infinitesimal generator of the action of G is the vector field w on U × I
given by

w =
3

∑
i=1

ξi(x, t)
∂

∂xi
+ ξ4(x, t)

∂

∂t
,

where ξi(x, t) = ∂gi
∂λ (x, t, 0), for i = 1, . . . , 4.

Definition 1.4. Let G be a one-parameter Lie group acting on U × I. We say that ẋ =
F(x, t) admits a one-parameter group of symmetries G if and only if whenever ϕ(t) is a
solution then so is g(ϕ(t), t, λ), where g(x, t, λ) is any element of G.

Definition 1.5. A one parameter Lie group G is a spatial symmetry group if it acts only on
the dependent variables and its infinitesimal generator is an autonomous vector field on
R3, that is, w ≡ ∑3

i=1 ξi(x, t) ∂
∂xi

.
A spatial symmetry group is volume preserving if its infinitesimal generator is a volume
preserving vector field.

Let us show that the Michelson system (1.1), for ε small enough can be seen as a perturba-
tion of the system (1.2), that possesses a rotational symmetry. We express the system (1.2)
in cartesian coordinates s, y = R cos θ, z = R sin θ,

ṡ = ε

(
1− s2 − y2 + z2

2

)
,

ẏ = εsy− z,
ż = εsz + y.

and let G be the spatial symmetry group that form the rotation matrices around the s axis,
that is,

G := {Rs
λ, λ ∈ R}, Rs

λ =

1 0 0
0 cos λ − sin λ
0 sin λ cos λ

 . (1.3)

To prove that the system (1.2) admits G we have to see that given ϕ(t) = (s(t), y(t), z(t))T

a solution then ϕ̃(t) = (s̃(t), ỹ(t), z̃(t))T = Rs
λ(s(t), y(t), z(t))T is also a solution for all

λ ∈ R,
ϕ̃(t) = (s(t), cos λy(t)− sin λz(t), sin λy(t) + cos λz(t))T .



6 Conservative 3D flows with volume-preserving symmetries

Note that ỹ2 + z̃2 = cos λ2y2 + sin λ2z2− 2 sin λ cos λyz+ sin λ2y2 + cos λ2z2 + 2 sin λ cos λyz =
(y2 + z2). Hence

˙̃s = ε

(
1− s̃2 − ỹ2 + z̃2

2

)
,

˙̃y = cos λẏ− sin λż = εs̃(cos λy− sin λz)− (cos λz− sin λy) = εs̃ỹ− z̃,
˙̃z = sin λẏ + cos λż = εs̃(sin λy− cos λz) + (sin λz− cos λy) = εs̃z̃− ỹ.

Therefore ϕ̃(t) = Rs
λ ϕ(t) is a solution of the system.

One has g(x, t; λ) = Rs
λ(x), hence the infinitesimal generator of G is the autonomous

vector field

w =
3

∑
i=1

∂gi
∂λ

(x, t, 0)
∂

∂xi
=

∂g2

∂λ
(x, t, 0)

∂

∂x2
+

∂g3

∂λ
(x, t, 0)

∂

∂x3

= −x3
∂

∂x2
+ x2

∂

∂x3
.

Any three dimensional flow, not necessarily autonomous, that is invariant under the action
of a volume-preserving symmetry group can be transformed to a form where two compo-
nents have canonical form of a one degree of freedom Hamiltonian system, not necessarily
autonomous, and the third component depends only on the first two variables. This is the
content of the following theorem stated in [29].

Theorem 1.6. Let
dxi
dt

= fi(x1, x2, x3, t), i = 1, · · · , 3,

be a volume-preserving system that it admits a one-parameter spatial volume-preserving symmetry
group G. Then there exists a local volume preserving change of variables xi = φi(z1, z2, z3), i =
1, · · · , 3, such that the system becomes

dz1

dt
=

∂H(z1, z2, t)
∂z2

,

dz2

dt
= −∂H(z1, z2, t)

∂z1
,

dz3

dt
= k3(z1, z2, t).

where z1, z2 are functionally independent invariants of G.
If the original system is autonomous, so it is the transformed system, and H is a first integral.

Sketch of the proof. The construction of the change of variables φ consists in different steps.

1. In [31], Olver proves that given a system ẋ = F(x, t) that admits a one parameter
group of symmetries G, and given a regular point p = (x, t) ∈ U × I of the vector
field w, there exists a local change of coordinates

(y, s) = (φ1,y(x, t), φ1,s(x, t)),
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that transform the system into

d
ds

yi = F̃i(y1, y2, s), i = 1, . . . , 3,

where y1, y2 and s are functionally independent invariants of G, and Lw(y3) = 1.
Here, Lw(y3) denotes the Lie derivative of y3 with respect to the vector field w 2.

2. If G is a spatial symmetry group, one has that t is invariant by the action of G. One
can take then s = t. Moreover, since w is autonomous, y1, y2 and y3 are independent.

3. Next, the system

d
dt

y1 = F̃1(y1, y2, t),

d
dt

y2 = F̃2(y1, y2, t),

can be recast as a non-canonical Hamiltonian system of the form

d
dt

y1 =
1
J

∂H
∂y2

(y1, y2, t),

d
dt

y2 = −1
J

∂H
∂y1

(y1, y2, t),

where J = det Dφ1,y. This can be done if and only if divJ(F̃1, F̃2) = 0. This holds
because divJF̃ = JdivF(x, t) = 0 by volume preservation. Moreover, the fact that w
preserves volume, implies

1
J

(
∂Jξ1

∂y1
+

∂Jξ2

∂y2
+

∂Jξ3

∂y3

)
= 0.

But since ξ1 = ξ2 = 0, ξ3 = 1 one has ∂J
∂y3

= 0. Finally, since ∂JF̃3
∂y3

= J ∂F3
∂y3

+ F3
∂J

∂y3
and

F̃3 does not depend on y3 we conclude that divJF̃ = divJ(F̃1, F̃2) = 0.

4. One applies the Darboux theorem, see section 2 to show the existence of coordinates
for which one obtains a canonical structure.

Remark 1.7. The coordinates in which the vector field takes the form of the new system
do not depend on the explicit form of the original vector field. Rather, they depend only
on the volume-preserving spatial symmetry group.

2We recall that the Lie derivative of a function g with respect to a vector field X in a point x0 is

LX f (x0) = lim
t−→0

g(φ(t; t0, x0))− f (x0)

t
,

where φ(t; t0, x0) is the flow X.
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For the system (1.2), these coordinates correspond to z1 = s, z2 = R and z3 = θ, and
H(s, R) = εR2(1− s2 − r2/4). The Michelson system (1.1) does not preserve symmetry
and the higher order terms in the equation θ depend on the angle θ itself.

As a consequence of the previous theorem, we conclude that given an autonomous vol-
ume preserving system that admits a volume preserving symmetry, there exist a volume
preserving change of variables such that the system can be expressed in action-angle-angle
variables

İ = 0,
φ̇1 = Ω1(I),
φ̇2 = Ω2(I),

where I ∈ R+, φ1 ∈ S1 and φ2 ∈ S1 or R. For that, one can first transform (z1, z2) into the
standard action-angle variables İ = 0, φ̇1 = Ω1(I) and then transform the third variable z3
into φ2 such that it only depends on I, see [29].

This shows that the phase space of a three-dimensional volume preserving flow with a
volume preserving symmetry is foliated by two dimensional tori or cylinders, depending
on whether z3 is defined on R or S1.

As we have already mention, the Michelson system (1.1) is a perturbation of a system that
can be expressed in coordinates of Theorem 1.6 and, as it is autonomous, it admits a first
integral. Moreover, the system (1.2) has one action and two frequencies.

From the same theorem we know that the unperturbed system is foliated by two dimen-
sional tori. In section 3.5 we will conclude that some of theses tori persist for the Michelson
flow for small values of ε.



Chapter 2

Local reduction of a
volume-preserving flow to a
canonical area-preserving map

In this chapter we will proof that the reduction of a volume preserving flow to a Poincaré
map preserves an area form. This area form could not be the canonical one. We include
Darboux’s theorem that asserts that all symplectic forms are locally equivalent, allowing
to consider canonical area preserving maps for local properties of the dynamics. The pre-
sented proof of the Darboux theorem uses the so-called Moser’s trick, some background
on differential forms is also briefly include. Using a Poincaré map for the Michelson sys-
tem we describe aspects on the local dynamics of area preserving maps.

2.1 Reduction of a VPF to an APM

One of the methodologies that one can use to describe the topology of the phase space
of a three dimensional flow is to use a Poincaré map to study the behaviour of the sys-
tem. We remark that in general, this cannot be done globally, but only where a suitable
transverse section exists. Different sections can be used to investigate different aspects of
the dynamics. Here we shall see that in any transverse section, where the dynamics is
recurrent, the Poincaré preserves a suitable 2-form.

Let X : U ⊂ R3 −→ R3 be a three dimensional vector field Cr, r > 1 such that the
associated flow ϕt preserves the standard volume form Ω = dx ∧ dy ∧ dz. That is, for all
x0 ∈ U and for all u1, u2, u3 ∈ R3,

Ωϕ(t,x0)
(Dx0 ϕ(t, x0)u1, Dx0 ϕ(t, x0)u2, Dx0 ϕ(t, x0)u3) = Ωx0(u1, u2, u3), ∀t ∈ I(x0) ⊂ R.

where I(x0) is the interval of definition of the solution ϕ(t, x0).

Let Σ be a transverse section and define the Poincaré map P : Σ −→ Σ, which we assume
that is well defined since we have a recurrence property. Given x ∈ Σ and u1, u2 ∈ TxΣ ⊂

9
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R3, we define
ΩΣ

x (u1, u2) := Ωx(X(x), u1, u2).

Remark 2.1. Since Ωx is a non-degenerate volume form, also ΩΣ
x is a volume form. Since

Σ is a transverse section, then ΩΣ
x in non-degenerated.

Theorem 2.2. The Poincaré map P : Σ −→ Σ preserves the differential 2-form ΩΣ.

Proof. One can parametrize Σ as the image of a ball B, Σ = ν(B) where ν : B ⊂ R3 −→ R3

is a Cr injective immersion.
Let s ∈ B such that x = ν(s) and v1, v2 ∈ R2 such that

u1 = Dν(s)v1, u2 = Dν(s)v2.

We want to prove that P preserves the differential 2-form ΩΣ,

ΩΣ
P(x)(DP(x)u1, DP(x)u2) = ΩΣ

x (u1, u2).

Since P can be expressed as P(x) = ν(P̄(ν−1(x))) = ν(P̄(s)) for P̄ : B −→ B, we have that

DP(x)u1 = Dν(P̄(s))DP̄(s)Dν−1(x)u1 = Dν(P̄(s))DP̄(s)Dν−1(x)Dν(s)v1

= D(ν ◦ P̄)(s)D(ν−1 ◦ ν)(s)v1 = D(ν ◦ P̄)(s)v1.

Analogously, DP(x)u2 = D(ν ◦ P̄)(s)v2. Therefore,

ΩΣ
P(x)(DP(x)u1, DP(x)u2) = ΩP(x)(X(P(x)), DP(x)u1, DP(x)u2)

= Ων(P̄(s))(X(ν(P̄(s))), D(ν ◦ P̄(s)v1, D(ν ◦ P̄(s)v2).

Let τ : B −→ R be the return time of x = ν(s) to the section Σ, i.e. such that P(x) =
ϕ(τ(s), x), or equivalently

ν(P̄(s)) = ϕ(τ(s), ν(s)).

Therefore

Ων(P̄(s))(X(ν(P̄(s))), D(ν ◦ P̄)(s)v1, D(ν ◦ P̄)(s)v2)

= Ωϕ(τ(s),ν(s))(X(ϕ(τ(s), ν(s))), Ds ϕ(τ(s), ν(s))v1, Ds ϕ(τ(s), ν(s))v2).

Observe that

Ds ϕ(τ(s), ν(s)) = Dt ϕ(τ(s), ν(s))Dsτ(s) + Dx ϕ(τ(s), ν(s))Dsν(s)
= X(ϕ(τ(s), ν(s)))Dsτ(s) + Dx ϕ(τ(s), ν(s))Dsν(s).

Hence

Ds ϕ(τ(s), ν(s))vi = X(ϕ(τ(s), ν(s)))Dsτ(s)vi + Dx ϕ(τ(s), ν(s))Dsν(s)vi

= λiX(ϕ(τ(s), ν(s))) + Dx ϕ(τ(s), ν(s))Dsν(s)vi.

and, since Ω is a an alternating multilinear form,

Ωϕ(τ(s),ν(s))(X, λ1X + Dx ϕ(τ(s), ν(s))Dsν(s)v1, λ2X + Dx ϕ(τ(s), ν(s))Dsν(s)v2)

= Ωϕ(τ(s),ν(s))(X, Dx ϕ(τ(s), ν(s))Dsν(s)v1, Dx ϕ(τ(s), ν(s))Dsν(s)v2).
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Given that X is invariant through the associated flow ϕ,

X(ϕ(τ(s), ν(s))) = Dx ϕ(τ(s), ν(s))X(ν(s)),

and therefore

Ωϕ(τ(s),ν(s))(X(ϕ(τ(s), ν(s))), Dx ϕ(τ(s), ν(s))Dsν(s)v1, Dx ϕ(τ(s), ν(s))Dsν(s)v2)

= Ωϕ(τ(s),ν(s))(Dx ϕ(τ(s), ν(s))X(ν(s)), Dx ϕ(τ(s), ν(s))Dsν(s)v1, Dx ϕ(τ(s), ν(s))Dsν(s)v2).

As ϕ(τ(s), ν(s)) = P(x) preserves the volume form, we have

Ωϕ(τ(s),ν(s))(Dx ϕ(τ(s), ν(s))X(ν(s)), Dx ϕ(τ(s), ν(s))Dsν(s)v1, Dx ϕ(τ(s), ν(s))Dsν(s)v2)

= ΩP(x)(DP(x)X(x), DP(x)u1, DP(x)u2) = Ωx(X(x), u1, u2) = ΩΣ
x (u1, u2).

So we have proved that P preserves the differential 2-form ΩΣ.

2.2 Darboux theorem

Given any two symplectic forms, Darboux’s theorem gives the existence of a change of co-
ordinates that locally relates both forms. Indeed, this change of coordinates is used in the
last step of the proof of Theorem 1.6, to get the standard form. In other words, Darboux
theorem states that all symplectic structures are locally equivalent.

Definition 2.3. Let V a linear vector space. A real symplectic form ω : V × V −→ R is an
antisymmetric and non-degenerate bilinear form. That is, ω(v, v) = 0 for all v ∈ V, and if
ω(v, w) = 0 for all v ∈ V, then w = 0.

Definition 2.4. The interior product of a k-form ω is the (k− 1)-form defined by

iXω(v1, . . . , vk−1) = ω(X, v1, . . . , vk−1),

for any vector fields v1, · · · , vk−1.

The following formulation of Darboux’s theorem is inspired in references [16].

Theorem 2.5 (Darboux). Let ω be a closed symplectic form on a 2n-dimensional differentiable
manifold M. Then for any p ∈ M there is a neighbourhood U of p and a diffeomorphism φ : U −→
R2n such that

φ∗
(

n

∑
i1

dxi ∧ dyi

)
= ω,

where φ∗ denote the pullback by φ and xi, yi are the standard coordinates on R2n.

Proof. Note that it suffices to prove the theorem for p = 0 ∈ R2n. One can use a coordi-
nate chart to push ω forward to a symplectic form on a neighbourhood of 0. If the result
holds onR2n, one can compose the coordinate chart with φ and get the theorem in general.
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Let ω0 = ∑n
i=1 dxi ∧ dyi. Since ω is a non-degenerate closed two-form, on the tangent space

T0R
2n it is a non-degenerate anti-symmetric bilinear form. Thus by a linear change of co-

ordinates, ω(0) can be put in the standard form, so we may assume that ω(0) = ω0(0).

We want to construct a diffeomorphism φ such that φ∗ω0 = ω, where φ∗ denotes the
pullback of φ, that is φ∗ω0(v1, v2) = ω(Dφ(v1), Dφ(v2)), for all v1, v2 ∈ V.

We shall obtain φ by applying the so-called Moser’s trick, [16]. The idea is the following.
We shall look for a suitable smooth non-autonomous vector field X(t, x) such that if φt :=
φ(t; ·, ·), where φ is the evolutionary process, defined on an open domain D ⊂ R×R×Rn,
associated to the differential equation

ẋ = X(t, x),

verifies

φ∗t ωt = ω, (2.1)

being ωt the family of 2-forms,

ωt = tω0 + (1− t)ω.

Then the diffeomorphism φ will be φ1.
We differentiate (2.1) to see which conditions Xt has to verify, and we get

0 =
d
dt

φ∗t ωt = (
d
dt

φ∗t )ωt + φ∗t
d
dt

ωt.

Let LXt ω = d
dt |t=0(φ

∗
t ω) be the Lie derivative of ωt with respect to the vector field Xt.

Then one can compute the derivative d
ds φ∗s ω, applying s 7−→ s + t and the chain rule,(

d
ds

φ∗s

)
ω =

(
d
dt
|t=0φ∗t+s

)
ω = φ∗t

d
dt
|t=0 (φ

∗
s )ω = φ∗s LXt ω.

Thus ( d
dt φ∗t )ωt + φ∗t

d
dt ωt = φ∗t (LXt ωt + ω0 −ω) = 0.

We apply Cartan’s identity, LXt ωt = dιXt ωt + ιXt dωt, where ιXt is the interior product and
d denotes the exterior derivative. We refer to [3] for definitions and proofs. Thus

0 = φ∗t (dιXt ωt + ω0 −ω),

since ωt is closed (that is, dωt = 0), because it is a linear combination of ω and ω0 that are
closed.

By Poincaré’s Lemma,[3] which states that any closed differential form defined on a simply
connected domain on M is exact, ω0 − ω is locally exact, so we can write ω0 − ω = dλ,
where λ is a 1-form, and thus 0 = d(ιXt ωt + λ).
Given ω a non-degenerated volume form there exist a vector X, such that for any v ∈ V
it satisfies the equation ω(X, v) = −λ(v). Hence ιXω = −λ. This provides that for any t,
there is vector Xt such that ιXt ωt = −λ. Hence this condition defines the non-autonomous
vector field 1.

1Note that ωt = ω0 at 0, so ωt will be non-degenerate on an open neighbourhood of 0, since ω0 is non-
degenerate.
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Since ω(0) = ω0(0), we have that λ = 0 and thus Xt(0) = 0 for all t ∈ R. This means
that φ(t; t0, 0) = 0 for all t. Thus, by continuity of the solution of the Cauchy problem
with respect to the initial condition, which implies the continuous dependence of the
interval of definition of the solution of the Cauchy problem, we can choose a sufficiently
small neighbourhood of 0, the flow φt will be defined for time greater than 1. In this
neighbourhood, φ = φ1 gives the desired result.

2.3 A Poincaré map for the Michelson system

The geometrical properties of the Michelson system described above, and concretely, the
fact that it is a perturbation of a system with rotational symmetry (1.3), motivates to con-
sider a section Σ = {z = 0}. Since TpΣ = 〈(1, 0, 0), (0, 1, 0)〉 for all p ∈ Σ, the subspace
〈(0, 0, 1)〉 is orthogonal to TpΣ. Then Fε(p) · (0, 0, 1) = ε(1− x2)− y which vanishes on the
parabola y = ε(1− x2). Outside a neighbourhood of the parabola, Σ defines a transverse
section. As expected, this parabola is a perturbation of the rotation axis of the elements of
the Lie group G of symmetries of the averaged system (1.2).

Given the Michelson system (1.1) we compute the differential 2-form ΩΣ for Σ ≡ {z = 0}.
Σ is a local Poincaré section of the system, that loose the transverse condition near the x
axis.

ΩΣ
(x,y,0)(u1, u2) = Ω(x,y,0)(X(x, y, 0), u1, u2) =

∣∣∣∣∣∣
y u11 u21
0 u12 u22

ε(1− x2)− y 0 0

∣∣∣∣∣∣
= (ε(1− x2)− y)

∣∣∣∣u11 u21
u12 u22

∣∣∣∣ = (ε(1− x2)− y)dx ∧ dy.

The area form of the Michelson flow depends on the function of ε(1− x2)− y so it does
not preserves the standard area form. We will see that the associated Poincaré map of the
Michelson system can be locally reduced to a map that preserves the standard area form.

To compute the Poincaré map, we have implemented a Taylor method with variable step
size to integrate the Michelson system (1.1). Given an initial condition, we compute the
image of the Poincaré map Pε : Σ −→ Σ, integrating the system until we find two points zk
and zk+1 such that zkzk+1 < 0. Thus we use a Newton method to determine a step size h
that gives a point of the orbit on Σ. We refer to [35] for an explanation of these numerical
algorithms. Also [22] is a good reference for the Taylor method 2.

In Figure 2.1 we display the phase space of the Poincaré map for different values of the
parameter ε. By the previous results, Pε is non-canonical area preserving map. In the
figure we see a set of invariant curves on y > 0 that surround an elliptic fixed point. Since
the system is a perturbation of a symmetry with a rotational symmetry around the x axis,

2We have not used the Taylor package nor any other package, implementations where done in C and adapted
when required to PARI/GP, [10].
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Figure 2.1: Poincaré section of the Michelson flow for ε = 0.0316 and 0.1405.

we observe a similar structure for y < 0. Later on we will see how to compute these fixed
points as well as their linear behaviour as a function of ε, see section 3.2.
The elliptic fixed points are the intersections with Σ of an elliptic periodic orbit of the
Michelson system (1.1). Similarly, the intersection with Σ of an invariant torus of the flow
is seen in the Poincaré section as two invariant curves, one for y > 0 and the other for
y < 0.

As observed in section 1.1, the saddle focus fixed points of the Michelson system (±1, 0, 0)
have one dimensional and two dimensional invariant manifolds that nearly coincide when
ε tends to 0. Accordingly, one can see in the left plot that the intersection of the two
dimensional manifolds with Σ encloses the tori around the elliptic fixed point.
For ε > 0, the system looses the rotational symmetry and is no longer integrable. In
general, for a non-integrable system one expects that the invariant manifolds do not co-
incide. We will compute these invariant manifolds in section 4.1. As will be shown the
two-dimensional invariant manifolds intersect transversely while the one-dimensional in-
variant manifolds do not intersect and one rotates around the other one.
On the other hand, on the right figure, we see invariant curves for larger values of ε.
Moreover, for the value of ε considered in the plot, we clearly observe elliptic 5-periodic
orbit of Pε. Around the 5-periodic orbits, there is a set of invariant curves that forms an
island. At the places where the islands approach, there is a 5-periodic hyperbolic orbit.
This structure is a consequence of the Poincaré-Birkhoff Theorem that will be detailed in
section 3.4.

The transverse intersection of the invariant manifolds of the 5-periodic hyperbolic orbit
generates chaos in phase space. The chaotic regions can be contained inside the stability
domain, hence giving rise to a confined regions of chaos, or can be open chaotic regions.
In Figure 2.3 left we illustrate a confined chaotic region related to the 5-periodic orbit while
in the right plot we see that there are no invariant curves surrounding the 5-periodic is-
lands and points near the 5-periodic hyperbolic orbit escape when iterating the Poincaré
map.

All the previous concepts and statement about invariant curves and resonant islands of
Pε need to be properly justified. They rely on the intrinsic properties of the dynamics of
area preserving maps around elliptic fixed points. These properties are revealed when
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Figure 2.2: Zoom on an island of the Poincaré map for ε = 0.138 and ε = 0.1405.

transforming the map to a normal form, as we will see in the next section.
From now on, we will study an area preserving map locally around an elliptic fixed point.
Hence, without loss of generality, we will assume that it preserves the standard form since
Darboux’s theorem reduces any symplectic form to a canonical form.



Chapter 3

Birkhoff normal form of an
area-preserving map around an
elliptic fixed point

This chapter aims to study the dynamics of area preserving maps around elliptic fixed
points by turning the map into a Birkhoff normal form. For that, we will use symplectic
changes of coordinates, defined as the time-one flow of a Hamiltonian, to assure that the
Birkhoff normal form is still an area preserving map.
Moreover, we will study the phase space of a truncated Birkhoff normal form, using the
fact that it is an area preserving twist map and, finally, we will do some comments on the
persistence of invariant objects when perturbing the system.

3.1 Birkhoff normal form of an APM

The aim of this section is to introduce the Birkhoff normal form of F, which allow us to
study the local dynamics around the fixed point. We will see that F cannot be linearized
by a change of coordinates and some terms cannot be removed.

Definition 3.1. We define the set of resonances as the set Γ = {k ∈ Z : kα = 0 mod 1}. The
resonance k = 0 is the so-called unavoidable resonance. Resonances k 6= 0 are avoidable
resonances.

The terms that cannot be removed correspond to resonances and will be referred as reso-
nant terms. If z = x + iy, a term zk z̄l of the first component (respectively the second), of F
is resonant if k− l − 1 = 0 (respectively if k− l + 1 = 0).

As shown in the previous chapter, the Poincaré map of a volume preserving flow is an
area preserving map, denoted as F, with an elliptic fixed point that corresponds to the el-
liptic periodic orbit of the flow. Given the fixed point p ∈ R2, DF(p) has two eigenvalues
λ, λ̄ ∈ C such that λ = e2πiα with α ∈ (0, 1). Thus DF(p) can be expressed as a rotation,
DF(p) = Rα, after a linear change of coordinates.

16
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Definition 3.2. A map F is said to be in Birkhoff normal form around a fixed point p if and
only if it commutes with the semi simple part of DF at p.

The following theorem assures the existence of a change of variables that allow us to
construct the Birkhoff normal form of F around an elliptic fixed point. We refer to [2]. The
changes we use are canonical and expressed as the time-one map of a Hamiltonian, using
Lie series as explained in [28].

Theorem 3.3. Given an area preserving map F : R2 −→ R2 there exists a formal canonical
change of variables φ : R2 −→ R2 in a neighbourhood of an elliptic fixed point such that F is in
Birkhoff normal form around the fixed point in the new coordinates. That is, N = φ ◦ F ◦ φ−1

satisfies N ◦ DF = DF ◦ N.

Proof. We will consider F : C2 −→ C2 in complex variables z, z̄ given by the change of
variables z = x + iy and z̄ = x− iy. The eigenvalues of DF(z0) are then λ = e2πiα and λ̄,
where α ∈ (0, 1) is the multiplier at the fixed point z0 ∈ C2.

We can express F as a sum of homogeneous polynomials of degree r = k + l. Since the
map F is real, the second component is conjugated to the first one F = ( f , f̄ ), hence we
can consider just one of them,

f (z, z̄) = λz + ∑
r>2

cklzk z̄l = λz + g(z, z̄).

We aim to find the change of coordinates φ constructed as a sequence of transformations
which successively remove the non-linear terms. Moreover, we will consider a symplectic
change of coordinates to assure that the Birkhoff normal form still preserves the area form.
In particular, we will construct a canonical change of variables as a time 1-map of an
autonomous canonical real Hamiltonian system with Hamiltonian X(x, y).

(x, y) 7−→ φ1
X(x, y),

where φt
X denotes the corresponding flow.

Since X is Hamiltonian, it can be expressed as ẋ = ∂X
∂y , ẏ = − ∂X

∂x and doing a change of
coordinate z = x + iy, z̄ = x− iy, we get{

ż = −2i ∂X
∂z̄

˙̄z = 2i ∂X
∂z

which are the equations of motion of the Hamiltonian flow X in coordinates z, z̄.
We use the Taylor expansion with respect to time to find the solution at time t = 1,

z(t) = z(0) +
dz
dt

(0)t +
d2z
dt2 (0)

t2

2
+

d3z
dt3 (0)

t3

3!
+ · · ·

Thus we need to find the n-th derivative of z. If h(z, z̄) := ż = −2i dX
dz̄ , then

z̈ =
∂h
∂z

ż +
∂h
∂z̄

˙̄z =
∂h
∂z

(
−2i

∂X
∂z̄

)
+

∂h
∂z̄

(
2i

∂X
∂z

)
= 2i

(
∂h
∂z̄

∂X
∂z
− ∂h

∂z
∂X
∂z̄

)
= 2i{X, h}.
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Thus, denoting by LX(h) = 2i{X, h}, where {X, h} is the Lie bracket, we find recursively

ż = −2i
∂X
∂z̄

= 2i
(

∂z
∂z̄

∂X
∂z
− ∂z

∂z
∂X
∂z̄

)
= LX(z),

z̈ = LX(h) = LX(LX(z)) = L2
X(z),

...

z(n) = Ln
X(z).

Since z(0) = z, we get

z(1) = z + LX(z) +
1
2

L2
X(z) +

1
3!

L3
X(z) + · · · =

∞

∑
k=0

Lk
X(z)
k!

= eLX(z).

Analogously, z̄(n) = Ln
X(z̄) and thus

z̄(1) = z̄ + LX(z̄) +
1
2

L2
X(z̄) +

1
3!

L3
X(z̄) + · · · =

∞

∑
k=0

Lk
X(z̄)
k!

= eLX(z̄).

Therefore the time 1-map of the Hamiltonian flow X is φ1
X = eLX Id.

Let Xp+1 be an homogeneous vector field of degree p + 1. We will construct the change of
coordinates φ as a composition of canonical changes φ1

Xp+1
(z, z̄) that attempts to remove

the corresponding non-linear term of order p from F.

Assuming that F is in Birkhoff normal form up to order p− 1, we aim to remove the term
of order p using the change of coordinates φ1

Xp+1
(z, z̄). That is, the term of order p of

N(z, z̄) = φ1
Xp+1
◦ F ◦ φ−1

Xp+1
(z, z̄) should be zero.

Using the change of coordinates

φ1
Xp+1

(z, z̄) = e
LXp+1 (z, z̄) = (z− 2i

∂Xp+1

∂z̄
(z, z̄), z̄ + 2i

∂Xp+1

∂z
(z, z̄)) +Op+1,

and

φ−1
Xp+1

(z, z̄) = (z + 2i
∂Xp+1

∂z̄
(z, z̄), z̄− 2i

∂Xp+1

∂z
(z, z̄)) +Op+1,

one obtains

N(z, z̄) = φ1
Xp+1
◦ F ◦ φ−1

Xp+1
(z, z̄) = φ1

Xp+1
◦ F
((

z + 2i
∂Xp+1

∂z̄
(z, z̄), z̄− 2i

∂Xp+1

∂z
(z, z̄)

)
+Op+1

)
= φ1

Xp+1

(
F(z, z̄) +

(
2iλ

∂Xp+1

∂z̄
,−2iλ̄

∂Xp+1

∂z

)
(z, z̄) +Op+1

)
= F(z, z̄) +

(
2iλ

∂Xp+1

∂z̄
,−2iλ̄

∂Xp+1

∂z

)
(z, z̄) +

(
−2i

∂Xp+1

∂z̄
, 2i

∂Xp+1

∂z

)
(λz, λ̄z̄) +Op+1.

Considering just the term of order p, this leads to the homological equation

1
2i

Fp =

(
λ

∂Xp+1

∂z̄
−

∂Xp+1

∂z̄
(λz, λ̄z̄),−λ̄

∂Xp+1

∂z
+

∂Xp+1

∂z
(λz, λ̄z̄)

)
.
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where Fp denotes the term of order p of F.

Since Xp+1 is an homogeneous vector field of order p + 1,

∂Xp+1

∂z̄
(λz, λ̄z̄) = ∑

k+l=p
λkλ̄l ∂Xp+1

∂z̄
(z, z̄),

we get that the homological equation for the first component is

1
2i

fp = λ
∂Xp+1

∂z̄
− ∑

k+l=p
λk−l ∂Xp+1

∂z̄
=

(
λ− ∑

k+l=p
λk−l

)
∂Xp+1

∂z̄
.

If there exists k, l such that k + l = p and λ = λk−l , this equation cannot be satisfied and
so the term of order p cannot be removed. Hence the unavoidable resonant terms, see
definition 3.1 with k = l + 1 should be kept.

Let f nr
p denote the non-resonant terms of order p of the first component of F and then the

homological equation is given by

1
2i

f nr
p = λ

∂Xp+1

∂z̄
−

∂Xp+1

∂z̄
(λz, λ̄z̄). (3.1)

We want to prove that this equation has a real solution to get a vector field Xp, which allow
us to construct the change of coordinates. For that, we will use that F is an area preserving
map. Since the second component of F is conjugated to the first one, we compute the area
form as d f ∧ d f̄ ,

d f ∧ d f̄ = (λdz +
∂g
∂z

dz +
∂g
∂z̄

dz̄) ∧ (λ̄dz̄ +
∂ḡ
∂z̄

dz̄ +
∂ḡ
∂z

dz)

= λdz ∧ λ̄dz̄ + λdz ∧ ∂ḡ
∂z̄

dz̄ +
∂g
∂z

dz ∧ λ̄dz̄ +
∂g
∂z

dz ∧ ∂ḡ
∂z̄

dz̄ +
∂g
∂z̄

dz̄ ∧ ∂ḡ
∂z

dz

=

(
1 + λ

∂ḡ
∂z̄

+ λ̄
∂g
∂z

+
∂g
∂z

∂ḡ
∂z̄
− ∂g

∂z̄
∂ḡ
∂z

)
dz ∧ dz̄.

Since F is area preserving, we have that d f ∧ d f̄ = dz ∧ dz̄ and thus

λ
∂ḡ
∂z̄

+ λ̄
∂g
∂z

+
∂g
∂z

∂ḡ
∂z̄
− ∂g

∂z̄
∂ḡ
∂z

= 0.

This is equivalent to 2Re(λ̄ ∂g
dz )− {g, ḡ} = 0. Taking terms of order p− 1 we have that,

2Re(λ̄
∂gp

dz
) = ∑

k>2
{ḡk, gp−k+1}.

Suppose f is in normal form up to order p − 1, the non-resonant terms gnr
p of order

p satisfy 2Re(λ̄
∂gnr

p
dz ) = 0 and hence there exists h real such that λ̄gnr

p = −2i ∂h
∂z̄ . This

can be easily proved considering h(z, z̄) = −1
2i
∫ z̄

0 λ̄gnr
p (z, s)ds + czp+1, such that we have
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Re(
∂λ̄gnr

p
∂z ) = Re(−2i ∂2h

∂z̄∂z ) = −2Im( ∂2h
∂z̄∂z ) = 0 if and only if h is real.

Then to prove the existence of a real solution of (3.1), we let h(z, z̄) = Xp+1(λz, λ̄z̄) −
Xp+1(z, z̄) + 1

2i zz̄ such that

λ̄gnr
p = −2i

∂h
∂z̄

= −2iλ̄
∂Xp+1

∂z̄
(λz, λ̄z̄) + 2i

∂Xp+1

∂z̄
(z, z̄)− z.

Thus we have that

gnr
p = −2i

∂Xp+1

∂z̄
(λz, λ̄z̄) + 2iλ

∂Xp+1

∂z̄
(z, z̄)− λz.

This is equivalent to

f nr
p = λz + gnr

p = −2i
∂Xp+1

∂z̄
|(λz,λ̄z̄) + 2iλ

∂Xp+1

∂z̄
(z, z̄),

so that the equation (3.1) has a real solution. Therefore we can construct a sequence of
change of variables φ1

Xp+1
that removes all the non-resonant terms of order p from f .

This process can be carried out up to the desired order or, at a formal level, up to any
order. Hence the complete sequence of changes reduces the original map to the desired
normal form having only the resonant terms. Each resonant monomial commutes with
diag(λ, λ̄).

The sequence of analytic changes used to prove the previous theorem, is generically non-
convergent, meaning that the width of the domain of analyticity of the transformed map,
reduces after each change, and tends to zero. This implies that beyond all orders phe-
nomena, like the exponentially small splitting of separatrices, rely on analytic properties
and cannot be captured by the normal form. However one can use the normal form up
to a suitable order, to obtain a detailed description of the phase space in a suitable region
around the fixed point. For example, a truncated normal form, allows to get a detailed
description of the phase space around resonances of F. In the following we illustrate how
to use the truncated normal form to get such description.

Assume that the eigenvalues of F at a fixed point, are of the form λ = e±2πiα with
α = q

m + δ and δ sufficiently small to be close to the resonance of order m, that is such
that λm ≈ 1. Thus the corresponding term cannot be removed to assure the existence
of a relatively large domain, uniform for δ close to zero, where a good model could be
obtained.

Therefore the first component of Birkhoff normal form of F up to order m can be expressed
in terms of (z, z̄) as

BNFm(z, z̄) = λz + a1z2z̄ + · · ·+ aszs+1z̄s + c̃z̄m−1 + R̃m+1(z, z̄),
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where ai ∈ C and s is the integer part of m−1
2 . If r2 = zz̄ then

BNFm(z, z̄) = λz +
s

∑
j=1

ajzj+1z̄j + c̃z̄m−1 + R̃m+1(z, z̄)

= λz(1 +
s

∑
j=1

λ−1ajr2j) + c̃z̄m−1 + R̃m+1(z, z̄)

= R2πq/m

(
e2πiδz(1 +

s

∑
j=1

λ−1ajr2j) + e−2πiq/m c̃z̄m−1

)
+ R̃m+1(z, z̄).

To express 1+ ∑s
j=1 λ−1ajr2j in terms of the so-called Birkhoff coefficients, we use the Tay-

lor series of the logarithm ln(1 + w) = ∑∞
n=1(−1)n+1 wn

n , where w = ∑s
j=1 λ−1ajr2j.

To compute wn =
(

∑s
j=1 λ−1ajr2j

)n
, for n > 2 we use that

(x1 + x2 + · · ·+ xm)
n = ∑

k1+k2+···+km=n

(
n

k1, k2, · · · , km

)
∏

16t6m
xkt

t .

Thus

wn = λ−n(a1r2 + · · · asr2s)n = λ−n ∑
k1+k2+···+ks=n

n!
k1! · · · ks!

(a1r2)k1 · · · (asr2s)ks

= λ−n ∑
k1+k2+···+ks=n

n!
k1! · · · ks!

(a1)
k1 · · · (as)

ks r2k1+···+2sks = ∑
k1+k2+···+ks=n

λ−nCnr2k1+···+2sks .

Therefore the Taylor expansion of the logarithm is

ln(1 + w) =
∞

∑
n=1

(−1)n+1 wn

n
=

s

∑
j=1

λ−1ajr2j +
∞

∑
n=2

(
(−1)n+1

n ∑
k1+k2+···+ks=n

λ−nCnr2k1+···+2sks

)
.

Rearranging all the terms r2k1+···+2sks , and ordering them from r2 up to r2s we get 2πi ∑s
i=1 bir2i

for some bi ∈ R since all the terms of order greater than 2s are moved to Rm+1(z, z̄).

Therefore (1 + ∑s
j=1 λ−1ajr2j) = eln(1+∑s

j=1 λ−1ajr2j)
= e2πi(b1r2+b2r4+···+bsr2s).

Using this relation we can compute the Birkhoff coefficients bi. The first ones are given by

b1 =
λ−1a1

2πi
, b2 =

1
2πi

(
λ−1a2 −

λ−2a2
1

2

)
, b3 =

1
2πi

(
λ−1a3 − λ−2a1a2 +

λ−3a3
1

3

)
.

Hence the first component of BNFm can be expressed in terms of the Birkhoff coefficients,
bi,

BNFm(F) : (z, z̄) 7−→ R2π
q
m
(e2πiγ(r)z + cz̄m−1) +Rm+1(z, z̄), (3.2)

where γ(r) = δ + b1r2 + b2r4 + · · ·+ bsr2s, r = |z|.
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This is equivalent to write the first component of BNFm as the composition

BNFm(z, z̄) = R2πq/m ◦ K(z, z̄, δ),

where K(z, z̄, δ) = e2πiγ(r)z + cz̄m−1 + R̂m+1(z, z̄) is a near-the-identity map such that the
m-jet commutes with the rotation R2πq/m. This commutativity, reveals that the reduction
to BNFm adds an extra symmetry. In particular, the dynamics of the m order resonance,
can be analysed in terms of the near the identity map K.

3.2 Behaviour of α as a function of ε.

As shown in the previous section, the Birkhoff normal form of a one-parameter family of
area preserving maps around an elliptic fixed point depends on the parameter δ. Also,
the fixed points of an area preserving map have associated eigenvalues λ = e±2πiα that
depend on this parameter since α = q/m + δ. In this section we want to see how the mul-
tiplier α depends on the original parameter ε of the Michelson system (1.1). For that, we
will compute for some values of ε the fixed point of the Poincaré map and its eigenvalues.

Let X : U ⊂ R3 −→ R3 be a three dimensional vector field Cr, r > 1, that we assume has
a periodic orbit transverse to Σ = {g(x) = 0}. The Poincaré map P : Σ −→ Σ is given by
x1 = P(x0) = ϕ(tx0 , x0), where tx0 = t(x0) and ϕ(t, x) is the flow associated to X.

The periodic orbit of the flow corresponds to a fixed point of the Poincaré map, so we use
Newton’s method to solve the system P(x) − x = 0. For that, we need to compute the
derivative of the Poincaré map with respect to x0,

DP(x0) = Dt ϕ(tx0 , x0)Dx0(tx0) + Dx0 ϕ(tx0 , x0)

= X(x1)Dx0(tx0) + Dx0 ϕ(tx0 , x0).

To compute Dx0(tx0) we differentiate the initial condition g(x1) = g(ϕ(tx0 , x0)) = 0,

Dg(x1)Dϕ(tx0 , x0) = Dg(x1)DP(x0) = 0.

This implies that
Dg(x1)(X(x1)Dx0 tx0 + Dx0 ϕ(tx0 , x0)) = 0,

and thus

Dx0(tx0) =
−Dg(x1)Dx0 ϕ(tx0 , x0)

Dg(x1)X(x1)
.

Therefore,

DP(x0) = −
X(x1)

Dg(x1)X(x1)
[Dg(x1)Dx0 ϕ(tx0 , x0)] + Dx0 ϕ(tx0 , x0).

We perform the corresponding computations for the Michelson system (1.1) considering
the section Σ = {z = 0}. We have that Dg(x1, y1, z1) = (0, 0, 1) where (x1, y1, z1) =
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P(x0, y0, z0). Hence the differential of the Poincaré map is given by

DP(x0, y0, z0) = −
1

ε(1− x2
1)− y1

 y1
z1

ε(1− x2
1)− y1

(a31 a32 a33
)
+

a11 a12 a13
a21 a22 a23
a31 a32 a33

 ,

where Dx0 ϕ(tx0 , x0) = (aij)ij is the first variational with respect to the initial condition.
The matrix Dx0 ϕ(tx0 , x0) is the solution of the variational equation

d
dt

Dx0 ϕ(tx0 , x0) = DF(ϕ(tx0 , x0))Dx0 ϕ(tx0 , x0) =

 0 1 0
0 0 1

−2x0ε −1 0

Dx0 ϕ(tx0 , x0),

with initial conditions Dx0 ϕ(0, x0) = Id.
Thus we integrate with Taylor’s method the equations of the system X together with the
variational equations to find the image of the Poincaré map and we use the variational
matrix to obtain the differential of P. This allows us to compute, for a given value of ε,
the fixed point of P, which y > 0 and determine its multiplier α ∈ (0, 1) whenever it is
elliptic. We denote λ and 1/λ the eigenvalues of DP at the fixed point.

On the left figure 3.1, we plot for each value ε between 0 and 0.4, the value of α̃ =
arctan(Im(λ)/Re(λ)) which coincides with the multiplier α of the fixed point if it is ellip-
tic.
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Figure 3.1: Left: We display α̃ as a function of ε. Right: We display the modulus of λ and
1λ as a function of ε. We observe that the eigenvalues leave the unit sphere and becomes
real for values of ε larger than ε∗ ≈ 0.2258.

Close to a resonant point, the Birkhoff normal form explained how the islands are gener-
ated, and we know that the value of δ depends on the sign of the first Birkhoff coefficient.
For a given ε such that we have a resonance of order m, we will see m islands on the
Poincaré section and that the corresponding α is equal to q/m + δ. For ε = 0.1405, one can
see in the plot that α ≈ 0.214 = 1

5 + δ, so in the Poincaré section we see five islands. For
ε = 0.104, one can see in the plot that α ≈ 0.1527 = 1

7 + δ, so in the Poincaré section we
see seven islands, see Figure 3.2.

In the following section, we will compute the first Birkhoff coefficient of the Birkhoff
normal form for values of ε for which it has an elliptic fixed point.
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Figure 3.2: Poincaré section of the Michelson flow for ε = 0.1405 and 0.104.

At the right plot of Figure 3.1, we see the modulus of the eigenvalues for each value of
the parameter. For a value ε∗ ≈ 0.2258 the eigenvalues of the fixed points are λ = −1
double, and we have a period-doubling bifurcation. The elliptic periodic orbit of the flow
becomes a saddle and a new elliptic orbit with twice the period of the original appears. In
the phase space of P we see that the invariant manifolds of the saddle orbit surround the
new 2-periodic elliptic points and form almost a figure eight (the invariant manifolds are
splitted, note that a small chaotic zone near the invariant manifolds is observed in Figure
3.3, left). Since the new 2-periodic orbit is elliptic, there are new KAM tori surrounding it.
These tori form a Cantorian family, see related comments in section 3.5. Accordingly, we
observe in Figure 3.3 left, invariant curves for P.
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Figure 3.3: Left: Poincaré section of the Michelson flow for ε = 0.228, close to ε∗. One can
observe the persistence of curves around the figure eight. Right: Elliptic periodic orbit of
the flow for ε = 0.228.

Moreover the invariant curves far from the fixed point persist outside the eight figure
after the bifurcation. This can be seen in Figure 3.3 left. Those tori outside the eight
figure, define an stability domain which is bigger than the region bounded by the invariant
manifolds of the hyperbolic point at x = 0. As ε grows, the region bounded by the
invariant manifolds also grows and breaks these tori surrounding the figure eight.
For ε = 0.228 > ε∗ the two-periodic orbit of the Poincaré map corresponds to x ≈
0.1751571 and y ≈ 1.3225644. We represent the elliptic periodic orbit of the flow in Figure
3.3 right.
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3.3 Computing the first Birkhoff coefficient

To get a numerical approximation of the Birkhoff coefficients of the Michelson system, one
has to reduce to Birkhoff normal form the Poincaré map. This is achieved by applying a
sequence of changes of variable, as explained in section 3.1.

To compute the normal form, a Taylor expansion of the Poincaré map is needed. Since
there is no explicit expression of the map, one can use jet transport method to get the jet
of the Poincaré map. Indeed the coefficients of the Taylor expansion correspond (up to the
factorials) to the derivatives of the Poincaré map, that can be computed with variational
equations. This can be tough to write down explicitly and implement numerically for high
orders, so we use jet transport to get these derivatives automatically.

As we have seen in section 2 one can construct a Poincaré section Σ = {g(x) = 0} such that
given an initial condition x0, we get its image through the Poincaré map P(x0) = ϕ(tx0 , x0).
To get the Taylor expansion of the Poincaré map we need to obtain P(x0 + ∆x) for small
variations ∆x of the initial condition.
The main idea of the jet transport method is to integrate the ordinary differential equation
replacing operations with numbers by operations with polynomials in ∆x truncated up to
some order n, [1]. This kind of algorithms can be also validated, see [18]. Since we use
the internal PARI/GP polynomial arithmetics, [10], these replacement accounts for simple
modifications of the code of the Taylor method used before, so that the computations are
done considering polynomials in ∆x. For more involved examples, one would require a
proper implementation of the polynomial arithmetics, for example in C.

To compute the jet of the Poincaré map P(x0 + ∆x) = ϕ(tx0+∆x, x0 + ∆x), we have to
adjust the return time tx0+∆x at each order imposing the condition at the Poincaré map
g(ϕ(tx0+∆x, x0 + ∆x)) = 0. In the setting of the Michelson system, we consider ∆x =
(dx, dy) and we deal with polynomials in two variables. Hence we look for a value h =

∑n
i=1 ∑i

j=0 hijdxidyj such that g(ϕ(tx0 + h, x0)) = 0, up to order n.
For that, we use Newton method to the function g(ϕ(tx0 + h, x0)) with an initial condition
hij = 0. We compute the derivatives of g with respect to hij using that

Dhij
g(ϕ(tx0 + h, x0)) = Dg(ϕ(tx0 + h, x0))Dt ϕ(tx0 + h, x0)Dhij

h.

Thus, we get the return time at each order and hence the jet of the Poincaré map for an
initial condition x0 + ∆x.

When computing jet transport propagation, there is a numerical problem concerning the
step size. In general there is no way to adjust properly the step size due to the fact that one
has to use weighted norms with different weights at different orders of the polynomial.
For computations we have just controled the step size according to the point x0, ignoring
the jet. However we have checked the computations choosing different maximum sizes
of the step size, so that we can trust that at least enough number of digits are correct. In
particular, we have chosen a maximum h of 10−1, 10−2 and 10−3, and the results obtained
for the coefficients of the jet, coincide up to at least 10 digits in all cases. Computations
where performed using multiprecision arithmetics with 38 digits, a Taylor method with
order 50, and requiring a local error of 10−38 at each step of integration to determine the
step size. The accuracy of the Newton method to compute the Poincaré map was 10−25.
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The Poincaré map can be expressed as

P(x, y) =

(
∑
r>0

akl xkyl , ∑
r>0

bkl xkyl

)
,

where r = k + l. Using the previous jet transport algorithm for ε = 0.15, we obtain the
coefficients akl and bkl up to order three, that we show in the following table.

k l akl bkl

0 0 1.5022524073184e-30 1.4108703410470
1 0 0.9960522061745 0.0846779159768
0 1 -0.0930585322491 0.9960522061745
2 0 -0.0602100724979 -1.5496172357267e-5
1 1 -0.0002438305829 0.0597160872293
0 2 -0.0360883638716 -0.0043210072100
3 0 0.0036219356712 0.0016841575225
2 1 0.0014495161576 -0.0002592308733
1 2 -0.0002521608207 -0.0012129529626
0 3 -0.0012099020571 -0.0010831335070

In order to compute the Birkhoff normal form, we have to use complex coordinates and a
linear change of variables to get the Poincaré map in the form

P(z, z̄) =

(
λz + ∑

r>2
ãklzk z̄l , λ̄z̄ + ∑

r>2
b̃klzk z̄l

)
.

One can compute the determinant of the map up to order three to check that P does not
preserves the canonical area form, as we proved in section 2. We get that

det DP(z, z̄) = 1 + dz + d̄z̄ +O(zz̄),

where d ≈ 0.1007 + 0.0045i, which is different from one, as we expected.

Once we have a Taylor expansion of the Poincaré map, we apply successively changes of
variables to put the map in Birkhoff normal form up to some order, such that each change
of variables φ1

Xp+1
attempt to remove the term of order p from the map. We remark that

since the map is not canonical area preserving, we have not used canonical changes for the
reduction in the implementations. We follow directly the scheme in [2]. But, since up to
order three, these changes of variables are unique, the resulting Poincaré map truncated
up to order three P3, preserves the canonical area form, that is det DP3(z, z̄) = 1.

Remark 3.4. For higher order reduction to normal form, the changes of variables would
not be uniquely determined since the Poincaré map has resonant terms, so it will not
necessarily preserve the standard area form.
However, the change of variables of the Darboux’s theorem can be applied to get an area
preserving Birkhoff normal form. Numerically, at each step that removes a term of order
p, we would apply a change of variables such that the Birkhoff normal form up to order
p preserves the standard form. We have not implemented such a higher order reduction.
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Finally, once an approximation of the Birkhoff normal form (3.2) is computed, we get that
the first Birkhoff coefficient for different values of ε are given in Figure 3.3.
To get high precision computations and use a polynomial arithmetic, the library PARI/GP
has been used.
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Figure 3.4: First Birkhoff coefficient of the Poincaré map of the Michelson system for
values of ε between 0 and 0.2258.

As expected, the behaviour of the first Birkhoff coefficient with respect to ε shows some
asymptotic. The first asymptotic that we can see in the plot corresponds to the value of ε
for which there is a resonance of order 3. The second asymptotic occurs for ε∗ = 0.2258
where we have a period-doubling bifurcation, and so the elliptic periodic orbit becomes a
saddle.

Moreover, note that there is a value of ε for which b1 = 0. This value corresponds to a
point where the first order twist condition vanishes as we will explain in section 3.4.

3.4 Truncated Birkhoff normal form

Let us consider from now on the truncated Birkhoff normal form up to order m, (3.2).
We will proof in this section that under certain conditions, the BNFm has two periodic
orbit of period m and how is the geometrical structure of the island. The first result is a
consequence of the Poincare-Birkhoff theorem, [6]. Nevertheless here we will derive this
result directly using a flow interpolation of the truncated Birkhoff normal form.

3.4.1 The interpolating Hamiltonian of BNFm

Recall that the Birkhoff normal form up to order m is written as

BNFm(z, z̄) = R2πq/m ◦ K(z, z̄, δ),

where K(z, z̄, δ) = e2πiγ(r)z + cz̄m−1 + R̂m+1(z, z̄) is a near-the-identity map.

Note that scaling z 7−→ µz with a suitable complex µ in 3.2, we get a Birkhoff normal form
expressed as R2π(q/m) ◦ K(z, z̄, δ) where

K(z, z̄, δ) = e2πiγ(r)z + iz̄m−1 + Rm+1(z, z̄).
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The Birkhoff coefficients are modified according to b̃j = |µ|2jbj that we will denote by bj.
Hence in the following we consider c = i.

In order to study the dynamics of a map close to the identity, it is useful to look for an
autonomous vector field such that the time-1 flow associated gives a good approximation
to the map, in a suitable neighbourhood of the m resonance. The existence of such a vector
field follows from the suspension of the map after performing some steps of averaging to
remove the dependence on t.

A suspension of a map F is non-autonomous periodic vector field f such that the asso-
ciated Poincaré map coincides with the map. If F is a near-the-identity map that can be
expressed as F(x) = x + εG(x) with ε sufficiently small, being G is a real analytic function,
one can obtain f as a periodic non-autonomous vector field of period 1. The suspension
can be given explicitly as a vector field f (z, t) = εψ′(t)G(z) where ψ is an Hermite-like
polynomial that interpolates (0, 0) and (1, 1) imposing null derivatives up to the desired
order k. Thus ψ(t) = tk(2− t)k and ϕt(x) = x + εψ(t)G(x) is the time one flow such that
the associated Poincaré map is F since ϕ0(x) = x and ϕ1(x) = F(x).

The suspension is a vector field of the form ż = ε f̃ (z, t) where f̃ is a time-periodic vector
field 1. Since t becomes a fast angle, one can perform a finite number of steps of averaging,
and remove the dependence on t up to the desired order.

Since K is a near-the-identity map, we can compute a vector field such that the associated
time-1 flow identity mapinterpolates K, see [36]. We include the details in the following.

Moreover, since K is symplectic, the vector field is Hamiltonian. A suitable autonomous
vector field to describe the dynamics around the m order resonance is the following.
Denote δ = b0 and define

Hnr(I) = π
s

∑
n=0

bn

n + 1
(2I)n+1, and Hr(I, ϕ) =

1
m
(2I)

m
2 cos(mϕ),

the non-resonant and resonant parts of the Hamiltonian, where (I, ϕ) are symplectic polar
coordinates (also referred as Poincaré variables), defined by z =

√
2Ieiϕ. Let r∗ be such

that γ(r∗) = 0, r∗ ≈ (−δ/b1)
1/2, where b1 6= 0.

Theorem 3.5. Let K̂ denote the original diffeomorphism K expressed in symplectic polar coordi-
nates variables and assume b1 6= 0 and m ≥ 5. Let ν > 0 be a fixed value. Then the time-1 flow
φt=1 generated by the Hamiltonian

H(I, ϕ) = Hnr(I) +Hr(I, ϕ), (3.3)

interpolates the map K with an error of order m + 1 in the (z, z̄)-coordinates, that is,

K̂(I, ϕ) = φt=1(I, ϕ) +O(I
m+1

2 ),

in an annulus centered in the resonance radius r∗ of width r1+ν
∗ , for |δ| sufficiently small.

1Note that the suspension constructed above is analytic with respect to x but Ck in t. Taking k large enough,
the required number of averaging steps over the fast frequency, can be performed
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Proof. We consider the map T(z, z̄) = T2 ◦ T1(z, z̄) where T1(z, z̄) = e2πiγ(r)z and T2(z, z̄) =
z + iz̄m−1. One has

T(z, z̄) = T2 ◦ T1(z, z̄) = T2(e2πiγ(r)z) = e2πiγ(r)z + i
(

e2πiγ(r) z̄
)m−1

= e2πiγ(r)z + iz̄m−1(1 +O(δ)) = K(z, z̄) +O(rm+1),

for δ small enough. Hence K is order rm+1-close to T.
Since T1 is a rotation of angle 2πγ(r), in symplectic polar coordinates, it becomes T1(I, ϕ) =
(I, ϕ+ω(I)) where ω(I) = 2πγ(I). That means that the flow İ = 0, ϕ̇ = ω(I) interpolates
T1 at integer times. In complex coordinates, this vector field is given by ż = X1(z, z̄) =
iω(I)z. Below, we denote by φt

1 the associated flow.

Moreover, T2 is approximated up to order O(2m− 3) by the time one map of the vector
field ż = X2(z, z̄) = iz̄m−1. If φt

2 is the flow of X2,

φt
2(z, z̄) = (z, z̄)T +

d
dt

φt
2(z, z̄)|t=1 +

1
2

d2

dt2 φt
2(z, z̄)|t=1 + · · ·

= (z, z̄)T + X2(z, z̄) +
1
2

DX2(z, z̄)X2(z, z̄) + · · ·

Then the first component of φ1
2(z, z̄) is z + iz̄m−1 +O(r2m−3).

Thus

K(z, z̄) = T(z, z̄) +O(rm+1) = T1 ◦ T2(z, z̄) +O(rm+1) = φ1
2(φ

1
1(z, z̄)) +O(rm+1).

Finally we observe that

φ1
2(φ

1
1(z, z̄))− φ1

1+2(z, z̄) =
1
2
(DX2(z, z̄)X1(z, z̄)− DX1(z, z̄)X2(z, z̄)) + · · ·

where φt
1+2 denotes the flow of the vector field X1 + X2. A simple check shows that the

terms within the parenthesis are O(rm+1).
Therefore, the Lie bracket of both vector fields that interpolate T1 and T2 is a vector field
of order higher than m + 1 + ν on the annulus of radius r1+ν

∗ for ν > 0, centered in the
radius r∗. Changing coordinates and computing the Hamiltonian we get (3.3).

In what follows we will use this interpolation to prove some results on the phase space
structure of the map F.

3.4.2 Birkhoff periodic orbits
If we assume that λ is not a root of unity for any order less of equal than m, the Birkhoff
normal form (3.2) up to order m in symplectic polar coordinates (I, ϕ), where z =

√
2Ieiϕ,

is given by
BNFm(F) : (I, ϕ) 7−→ (I, ϕ + 2πγ(I))

where γ(I) = δ + b1(2I) + b2(2I)2 + · · ·+ bs(2I)2s.

If b1 6= 0, one has γ′(I) = 2b1 + · · · 6= 0 and so the BNF restricted to an annulus A =
{(I, ϕ) : I ∈ [a, b], ϕ ∈ [0, 2π]} is an integrable area preserving twist map ∀a, b, such that
b > a.
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Definition 3.6. An area preserving twist map is a integrable map of an annulus A such that
(I, ϕ) 7−→ (I, ϕ + α(I)), and dα

dI = α′(I) 6= 0 for all I ∈ [a, b].

Note that without the requirement that λ should not be equal to any root of unity, the
Birkhoff normal form up to order m includes the resonant term cz̄m−1 and then the map
is not integrable, it would be a perturbation of the integrable twist map

Fε(I, ϕ) = (I + g(I, ϕ, ε), ϕ + α(I) + f (I, ϕ, ε)),

where f and g are periodic functions of period 2π on ϕ.

The orbits of an integrable twist map are circles centered at the origin. The restriction of
the integrable twist map to an invariant circle I = I0, defines a map of S1.

Definition 3.7. Let f : S1 −→ S1 be an homeomorphism of the circle and F̃ : R −→ R a
lift of f . The rotation number of f is the limit

α( f̃ ) := lim
n−→∞

f̃ n(x)− x
n

.

Note that α exists for all x ∈ R, is independent of x and well defined up to an integer.
Moreover, the limit does not depend on the lift chosen, so α − α( f ) − α( f̃ ( mod 1)) is
well defined. An invariant circle such that I = I0 has rotation number α(I0).
If an invariant curve has a rational rotation number, every point of the curve is a periodic
point. The Poincaré-Birkhoff theorem shows taht some of these periodic points survive
for Fε.

Theorem 3.8 (Poincaré-Birkhoff). Given any rational number, q/m, between α(a)/2π and
α(b)/2π, then there are 2m fixed points of Fm

ε : (I, ϕ) 7−→ (Im, ϕm) satisfying

(Im, ϕm) = (I, ϕ + 2πq), (3.4)

provided that |ε| is sufficiently small.

A proof of this Theorem can be found in [6]. However we will use the Hamiltonian system
from Theorem 3.5 to prove the existence of the points and its stability directly, as was done
in [36].

In order to prove the existence of the periodic orbit, one can use the Birkhoff normal
form expressed as a rotation composed with a near-the-identity map and this map can be
interpolated by a time one flow of a Hamiltonian system H = Hnr +Hr where

Hnr(I) = π
s

∑
n=0

bn

n + 1
(2I)n+1, and Hr(I, ϕ) =

1
m
(2I)

m
2 cos(mϕ),

as we have seen in theorem 3.5.

Assume that b1 6= 0 and the coefficient of the resonant term of order m is non-zero. Given
the Birkhoff normal form expressed as

R2πq/m ◦ K(z, z̄, δ),
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where K(z, z̄, δ) = e2πi(δ+b1r2+b2r4+···+bsr2s)z + cz̄m−1 + R̂m+1(z, z̄), one can see that K has a
fixed point if r ≈ (− δ

b1
)1/2. Then if b1δ < 0, K has a fixed point and then R2πq/m ◦K(z, z̄, δ)

has periodic orbits of period m. Therefore the dynamical system generated by F has a
resonance of order m.
The following theorem will be stated as in [36], but in the proof we use the implicit func-
tion theorem to show the existence of the correction of I as a function of δ corresponding
to the periodic points which was implicitly assumed in the reference.

Theorem 3.9. For b1δ < 0, in the resonant zone of the BNF, there are two periodic orbits of period
m located near two concentric circumferences and the closest orbit to the external one is elliptic
while the nearest orbit to the internal circumference is hyperbolic.

Proof. Suppose b1 > 0 and δ < 0 and the computations for b1 < 0 and δ > 0 are analogous.
First we compute fixed points of the vector field generated byH(I, ϕ) = Hnr(I)+Hr(I, ϕ),

∂H
∂ϕ

(I, ϕ) =
∂Hr

∂ϕ
(I, ϕ) = −(2I)

m
2 sin(mϕ) = 0.

The non-trivial solution are given by sin(mϕ) = 0,

ϕj =
jπ
m

, j = 0, . . . , 2m− 1.

To find a solution of ∂H
∂I = 0, we ignore the resonant terms to find an approximation I∗ of

the radius where the resonance of order m is located.
Ignoring the resonant terms from ∂H

∂I = ∂Hnr
∂I + ∂Hr

∂I = ω(I) + ∂Hr
∂I = 0 we get that

ω(I) = 2π
s

∑
n=0

bn(2I)n = 2π (b0 + 2b1 I + · · · ) = 0.

Hence a solution of this equation is

I∗ = −
δ

2b1
+O(δ2),

where δ = b0. Since − δ
2b1

> 0, this value is an approximation of the radius where the
resonances of order m are located, so we look for ∆I such that I∗ + ∆I is a solution of
∂H
∂I (I, ϕj), where ϕj =

jπ
m , j = 0, . . . , 2m− 1.

Given ϕj, we want to solve the equation g(I) = ω(I) + (−1)j+1 1
2 (2I)m/2−1 = 0. If ∆Ij =

I − I∗ then g(I) = 0 if and only if ω(∆Ij + I∗) + (−1)j+12m/2−2(∆Ij + I∗)m/2−1 = 0. Note
that, since ω(I∗) = 0, one has

ω(∆Ij + I∗) = ω(∆Ij + I∗)−ω(I∗) = ∆Ijω̃(∆Ij, I∗),

where ω̃(0, 0) = ω′(0) = 4πb1 6= 0.
We consider the function G : R×R −→ R, given by

G(∆Ij, ν) = ∆Ijω̃(∆Ij, ν) + (−1)j+12m/2−2(∆Ij + ν)(∆Ij + I∗)m/2−2.
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Since m > 5, G is a C1 function. We have that G(0, 0) = 0 and ∂G
∂∆Ij

(0, 0) = ω̃(0, 0) 6= 0.
By the implicit function theorem there exists an open neighbourhood U of ν = 0 and a
function ∆Ij(ν) such that G(∆Ij(ν), ν) = 0 for all ν ∈ U. Chosen ∆Ij small enough, one can
assure that I∗ ∈ U, so that G(∆Ij(I∗), I∗) = 0, which is equivalent to g(I∗ + ∆Ij(I∗)) = 0.
This shows the existence of the correction function.
Moreover, ∆Ij(ν) = ∆Ij(0) + (∆Ij)

′(0)ν +O(ν2), with ∆Ij(0) = 0 and

(∆Ij)
′(0) = −

(
∂G

∂∆Ij
(0, 0)

)−1
∂G
∂ν

(0, 0)

= −(4πb1)
−1
(
(−1)j+12m/2−2 Im/2−2

∗

)
.

Then ∆Ij(I∗) =
(−1)j+1(2I∗)

m
2 −1

4πb1
(1 +O(I∗)).

Therefore the fixed points are (ϕj, I) =
(

jπ
m , I∗ + ∆Ij

)
for j = 0, . . . , 2m− 1. We compute

the eigenvalues of the fixed points to get its stability,

λ̂j = ±
[
(2I)

m
2 m(−1)j

(
∂2Hnr(I)

∂I2 +O((2I)
m
2 −2)

)] 1
2

,
∂2Hnr(I)

∂I2 = 4πb1 +O(δµ),

where µ = min{1, (m/2)− 2}.

Thus the fixed points such that j is even are hyperbolic, denoted as H = (IH , ϕH), while
the ones with j odd are elliptic and denoted as E = (IE, ϕE).

From theorem 3.5 we have that the fixed points ofH satisfy the condition K̂(I, ϕ)− (I, ϕ) =

φt=1(I, ϕ) + O(I
m+1+ν

2 ) − (I, ϕ) = 0, where φt=1 is the time one flow generated by H.
Bounding O(I

m+1+ν
2 ) by O(I

m+1
2 ) one get

φt=1(I, ϕ)− (I, ϕ) +O(I
m+1

2 ) = 0.

Skipping the last term, the determinant of the differential of this equation at the fixed
points is −4πb1m(2I)

m
2 cos(mϕj)(1 +O(δ)) 6= 0. Then by the implicit function theorem

K̂ has the same number of periodic orbits located close to the ones of φt=1. Note that,
when taking into account the effect of the remainder, the corrections will depend on the
concrete value of j. But they are small enough to be neglected.

3.4.3 Resonant islands
The invariant manifolds of the hyperbolic points H of the same resonance bound a chain
of islands. The following theorem determines the width of an island in BNFm coordinates,
see [36].

Theorem 3.10. Assume H and E are on the same island. Denote by p and q the points of the
pendulum-like separatrices such that the distance from the circle of radius IE reaches a maximum.

Let δp and δq be these distances. Then the width of the resonance of order m > 5, δp + δq is O(I
m
4∗ ).
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Proof. Suppose b1 > 0, the case for b1 < 0 is analogous.
To look for the distances δp and δq up to first order, we use that p and q are on the separa-
trices and so H(H) = H(p) = H(q). We will do the computations for p and the argument
can be repeated for the point q.

Given H = I∗ + ∆IH and E = I∗ + ∆IE, we use the Taylor expansion of H,

H(H) = H(I∗ + ∆IH) = Hnr(I∗) +Hr(I∗, ϕH) +

(
∂Hnr

∂I
(I∗) +

∂Hr

∂I
(I∗, ϕH)

)
∆IH + · · ·

H(E) = H(I∗ + ∆IE) = Hnr(I∗) +Hr(I∗, ϕE) +

(
∂Hnr

∂I
(I∗) +

∂Hr

∂I
(I∗, ϕE)

)
∆IE + · · ·

For p = E + δp, we get

H(p) = H(E) +
∂H
∂I

(E)δp +
1
2

∂2H
∂I2 (E)δ2

p + · · ·

Imposing that H(H) = H(p), the non-resonant terms are cancelled and we have that

Hr(I∗, ϕH) +

(
∂Hnr

∂I
(I∗) +

∂Hr

∂I
(I∗, ϕH)

)
∆IH + · · ·

= Hr(I∗, ϕE) +

(
∂Hnr

∂I
(I∗) +

∂Hr

∂I
(I∗, ϕE)

)
∆IE +

∂H
∂I

(E)δp +
1
2

∂2H
∂I2 (E)δ2

p +O(δ3
p).

We compute the terms of this equality to get an approximation of δp.

Since I = I∗ is a curve of fixed points of the Hamiltonian Hnr, ∂Hnr
∂I (I∗) = 0. As E is a

fixed point of H, ∂H
∂I (E) = 0.

Moreover Hr(I∗, ϕH) = −Hr(I∗, ϕE) =
1
m (2I∗)

m
2 , and thus

∂Hr

∂I
(I∗, ϕH) = −

∂Hr

∂I
(I∗, ϕE) = (2I∗)

m
2 −1,

Finally, ∆IH = −∆IE +O(I
m
2∗ ), and ∂2H

∂I2 (E) = 4πb1 +O(Iµ
∗ ) where µ = min{1, m

2 − 2}.
Therefore H(H) = H(p) is equivalent to

2
m
(2I∗)

m
2 + 2(2I∗)

m
2 −1∆IH = 2πb1δ2

p +O(Iµ
∗ δ2

p, δ3
p).

Since ∆IH is the correction of the fixed point, it is of order I
m
2 −1
∗ and so the term 2(2I∗)

m
2 −1∆IH

is of order O(Im−2
∗ ). Therefore

2
m
(2I∗)

m
2 = 2πb1δ2

p +O(Im−2
∗ , Iµ

∗ δ2
p, δ3

p).

From this equality,

δp =

(
(2I∗)m/2

mπb1

)1/2

(1 +O(Iµ
∗ )).

Doing analogous computations, we get that δq = O(Im/4
∗ ) and then the width of the

resonance of order m > 5, δp + δq is O(Im/4
∗ ).
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This theorem explains the growth of the resonant islands when they leave a neighbour-
hood of the origin. Nevertheless, we remark that this result is local, in particular it is only
valid in the domain where BNFm gives a good approximantion of F. Moreover it ignores
the presence of other resonances in phase space.

The phase space of the Birkhoff normal form just contains the invariant curves and the
island of period m. However we are interested on the dynamics of the two-dimensional
map F, which in a neighbourhood of a fixed point can be seen as a perturbation of the BNF.
Clearly the island structure remains similar, because hyperbolic points are persistent, but
the unstable and stable invariant manifolds of the hyperbolic points generically will not
coincide (and in the analytic case, have an exponentially small splitting in the perturbation
parameter). In the next section we are going to study the persistence of invariant tori.

3.5 Persistence of invariant objects

As we have seen in the previous section, the Birkhoff normal form of an area preserving
map can be expressed as a perturbation of an integrable twist map

Fε(I, ϕ) = (I + g(ϕ, I, ε), ϕ + α(I) + f (ϕ, I, ε)),

where f and g are periodic functions of period 2π on ϕ. By hypothesis, any twist map
has invariant curves, so we want to see if they persist for Fε. Hence this section is devoted
to ensure the existence of invariant curves for area preserving maps, which is given by
Moser Twist theorem, see either [6] or [34].

Theorem 3.11 (Moser Twist). Consider the map given by

Fε(I, ϕ) = (I + g(ϕ, I, ε), ϕ + α(I) + f (ϕ, I, ε),

defined in the annulus |I − I0| < ρ, where I, ϕ are real variables, f , g and α are real analytic
functions and, f and g are periodic in ϕ with period 2π.

Assume also that Fε satisfies the following conditions:

1. Fε is an area preserving map and α satisfies dα
dI 6= 0.

2. Any closed curve I = l(ϕ) = l(ϕ + 2π) near a circle and lying in the annulus intersects its
image Fε(l).

3. Let I∗ belong to the annulus and be such that ω = α(I∗) satisfies∣∣∣∣ ω

2π
− p

q

∣∣∣∣ > γ

|q|τ ,

for some ω > 0, τ > 2 and all integers p, q 6= 0.

Then if ε is sufficiently small,

(a) There exists a closed invariant curve

Γ(ϕ, I) = (ϕ + G(ϕ, ε), F(ϕ, ε)),

with 0 6 ϕ 6 2π, such that F and G are real analytic, periodic with period 2π and tend to
zero if ε −→ 0.
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(b) The map Fε on Γ is a rotation with rotation number ω and is given by ϕ 7−→ ϕ + ω.

Although we do not include the proof of this theorem, we want to comment on several
aspects of it, so that the conditions required in the theorem can be properly understood.

1. Note that the conditions 1 and 3 of the theorem are satisfy for many values, so
there exists many invariant curves on the annulus for a small value of ε. The third
condition is called the Diophantine condition and deals with the problem of how
the rotation number ω is approximated by rational numbers. In particular, it can be
shown that the subset of ω values for which condition 3 does not hold has measure
zero, see [5].

2. To see the existence of the invariant curve Γ, one strategy is to use an infinite se-
quence of changes of coordinates such that at each step, the new map is closer to a
twist map. That means that we apply successively changes of coordinates Ui such
that the new map Fi is closer to a twist map, and satisfies UiFi = FεUi. This equal-
ity yields to a system of differential equations, that has a solution if ω satisfies the
Diophantine condition. This is called the problem of small divisors.

3. It is proved that the Fourier series converge despite the presence of small divisors,
[6].

4. The twist condition is needed to assure that the homological equation has zero mean
and the requirement that ε is small is needed to make the sequence of changes of
variables convergent for a diophantine frequency.

This theorem allow us to prove the existence of invariant curves for the Poincaré map.
That means that the corresponding invariant tori of the original three dimensional vol-
ume preserving flow also persist.

An alternative approach to prove the persistence of the tori for the flow could be to apply
KAM theory for three dimensional conservative flows. Although we postpone to future
works the detailed study of KAM theory for three dimensional flows, we mention two
possible strategies.

Note that in a neighbourhood of an elliptic periodic orbit, the flow has two angles and one
action, hence the frequency map is not one-to-one. This means that the frequencies of an
specific tori cannot be maintained when perturbing. The standard KAM techniques can
be adapted to this setting by adding extra parameters. We refer to [11] for further details.
Here we just want to mention that with these ideas the persistence of a Cantor set of tori
can be proved.

Another way to prove the persistence of the KAM tori in this setting could be to apply the
ideas of [12]. Although in the reference the theorem is stated by diffeomorphism, it seems
to hold with minor modifications for limiting flows of a family of near-the-identity maps.
This result gives the existence of invariant tori in a small neighbourhood of the elliptic
curve.



Chapter 4

Invariant manifolds and their
splitting

In this chapter we compute the invariant manifolds of the Michelson system. The illustra-
tions below show that the one dimensional invariant manifolds do not intersect while the
two dimensional ones intersect transversely along heteroclinic orbits. We present some
available results describing the asymptotic behaviour of such splittings.

4.1 Invariant manifolds

As we have seen in section 1.2, the stable and unstable invariant manifolds of the saddle-
focus fixed points x± are such that dim Wu(x+) = dim Ws(x−) = 2 and dim Ws(x+) =
dim Wu(x−) = 1. It is important to study the intersection of the invariant manifolds and
their splitting. Transversal intersections create chaos and the splitting size is related to the
size of the chaotic zone created.

To get a numerical approximation of the invariant manifolds of the system, we will use a
linear approximation of the manifolds using the corresponding eigenvectors. Recall that

the fixed points x± = (±1, 0, 0) have eigenvalues λ ∈ R and µ±x± =
−λx±±i

√
3λ2

x±+4
2 ∈ C.

Then the eigenvectors are vλx±
= (1, λx± , λ2

x±) and vµ±x±
= (1, µ±x± , µ±x±

2
) respectively.

For the one-dimensional manifold, we simply integrate an initial point chosen closed
enough to the fixed point in the direction of the eigenvector vλx±

. For the two-dimensional,
we consider a set of initial conditions x± + δv where v ∈ 〈µ+

x± , µ−x±〉 and δ is the distance
to the fixed point that we choose accordingly to have the desired accuracy in the linear
approximation. For illustrations, we choose n = 123 points at a distance δ.
The propagation of the initial conditions is performed using the Taylor method to integrate
the flow. In Figure 4.1 one can see the one-dimensional and two-dimensional manifolds
of the fixed points x± for ε = 0.01.

As we have seen in section1.2, for small values of ε the manifolds nearly coincide and the
two-dimensional manifolds delimits a set of two-dimensional tori which resembles the

36
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bubble of stability of the limit system.
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Figure 4.1: Invariant manifolds of the Michelson system for ε = 0.01.

For all ε > 0, see for example Figure 4.2, the manifolds do not coincide. In particular,
the one-dimensional manifolds rotates one around the other one. This creates a channel
through which point can travel from a neighbourhood of x− to x+. By the λ-Lemma, see
[32, 6], the three-dimensional loops originated by the splitting of the two-dimensional
invariant manifolds accumulate towards the one-dimensional invariant manifold, and
peaces of the two-dimensional stable and unstable manifolds are contained in the channel
and are responsible of the chaos inside. This is illustrated in Figure 4.5, where the inter-
sections of the two-dimensional invariant manifolds with a suitable sections is shown.
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Figure 4.2: Invariant manifolds of the Michelson system for ε = 0.15.

The two-dimensional invariant manifolds intersect transversely, so that we can compute
the splitting of the manifolds in a suitable section for some values of the parameter ε, as
we will see in section 4.2.

In particular, in Figure 4.3 one can see the intersection of both one-dimensional and two-
dimensional invariant manifolds with the Poincaré section Σ = {z = 0}, for values of
ε = 0.1 and 0.15.
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Figure 4.3: Intersection of the invariant manifolds with the Poincaré section Σ = {z = 0}
for ε = 0.1 and 0.15.

4.2 Assymptotic behaviour of the splitting

As pointed out before, the main features of the phase space of the Michelson system are
consequences of the fact that it is a perturbation of a system having a bubble of stability.
For three-dimensional flow, such a bubble structure is, generically, created at a Hopf-zero
bifurcation. This bifurcation describes how a point bifurcates into a pair of saddle-foci
that, for suitable parameters of the unfolding, their unstable and stable two-dimensional
manifolds form an invariant ellipsoid, that is the bubble. At the bifurcation instant, the
fixed point (the HZ singularity) has a zero eigenvalue and a pair of simple purely imagi-
nary eigenvalues.

One tries to investigate the possible dynamics near an HZ singularity. To this end, the
system is embedded into a two-parameter arbitrary family of systems (with divergence
zero, in the conservative case). The formal series expansion of an arbitrary system of the
family is simplified by reducing the system to normal form. One can see, [19], that generic
unfolding of HZ singularities of codimension two can be written, at the 2-jet level as

x′ = −y + µx− axz,

y′ = x + µy− ayz, (4.1)

z′ = λ + z2 + b(x2 + y2).

Here λ, µ are the parameters of the family. The previous unfolding preserves volume if
µ = 0 and a = 1. In this case, the Hopf-zero bifurcation is of codimension one.
When µ = 0, the unfolding has a rotational symmetry and the two-dimensional unstable
and stable invariant manifolds of the saddle-foci coincide. Taking cylindrical coordinates
r =

√
x2 + y2, when µ = 0, the function

H(r, z) = r2/a
(

λ + z2 +
b

1 + a
r2
)

,

becomes a fist integral of the family.

The integrable structure can be destroyed under the effect of higher order terms. Un-
der generic conditions, one can prove that there exists a bifurcation curve in the two-
parameter phase space, where system shows again an invariant ellipsoid formed by the
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two-dimensional invariant manifold of the equilibrium points at the vertical axis, see [20].
Generically, the 2d invariant manifolds will intersect transversely and the two-dimensional
connection between the one-dimensional invariant manifolds will break. The splitting of
the invariant manifolds makes homoclinic orbits possible.

We shall describe the asymptotic behaviour of both splittings. To this end, we need to
introduce suitable splitting functions. For concreteness, we will focus on the Michelson
system, that corresponds to an unfolding of the HZ singularity (4.1) with values a = 1
and b = 1/2, as was pointed out in [8].

To study the splitting functions of the Michelson system (1.1), we scale the variables X =
−x, Y = −ε−1/3y, Z = −ε−2/3z, τ = ε1/3t, so that it can be expressed as

Ẋ = −ẋ
dt
dτ

= yε−1/3 = Y,

Ẏ = −ε−1/3ẏ
dt
dτ

= −ε−1/3zε−1/3 = Z, (4.2)

Ż = −ε−2/3ż
dt
dτ

= −ε−2/3(ε(1− x2)− y)ε−1/3 = −(1− x2) + ε−1y = −1 + X2 + αY.

where α = −ε−2/3 > 0.
As we have seen in section 1.1, it has a Hopf-zero bifurcation when ε −→ 0, or equivalently
when α −→ −∞. Given the fixed points X± = (±1, 0, 0) we want to study the behaviour
of the splitting of the one-dimensional and two-dimensional invariant manifolds when
α −→ −∞, [15].

Since the Michelson system is reversible for R(X, Y, Z) = (−X, Y,−Z), we can do com-
putations for invariant manifolds of X− and use reversibility to find the equivalent for X+.

To measure the splitting of the one-dimensional manifolds, one can measure the distance
between the first intersection of Wu(X−) with X = 0 and Ws(X+) with X = 0. Indeed,
by reversibility, if the first intersection of Ws(X+) with X = 0 occurs at (Y∗(α), Z∗(α))
then the first intersection of Wu(X−) with X = 0 occurs at (Y∗(α),−Z∗(α)). Then one can
measure the splitting in the Z direction and it can be given as S(1)(α) = 2‖Z∗(α)‖.

The asymptotic behaviour of the splitting of the one-dimensional manifolds of the Michel-
son system was given in [33]. The authors consider the equation

δw′′′ + w′ = 1− w2, ′ =
d
ds

,

which is equivalent to the Michelson system (4.2) for w = X, w′ = −αY and w′′ = −α2Z,
and reescaling the time by s = α−1τ where α = −δ−1/3, and prove the following theorem.

Theorem 4.1. For the unique solution w(t) satisfying w(0) = 0, w′(0) > 0 on [0, ∞] and
w(∞) = 1, we have

w′′(0) ∼ Aδ−2 exp
(
−π

2
√

δ

)
,

as δ −→ 0+ for some positive constant A.
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Since Z = −α2w′′, this theorem gives an approximation of Z∗(δ), which is the Z coordinate
of the intersection point of Wu(X+) with X = 0. Hence the splitting function is given by

S̃(1)(δ) = 2‖Z∗(δ)‖ = 2Aδ−2 exp
(
−π

2
√

δ

)
+ o

(
−π

2
√

δ

)
.

Taking into account that δ−1/3 = |α| = ε−2/3, the splitting function between the one-
dimensional invariant manifolds of the system (1.1) is S(1)(ε) = ε−2S̃(1)(ε2), which is
given by

S(1)(ε) = Cε−2 exp
(
− π

2ε

)
+ o

(
exp

(
− π

2ε

))
, (4.3)

for some positive constant C.

Numerically we can check this behaviour by computing for different values of ε, the in-
tersection between the one dimensional invariant manifold Wu(x−) and x = 0. Due to
reversibility of the system, the splitting function is given by S(1)(ε) = 2‖z∗(ε)‖ where z∗(ε)
is the z coordinate of the intersection. In Figure 4.4, the logarithm of the splitting S(1)(ε)
is shown as a function of ε.
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Figure 4.4: Left: Logarithm of the splitting S(1)(ε) as a function of ε, for ε ∈ [0.03, 0.12].
Right:

If S(1) depends on ε as aεb exp
(
− π

2ε

)
, we have that

ε log(S(1)) ∼ aε + bε log(ε)− π/2,

and we can look for a function f (x) = ax + bx log(x) + c that fits ε log(S(1)). Performing
the fitting for ε ∈ [0.03, 0.04] we obtain b = −2.52612 and c = −1.57942. Moreover, im-
posing that c = −π/2, we get that b ≈ −2.27875. The results are compatible with the
splitting function 4.3. In Figure 4.4 right, we represent both εS1 and the fitting function.

Moreover, in [15] it was observed that for all ε > 0 there is no solution with x(t) monotone
and connecting the equilibrium points along the one dimensional invariant manifolds. As
a consequence

S(1)(ε) 6= 0 for all ε > 0, (4.4)
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that is, the one-dimensional invariant manifolds never coincide. This is shown in Figure
4.2 where we see that one manifold rotates around the other one.

To measure the splitting of the two-dimensional manifolds, one can introduce a suitable
splitting function S(2). The section X = 0 is not transverse to the flow along Wu(X+),
but in [15] a suitable section was introduced such that it first intersection with Wu(X+)
is a closed curve. The section for the system 4.2 is given by Σg̃ = {(X, Y, Z) ∈ R3 :
g̃(X, Y, Z) = 0} where

g̃(X, Y, Z) = |α|4X + (|α|3 − 2)Z + (|α|Y− 1)(2|α|X + 3Z/2).

Using coordinates x, y and z of the system (1.1), this section correspond to Σg = {(x, y, z) ∈
R3 : g(x, y, z) = 0} where

g(x, y, z) = x + (1− 2ε2)z− ε(y + ε)(2x + 3/2z).

Clearly this function respect the symmetry (x, y, z) 7−→ (−x, y,−z).
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Figure 4.5: First and second intersections of Wu(x+) and Ws(x−) with Σg for ε = 0.12.

The intersections of Wu(x+) and Ws(x−) with Σg give two closed curves that are topo-
logically S1. These intersections are shown in Figure 4.5. To measure the splitting, one
considers radial coordinates (r, ϕ) in Σg and, for each angle ϕ, the distance in r is mea-
sured. This gives a function S(2)(ϕ, ε), which measures the absolute value of the difference
of the corresponding radii of the intersection of Wu and Ws with Σg.

For the Michelson system, in [8] it was shown that the splitting function is bounded by

S(2)(ϕ, ε) 6 Cε−4 exp
(
− π

2ε

)
,

for some positive constant C. The exponential part and the power of the prefactor of the
previous upper bound also hold for the asymptotic behaviour of the splitting as a function
of ε, but the constant C should be replaced by a bounded function depending on ε.

We see in Figure 4.5 that the invariant manifolds intersect in two points, located in x = 0,
one in y ≈ 1.76 and the other one in y ≈ −2.64, for ε = 0.12. The fact that there exists
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exactly two heteroclinic connections for ε small was observed in [15].

For any map of the family of the unfolding of the HZ singularity (4.1) with a > 0 and
b > 0, which are the cases for which the unfolding has a bubble structure, the same
splitting functions are introduced and similar upper bounds can be obtained. Concretely,
in [8] the authors prove

S(1) 6 C1ε−(1+a) exp
(
− π

2ε

)
; S(2) 6 C2ε−2− 2

a exp
(
− π

2aε

)
,

for some constants C1, C2 > 0.



Chapter 5

The Michelson map

In this chapter, we would like to comment on some aspects of the dynamics of a conserva-
tive three dimensional flow under a periodic forcing. This type of systems can be reduced
to three dimensional volume preserving maps. To be able to perform some computations
to illustrate the dynamics of these kind of maps, we will focus in the study of a discretiza-
tion of the Michelson system.

The Michelson map that we consider is obtained as follows. Performing one step of the
Euler method with step size ϕ > 0 to integrate the Michelson flow we get

u = u + ϕv
v = v + ϕw
w = w + ϕ(ε(1− u2)− v)

with ε > 0. This map does not preserve volume so we slightly modify it. The map
x̄ = Mε,ϕ(x) that we are going to use is

u = u + ϕv
v = v + ϕw̄
w = w + ϕ(ε(1− u2)− v)

(5.1)

This map was introduced in [27], but several questions about its dynamics remain open.
This system is clearly volume preserving since

det DMε,ϕ =

 1 ϕ 0
−2uεϕ2 1− ϕ2 ϕ
−2uεϕ −ϕ 1

 = 1− ϕ2 − 2uε2 ϕ2 + ϕ2 + 2uε2 ϕ2 = 1.

The map Mε,ϕ has fixed points p± = (±1, 0, 0). To study the stability of these points with
respect to the parameter ε and ϕ, one consider the linearised system at p± and study the
eigenvalues of

DMε,ϕ(p±) =

 1 ϕ 0
∓2εϕ2 1− ϕ2 ϕ
∓2εϕ −ϕ 1

 .

Thus the eigenvalues are solutions of the equation P(λ) = λ3 + (ϕ2 − 3)λ2 + (±2εϕ3 −
ϕ2 + 3)λ− 1 = 0.

43
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We have computed those eigenvalues numerically, for different values of ε and ϕ, both be-
tween 0 and 1. We get that both fixed points has a real eigenvalue λp± , and two complex
conjugated µ±p± . One can see in Figure 5.1 how the eigenvalues depend on the parameters
ε and ϕ. As we can see, in both cases when ϕ tends to zero, the eigenvalues have a linear
behaviour. Therefore, we can assure for ε ∈ [0, 1] and ϕ ∈ [0, 1] that both fixed points p±
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Figure 5.1: Left:Real eigenvalues λp± . Right: Modulus of the eigenvalues µ±p± . In both
plots, the eigenvalues of p+ are shown in purple and the ones of p− in blue.

are of saddle-focus type and they have the unstable and stable invariant manifolds such
that dim Ws(p+) = dim Wu(p−) = 1 and dim Wu(p+) = dim Ws(p−) = 2.

As for the Michelson flow, we will show numerically, that the two-dimensional invariant
manifolds of the map do not coincide, and that their intersections provide a continuum of
heteroclinic orbits of the map.

We note that the Michelson system does not admit any smooth reversibility. We recall that
a map F is reversible if it is conjugate to its inverse by an involution R, that is, if there
exists R such that R ◦ F = F−1 ◦ R, R2 = Id.

Theorem 5.1. The Michelson map Mε,ϕ does not admit any smooth reversibility R.

Proof. Mε,ϕ is a quadratic volume-preserving map of R3. By denoting X = (x, y, z), b =

Mε,ϕ(0), A = DMε,ϕ(0), v = (0, 0, 1)T , and P = −2ϕεe1eT
1 , where ei is the i-th vector of the

canonical basis of the linear space R3, one has,

Mε,ϕ(X) = b + AX +
1
2

XT PXe3,

that is,

Mε,ϕ

 x
y
z

 =

 0
ϕ2ε
ϕε

+

 1 ϕ 0
0 1− ϕ2 ϕ
0 −ϕ 1

 x
y

z− ϕεx2

 .

In particular, we have expressed Mε,ϕ as the composition of an affine map with a quadratic
shear. The result follows from Lemma 5.2 in [24] since, performing the linear change of
variables X = Uξ, where

U =

 0 τ 0
ϕ 0 0
1 1 1

 ,
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where τ = Tr(A) = 3− ϕ2, one obtains

M̃ε,ϕ(ξ) = U−1Mε,ϕ(Uξ) = U−1b + U−1 AUξ +
1
2

ξTQξe1, where Q = −2εϕτ2e2eT
2 ,

that is, the symmetric matrix Q defines the form Q(ξ1, ξ2) = τ2e2eT
2 ξ2

2. This quadratic form
does not verify Q(ξ1, ξ2) = Q(ξ2, ξ1), which is a necessary condition to have a reversibility
R.
As an alternative, one can proceed directly by assuming that exists an smooth reversibil-
ity R. Then R verifies R(p+) = p− where p± = (±1, 0, 0) are the fixed points of Mε,ϕ.
On the other hand, since both Mε,ϕ and M−1

ε,ϕ are quadratic, R has to linear. From
RMε,ϕR(x) = M−1

ε,ϕ(x), one obtains DM−1
ε,ϕ(p−) = R(DMε,ϕ(R(p−)) = RDMε,ϕ(p+), hence

R = DM−1
ε,ϕ(p−)(DMε,ϕ(p+))−1. One has

DM−1
ε,ϕ(p−) =

 1 −ϕ ϕ2

0 1 −ϕ

−2εϕ ϕ + 2εϕ2 2− ϕ2 − 2εϕ3

 ,

and

DMε,ϕ(p+) =

 1 ϕ 0
−2εϕ2 1− ϕ2 ϕ
−2εϕ −ϕ 1

 .

A direct computation shows that R = (Rij) is such that R11 = 1 + 2εϕ3, which contradicts
the fact that R(p+) = p−.

The fact that Mε,ϕ is not reversible makes the numerical computations more involved.
From now on, we will fix ϕ = 0.1 for numerical computations.

5.1 Visualizing the dynamics of a three dimensional map
in two dimensions

In the case of volume preserving flow, we defined in section 2 a Poincaré section such that
the corresponding Poincaré map was an area preserving map. Given a map one cannot
define a Poincaré section, but we can do a construction, called slices, that allow us to
visualise the dynamics in a system of a dimension reduced by one.
The idea of this method is to consider a hyperplane Σ and plot all the iterates of the map
that are at a δ distance of Σ. Note that in this way not all crossing of the orbits are cap-
tured, so it can take many iterates to get a suitable number of points in the slice.

In particular, for the Michelson map we have considered the plane {z = 0} and compute
all the points that are on a slice of width δ = 10−4. In Figure 5.2, a projection of those
points to the {z = 0} plane is shown. In this case, given an initial condition that do not
scape, the maximum number of iterates that we need to obtain 1000 points on the slice is
22332592 for ε = 0.14.

An alternative to this method, is to use an interpolation of the iterates of the map Mε,ϕ.
When a crossing x0 is detected we consider n positive and n negative iterates of the
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Figure 5.2: Slice of system for ε = 0.10 and 0.14, with a width δ = 10−4.

point and we compute the interpolating polynomial P2n+1(t) of degree 2n + 1 such that
P2n+1(n) = xn, where xn denotes the n-th iterate of the map Mn

ε,ϕ(x0). Then we plot the
intersection of the polynomial with the hyperplane.

Considering the plane {z = 0}, we plot those intersections for the Michelson system in
Figure 5.3, using a polynomial of order 10. Note, that with this method, each time the
map crosses the plane we get a point of the plot. The maximum number of iterates of an
orbit that do not scape that we need to visualize 1000 point is around 62811 for ε = 0.14.
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Figure 5.3: Visualization of the intersection of the Michelson map with {z = 0} using the
interpolation, for ε = 0.10 and ε = 0.14.

The fact that we obtain good visualizations with less iterates helps in analysing the dy-
namics in higher dimensions as it was stressed in [17]. The derivative of the polynomial
at x0 defines a vector field. For near the identity maps such a vector field can be seen
as the vector field obtained by suspension and after performing several averaging steps
(depending on the distance to the identity of the map and the degree of the interpolating
polynomial) to remove the dependence on time (which is a fast variable of the suspension
for close to identity maps, see comments on the suspension and averaging process in sec-
tion 3.4.1).

Note that the dynamics that we observe using any of the two methods is not two-dimensional,
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so we cannot assert the same results as for a volume preserving flow. For example,

• The "fixed point" that we see in the plots corresponds to the intersection of a nor-
mally elliptic curve Γ, or of the polynomial that interpolates the iterates of points of
the curve, with the plane {z = 0}. For a fixed value of ϕ, the rotation number of Γ
changes with respect to ε and becomes rational for a dense set of values of ε.

• The curves that we see in the plot are not invariant curves, they are projections of
two-dimensional tori of the map. There are KAM theorems adapted to this setting
that guarantee the persistence of the tori for the map near Γ, see [13] and [38].

• For an area preserving twist map, the Aubry-Mather theory, see [26, 9], shows that
after the destruction of rotational invariant curves, there is a remnant in the phase
space, which is a Cantor set (the Aubry-Mather set). There is no analogous of this
theory for three dimensional maps. This means that what we do not know the
structure of what we observe as invariant curves with holes near the boundary of the
stability domain. The mathematical description of the transport properties through
the holes remains unknown.

• What seems to be resonant islands in the plots, correspond to three-dimensional res-
onant structures. It would be interesting to derive a suitable normal form around
Γ to analyse and classify such structures, in a similar way as we did for resonant
islands of volume preserving flows in section 3.4. Note that since we have three fre-
quencies, there are rank one and rank two resonances, which gives different struc-
tures, [14]. A generalization of the Poincaré-Birkhoff theorem 3.8 to this setting,
showing the existence of normally hyperbolic invariant curves that maps one into
another, can be found in [12].

Concerning the first item of the previous list, we can proceed as follows to illustrate how
the rotation number varies with ε. Consider the interpolation procedure explained to get
points in z = 0. We look for a fixed point x∗ on z = 0 of the map G = P ◦Mm

ϕ,ε defined as
follows. Given an initial point on z = 0 we fix m to be the number of iterates that needs
the point to complete a revolution near the normally elliptic invariant curve Γ and cross
again z = 0. The map P maps the final point (after the m iterates) to the corresponding
point in z = 0 by assigning the intersection of the interpolating polynomial pn with the
plane.

Using jet transport through the Lagrange interpolation algorithm to compute pn, we can
compute DG at the initial point. This allows us to use Newton method to find the fixed
point x∗ of G. Moreover, if t∗ is the value for which p(t∗) ∈ {z = 0} then ρ = 1/(m + t∗)
gives an approximation of the rotation number of Γ.

In figure 5.4 we show ρ as a function of ε. For ϕ = 0.1 and ε < 0.25 the plot shows that the
lowest period expected for points on Γ is 63. If we take values of ε in this range we will
observe the iterates of x∗ spread along Γ. Taking larger values of ϕ we can observe rational
values of ρ with smaller denominator. For example, for ϕ = 0.619 we can determine ε so
that ρ = 1/10. The iterates of x∗ in this case form a periodic orbit of period 10.

In the remaining of this chapter we investigate the existence of heteroclinic connections for
the map. Note that the two-dimensional invariant manifolds generically intersect along
a one dimensional manifold in a three-dimensional space. This means that we expect to
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Figure 5.4: Left plots: We display ρ as a function of ε for ϕ = 0.1 (top) and ϕ = 0.619
(bottom). The green line determines ε ≈ 0.1347 for which ρ = 1/10. Right plots: We show
1000 iterates of x∗ for ϕ = ε = 0.1 (top) and ϕ = 0.619, ε = 0.1347 (bottom).

have a continuum of heteroclinic connections, [25]. As far as we know, theoretical results
of the splitting of these manifolds are not available, hence a numerical investigation would
be of great interest.

5.2 Invariant manifolds and heteroclinic orbits

To compute an approximation of the two-dimensional invariant manifolds of the fixed
points p± we use the parametrization method. The idea of the parametrization method is
to find a parametrization of Wu(p+) as a function tangent at p+ to the two-dimensional
eigenspace generated by the eigenvectors of DF(p+). This leads to the so-called invariance
equations.
Let Λ : R2 ↪→ C2 −→ C2 be the vector field associated to the eigenvectors of DF(p+),
defined as (

s1
s2

)
7−→

(
s
s̄

)
7−→

(
µp+ 0

0 µ̄p+

)(
s
s̄

)
=

(
µp+ s
µ̄p+ s̄

)
,

where s = s1 + is2.

We consider the parametrization of Wu(p+), K as a sum of homogeneous polynomials of
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degree r = i + j, (u, v, w) = K(s, s̄) = (u(s, s̄), v(s, s̄), z(s, s̄)), that is

u = u(s, s̄) = ∑
r>0

αijsi s̄j,

v = v(s, s̄) = ∑
r>0

βijsi s̄j,

w = w(s, s̄) = ∑
r>0

γijsi s̄j.

such that K(0, 0) = p+. Therefore, the invariance equation is given by

F(K(s, s̄)) = K(Λ(s, s̄)), (5.2)

where K(s, s̄) = (u(s, s̄), v(s, s̄), z(s, s̄))T and Λ(s, s̄) = (µs, µ̄s̄)T . This is equivalent to the
system

∑
r>0

αijsi s̄j + ϕ ∑
r>0

βijsi s̄j − ∑
r>0

αijλ
isiλ̄j s̄j = 0,

∑
r>0

βijsi s̄j + ϕ

∑
r>0

γijsi s̄j + ϕ

ε

1−
(

∑
r>0

αijsi s̄j

)2
− ∑

r>0
βijsi s̄j

− ∑
r>0

βijλisiλ̄j s̄j = 0,

∑
r>0

γijsi s̄j + ϕ

ε

1−
(

∑
r>0

αijsi s̄j

)2
− ∑

r>0
βijsi s̄j

− ∑
r>0

γijλisiλ̄j s̄j.

Solving this system, we will find coefficients αij, βij and γij that will give us an approxi-
mation of the two-dimensional invariant manifold. We will solve the previous non-linear
system of equations order by order. At order zero we obtain the condition of being a fixed
point of the system. At order one the condition becomes the one of the eigenvectors of DF
at the fixed point. Once we choose the desired point p± and normalized eigenvectors as-
sociated to µp+ , µ̄p+ , the coefficients of order k of the parametrization can be determined
since they are solutions of k + 1 three-dimensional linear systems with matrices of the
form

DMε,ϕ(p±)− diag(µi
p± , µ̄

j
p±),

with i+ j = k, and with right-hand determined by the previous orders. We solve the linear
system using, for example, Gaussian elimination with partial pivoting. We use PARI/GP
internal routines to facilitate the implementation, [10].

We have done these computations up to order 10. Note that we also need to com-
pute the domain of the Taylor expansion of the invariant manifolds Wu(p+), where the
parametrization gives the desired accuracy (in computations we use 10−26 of accuracy
with 58 digits in arithmetic computations). Then, inside this domain, we define a fun-
damental domain that captures an iterate of any orbit on Wu(p+). Such a domain is an
annular region in (s1, s2) coordinates, of the form [rmax/ mod (µp±), rmax)× S1 in terms
of polar coordinates in the s1, s2 coordinates. We look for an optimal rmax inside the pre-
vious domain.

When computing the invariant manifolds of the Michelson flow, we used that the system
was reversible, so that computing just one the manifolds we could get the other one di-
rectly. In this case there is no reversibility, so we have to compute both two-dimensional
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Figure 5.5: Invariant manifolds Wu(p+) (in purple) and Ws(p−) (in blue) of the Michelson
map, for ε = 0.1 and ϕ = 0.1.

invariant manifolds Wu(p+) and Ws(p−) using the parametrization method explained
above. Once we get the parametrization of both manifolds, we choose points in the fun-
damental domains that we iterate to get a visualization of the global manifolds. The
invariant manifolds for ε = ϕ = 0.1 are shown in Figure 5.5.

We can see that both invariant manifolds do not coincide, and that the two-dimensional
invariant manifolds go through the channel created by the one-dimensional manifolds, as
we explained in the case of the Michelson flow.
To see this behaviour clearly, we can project a set of orbits on the two-dimensional invari-
ant manifolds onto the plane {z = 0} using the interpolation explained in the previous
section.

The results are shown in Figure 5.6. In this plot we see that the invariant manifolds does
not coincide, and the intersection points correspond to the heteroclinic connections of the
map. In this section, we could also study the splitting between the manifolds. However
what we see in the plots are projections of orbits of the invariant manifolds onto {z = 0}
using the interpolation.
As we have mentioned, the Michelson map has heteroclinic orbits lying in the intersection
of the two-dimensional stable and unstable manifolds of the two fixed points. The exis-
tence of a continuum of heteroclinic orbits for volume preserving maps, was observed in
[25].

To compute the heteroclinic orbit, we observed that we have four variables and three
conditions. The four variables correspond to (su

1 , su
2 ) of the parametrization of Wu(p+)

and (ss
1, ss

2) of the stable manifold Ws(p−). The three conditions are the following. We
consider suitable number of iterations for points on both fundamental domains, say nu
and ns respectively. Hence the conditions are

Mnu
ε,ϕ(K

u(su
1 , ss

2)) = Mns
ε,ϕ(K

s(ss
1, ss

2)).

Hence we proceed as follows. We fix a radius ru on the fundamental domain of Wu(p+),
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Figure 5.6: Intersection of the invariant manifolds Wu(p+) and Ws(p−) with the plane
{z = 0}.

and we define a function

Q(rs, θu, θs) = Mnu
ε,ϕ(K̃

u(ru, θu))−Mns
ε,ϕ(K̃

s(rs, θs)),

where (ru, θu), and (rs, θs), are the polar coordinates in the (su
1 , su

2 ) plane, and (ss
1, ss

2)
respectively. Thus, we solve the equation Q(rs, θu, θs) = 0 by Newton method.
By changing the fixed radius ru, we obtain different heteroclinic orbits of the continuum.

For ε = 0.1 and ϕ = 0.1 we have computed the parametrization of the stable and unsta-
ble manifold up to order 20, requiring a precision of 10−26 for points in the fundamental
domain. The number of iterations are nu = 62 and ns = 445. The fundamental domain
for the unstable manifold is [rmin, rmax) = [rmax/|µp− |, rmax) with rmax = 0.275 and
|µp− | ≈ 1.019. In Figure 5.7 we show the heteroclinic orbits computed solving Q = 0 with
ru = rmin and ru = (rmin + rmax)/2.
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Figure 5.7: An heteroclinic orbit of the Michelson map for ε = 0.1 and ϕ = 0.1.

As we already mentioned, we do not know any result describing properly the asymptotic
behaviour of the splitting of these manifolds for ϕ fixed and ε tending to zero. This would
be an interesting problem to work on in the near future.



Conclusions

In this work we have studied some properties of conservative three-dimensional flows by
using different analytic and numerical techniques from dynamical systems. In particular
we illustrated some aspects of the dynamics of the Michelson flow for relatively small
values of the parameter.

The reduction of the three-dimensional flow to a Poincaré map leads us to study general
results of area preserving maps. We used the Birkhoff normal form around an elliptic
fixed point to prove the existence of periodic orbits of the map, along with the structure
of resonant islands. We also discussed the persistence of KAM invariant curves when
perturbing the system. Last thing we discussed concerning three-dimensional volume-
preserving flows, was the behaviour of invariant manifolds and that they have an expo-
nentially small splitting. The phenomena described for the map has been interpreted in
terms of the three-dimensional flow, with special emphasis on the Michelson system for
which several computations were done.

As pointed out in the introduction, there are many results in the bibliography devoted
to conservative three dimensional flows. However, when considering three-dimensional
volume-preserving maps, there are still many open questions about their dynamics. Cer-
tainly some important results have been generalised to this setting. For example there are
versions of KAM theorem’s that guarantee the persistence of invariant tori with varying
frequency. Also there are generalizations of the Poincaré-Birkhoff theorem. But there are
still many other structures in phase space that need further investigations. We devoted the
last chapter to emphasize the differences between the continuous and the discrete Michel-
son systems.

Simple visualizations of the phase space structure showed a resemblance with the flow.
Nevertheless, the map is dynamically richer as expected from the fact that it has an extra
frequency if we think at the level of its suspension. We showed that the two dimensional
tori are organized around a normally elliptic invariant curve. The rotation of such a curve
changes with respect to the parameter ε of the Michelson system when the parameter ϕ,
which somehow measures the distance to the limit Michelson flow, is fixed to be small
and constant. This means that the local dynamics must be analysed in terms of a normal
form around such a curve and has to take into account resonances involving the third
frequency (the time). Moreover, we illustrated that the Michelson map possesses a con-
tinuum of heteroclinic orbits. It remains to investigate the splitting of the 2-dimensional
manifolds in the direction transversal to such continuum, which since the map possesses
an extra frequency it could be much more involved that the asymptotic behaviour of the
splitting for the 3-dimensional flow.

Finally, we would like to mention that most of the theoretical techniques (normal form,
suspensions of maps, averaging, exponentially small phenomena, parametrization method)
and numerical tools (Taylor ode integrator, jet transport, interpolating polynomials, com-
putation of invariant manifolds) considered during this work can be applied to more
general three dimensional or even to analyse the dynamics of higher dimensional systems
like, for example, four dimensional maps.
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