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Abstract

In this paper, we present a way of combine the computation of invariant tori and their
stable and unstable manifolds with the multiple shooting technique. We start by showing some
of the results of [Jor01] that should be modified in order to introduce the multiple shooting
technique in these computations. After that it is introduced, by a direct application in the
Planar Elliptic Restricted Three-Body Problem (PERTBP), how to modify the equations and
methods to compute the above-mentioned objects. It is shown, in particular, the structure of
the (systems of) equations and matrices involved in these computations. An application of these
computations can be found in [DJ23a], where the dynamics of comet 39P/Oterma is modelled
as a PERTBP.
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1 Introduction

The dynamics of comet 39P/Oterma is known to experience a fast transition between heliocen-
tric orbits inside and outside of the orbit of Jupiter ([HB98]). It is remarkable that, during this
transition, the comet passes close to the Lagrangian points L1 and L2 of the Sun-Jupiter system.

The simplest model to study this transition is the well-known Planar Circular Restricted Three-
body Problem (PCRTBP). The PCRTBP describes the motion of an infinitesimal particle (the
comet) under the combined gravitational attraction of two primaries (Sun and Jupiter), which are
assumed to move in circular orbits around their common centre of mass. Besides, the particle
is assumed to move in the plane defined by the motion of the primaries. It is common to use a
rotating system of reference (usually called synodical reference frame) so that the origin is at the
centre of mass and Sun and Jupiter are kept fixed on the x axis. The unit of length is the Sun-
Jupiter distance, the unit of mass is the total mass of the system and the unit of time is that the
gravitational constant is equal to one. With these units, the period of Jupiter is 2π. Calling µ to
the mass of Jupiter, the Sun is located at (µ, 0) and Jupiter is at (−1+ µ, 0). Is is also well-known
that this model has five equilibrium points [Sze67], three of them (L1,2,3, or collinear points) on
the x axis and two of them (L4,5 or triangular points) defined as the third vertex of the equilateral
triangle that has the primaries as the other two vertices (see Figure 1).

The collinear points are of centre×saddle type, so they are unstable. The well known Lyapunov
centre theorem [MO17] implies the existence of a one-parametric family of periodic orbits that are
born at the equilibrium point. This family is also unstable and, near the point, each periodic orbit
in the family has a stable and a unstable manifold. It is remarkable that the manifolds of these
periodic orbits meet so that there is a intricate network of connections between the neighbourhoods
of L1 and L2 [KLMR00, GKL+04, CM06, CDMR06].

The transition of Oterma has been studied, using the PCRTBP, in [KLMR01] where it has been
shown that the invariant manifolds of the Lyapunov orbits near L1 and L2 can be used to connect
orbits outside that of Jupiter with orbits inside, and vice versa. In [DJ23b] explicit normal form
calculations around L1,2 are used to identify the concrete periodic orbits and their manifolds that
organise this transition.

In this paper we focus on a periodic time-dependent perturbation of the PCRTBP, the Planar
Elliptic Restricted Three-Body Problem (PERTBP). In this model, Jupiter moves not in a circular
but on an elliptic orbit. The phenomenon of the transition experimented by Oterma is caused by
heteroclinic connections between objects (Lyapunov periodic orbits in the case of the PCRTBP,
and the equivalent ones, in the PERTBP) around L1 and L2. Another important application of
this study of heteroclinic connections is the computation of a chain for fast Arnold diffusion in the
PERTBP [CD23].

1.1 Description of the model

The Planar Elliptic Restricted Three Body Problem, PERTBP, models the motion of an infinitesi-
mal particle under the gravitational attraction of two massive bodies that move on elliptical orbits
around their common centre of mass. As before, by infinitesimal we mean that the particle is
attracted by the two massive bodies but its mass is so small that its effect on the bodies can be
neglected. In what follows we will focus on the Sun-Jupiter case.

There are several systems of coordinates which are common to use for this model. The one that
is used in this paper is also known as roto-pulsating and it is inspired by the synodical system of
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Figure 1: The positions of the equilibrium points in the Sun-Jupiter RTBP.

coordinates of the PCRTBP. The origin is taken as the centre of mass, and the x axis is defined
as the line joining Sun and Jupiter, so it rotates with a non-constant angular velocity. The unit of
length is taken in a time-dependent way, so it expands and contracts periodically in time (creating
an effect of pulsation) such that Sun and Jupiter have fixed coordinates on this axis and their
relative distance is always 1. The positive direction on the x line is from Jupiter to the Sun. The
z axis is parallel to the angular momentum of the system and the y-axis is chosen to obtain a
positive-oriented system of coordinates. The plane z = 0 is invariant by the motion of the particle
and, as the motion of Oterma takes place very close to this plane, we restrict ourselves to z = 0. It
is usual to take units of time and mass such that the period of Sun and Jupiter is 2π, and the total
mass of the system is 1. With these units, the gravitational constant is also equal to 1. Calling µ
to the mass of Jupiter, the Sun is located at (µ, 0) and Jupiter is at (−1 + µ, 0).

To write the equations of motion in a simple way it is common to use the true anomaly instead
of time (see [Sze67] for details). Then, the Hamiltonian for this problem is non-autonomous and
can be written in the following way,

H(x, y, px, py, f) =
1

2

(
(px + y)2 + (py − x)2

)
− 1

1 + e cos f

(
1

2
(x2 + y2) +

1− µ

r1
+
µ

r2

)
, (1)

where r21 = (x−µ)2+y2, r22 = (x+1−µ)2+y2 and e is Jupiter’s eccentricity and f is its true anomaly
that here plays the role of the time. The parameter values used here are µ = 0.0009538811803631
and e = 0.04859403602748.

1.2 Goal

We will focus on the neighbourhood of L1 and L2 of the PERTBP. If the eccentricity e is zero, is
the classical PCRTBP and these points are of centre×saddle type, with a one-parametric family of
periodic orbits emanating from them. If e is non zero but small enough, these families of periodic
orbits become (Cantorian) families of 2D tori, see [JV97b]. These tori have two basic frequencies:
one is the frequency of a periodic Lyapunov orbit while the second one is the perturbing frequency,
1 in this case. Moreover, as the equilibrium point has a saddle direction, these tori have stable and
unstable manifolds that organise the arriving/departing trajectories. Our primary goal is to show,

4



for the Sun-Jupiter case, how these manifolds serve as a bridge that connects the neighbourhoods
of L1 and L2 between them and with outside regions, in a similar manner as it happens on the
PCRTBP. In a following paper [DJ23a] we will show that the PERTBP provides a much better
description of the transition of Oterma (because the position of Jupiter is very important when
passing nearby). In [DJ23a] we have identified which tori and manifolds guide the motion of Oterma
during this transition and we have use them to have an accurate description of its motion. The
computation of these heteroclinic connections between different tori also allow for the computation
of a chain for the Arnold diffusion in the PERTBP. In [CD23] the authors use the data produced
in this work to compute an initial guess and estimates for a real orbit diffusing in this model, using
connections of tori from different frequencies around L1.

1.3 Summary of the paper

Section 2 explains the numerical methods used to compute the Lyapunov families of 2D tori around
L1,2. It is common to use a Poincaré section to reduce the dimensionality of the problem and,
specially, the dimension of the torus that becomes a 1D invariant curve. In periodically forced
ODEs it is common to use the temporal section given by the period of the flow (this is sometimes
called an stroboscopic map), which results in an autonomous discrete dynamical system. We stress
that this is not an option in this case, since the unstability of the regions around L1,2 is so high
that most of the initial conditions near these points are sent far away after 2π units of time, which
makes the stroboscopic map useless to study the dynamics near L1,2. A standard tool to deal with
this situation is to use multiple shooting techniques. In Section 2 we explain a multiple shooting
method to compute invariant tori, including the computation of their linear stability. The main
difference with previous works ([Jor01]) is that the computation of the Floquet change and the
reduced matrix has to be adapted to a multiple shooting environment. In Section 3 we discuss
how we have adapted a method for the computation of invariant manifolds to multiple shooting,
and Section 4 shows some of the obtained tori, their invariant manifolds and how they provide a
network connecting regions outside the orbit of Jupiter with regions inside and viceversa.

2 Numerical approximation of invariant tori

A standard first step to compute invariant objects of flows is to apply a suitable Poincaré section
so that the dimension of the invariant object is reduced by one. In this way, the computation of
periodic orbits becomes the computation of fixed points, and the computation of 2D tori becomes
the computation of 1D invariant curves. The case of very unstable periodic orbits can be very
difficult since the error growth during the numerical integration needed to return to the section can
be so big that the accurate computation of the periodic orbit becomes very difficult or impossible.
To solve this difficulty, it is common to use a multiple shooting method [SB02]. Here we combine
the multiple shooting method used to find periodic orbits with a method to compute invariant 2D
tori (for a version of these methods adapted to parallel computers see [GJNO22]). Next we will
summarise a method to compute invariant tori and next we will explain how it is modified to be
used in combination with multiple shooting.
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2.1 Single shooting

As the PERTBP is a 2π-periodic perturbation of the RTBP, the Lyapunov periodic orbits around
L1 and L2 with frequencies that are non resonant with the frequency 1 become 2D tori if the
eccentricity is small enough. The method we use to compute them is a modification of the method
in [CJ00]. To explain it, let us start by considering the (stroboscopic) section f = 0 (mod 2π).
This is a 4D autonomous map P . Then, the 2D tori of the flow become 1D invariant curves of
P , with a frequency ω that comes from the frequency of a periodic orbit of the RTBP. This is, if
φ : T1 → R4 is a parametrization of the invariant curve, it satisfies,

P (φ(θ)) = φ(θ + ω), ∀θ ∈ T1, (2)

which can be written in the form of a functional equation,

F (φ, ω)(θ) = P (φ(θ))− Tω(φ)(θ) = 0, ∀θ ∈ T1, (3)

where Tω is the linear operator defined by Tω(φ)(θ) = φ(θ + ω). The option considered here is to
solve this equation by means of a Newton method. Let us first discuss the case in which ω is known
which, as we will see, it is the case here. It is natural to approximate φ by a truncated Fourier
series,

φ(θ) ≈ φN (θ) = a0 +

N∑
k=1

ak cos(kθ) + bk sin(kθ), a0, ak, bk ∈ R4, ∀k = 1, . . . , N.

The chosen value for N has to do with the accuracy of the approximation of the curve, and its value
will be discussed later on in this section. For now, let us choose some fixed value for it. The idea is
to solve a discretized version of equation (3) on the mesh θj = 2πj/(2N +1), j = 0, . . . , 2N . Then,

given a truncated Fourier series φ
(0)
N , we can evaluate it to produce a table of values for F (φ

(0)
N , ω),

Fj = P

(
φ
(0)
N

(
2πj

2N + 1

))
− φ

(0)
N

(
2πj

2N + 1
+ ω

)
, j = 0, . . . , 2N.

To apply a Newton method, we can compute the derivatives of the values Fj w.r.t. the coefficients

ak, bk of φ
(0)
N by means of the chain rule, as discussed in [CJ00, Jor01]. Let us note that the number

of unknowns (ak, bk) and the number of equations coincides. Let us also note that, as the Poincaré
map P is autonomous, the representation of an invariant curve is not unique: if φ(θ), θ ∈ T1, is a
representation of an invariant curve, for any β ∈ T, φ(θ+ β) is another representation of the same
curve (i.e., the Fourier coefficients of φ(θ) and φ(θ + β) are different). This implies that equation
(2) has a 1D manifold of solutions. This is usually solved by adding an extra condition, typically
to ask that some coordinate has a prescribed value when θ = 0 [CJ00, GJ04]. This implies that
the linear system to be solved at each step of the Newton method has one extra condition, which is
solved using Gaussian elimination with pivoting (the pivoting sends a linearly dependent equation
to the last row, which is then ignored since it has to be linearly dependent of the previous ones).

2.1.1 Error estimates

After succesfully computing, via a Newton’s method, a set of Fourier coefficients such that ∥Fj∥ is
small enough for all j, we should check if they represent an invariant curve of the Poincaré map P
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Figure 2: Algorithm for the determination of N .

within a certain level of accuracy. To this end, for a given ω, we use

E(φ) = max
θ∈T1

∥F (φ)(θ)∥,

that we estimate by using a much finer mesh (typically, with 10 or 100 times more points) than the
one used for the discretization. If this value is greater than the required level of accuracy, it means
that a larger number of Fourier modes (i.e., a larger N) is needed. Therefore, N is increased and
the computation is restarted using the previous invariant curve as starting point, see Figure 2,

2.1.2 Initial conditions for the Newton method

As it has been mentioned before, the frequencies of the Lyapunov tori near L1,2 are the ones of
Lyapunov orbits of the RTBP plus the perturbing frequency of the PERTBP, which is exactly 1.
To compute these tori we have computed first the family of Lyapunov periodic orbits when the
eccenctricity e is zero and we consider the time−2π flow for this case e = 0. A Lyapunov periodic
orbit with irrational frequency ω0 is then seen as an invariant curve for the time−2π map when
e = 0: if the periodic orbit is parametrized from 0 to 2π, then a point on the orbit advances
ω = 2πω0, which is the frequency of the curve. We have used this invariant curve as the starting
point of a continuation method w.r.t. e, till the eccentricity of Jupiter is reached. Note that in all
the continuation process the frequency of the invariant curve is known and constant. More details
are given in Section 2.4.

2.2 Multiple shooting

Due to the high instability of the region near L1,2 we will combine the methods summarised in
Section 2.1 with a multiple shooting technique [SB02]. To this end, we will use four temporal
sections for the angular variable f , fj = j

42π, j = 1, . . . , 4. We denote each of these sections by
Σfj , the codimension 1 manifold defined as

Σfj = {(x, y, px, py, f) ∈ R4 × T1 such that f = fj}.
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Figure 3: Illustration of the multiple shooting used for the PERTBP.

Let us denote by P j , j = 0, . . . , 3, the flow between sections Σfj and Σfj+1
. Therefore, the time-2π

flow of the PERTBP, starting at f = 0, is given by P = P 3 ◦ P 2 ◦ P 1 ◦ P 0, see Figure 3. In this
context, to look for an invariant torus is to look for four curves, φj , j = 0, 1, 2, 3 (one for each
section), such that 

P 0(φ0(θ)) = φ1(θ),

P 1(φ1(θ)) = φ2(θ),

P 2(φ2(θ)) = φ3(θ),

P 3(φ3(θ)) = Tω(φ0(θ)).

(4)

Each of these curves φj is approximated by a truncated Fourier series and, similarly as before, their
coefficients are found by considering the equations

F 0(φ)(θ) = P 0(φ0(θ))− φ1(θ),

F 1(φ)(θ) = P 1(φ1(θ))− φ2(θ),

F 2(φ)(θ) = P 2(φ2(θ))− φ3(θ),

F 3(φ)(θ) = P 3(φ3(θ))− Tω(φ0(θ)).

(5)

where we are using the notation φ = (φ0, φ1, φ2, φ3). As usual, these equations are discretized by
representing the curves φj as a truncated Fourier series,

φj(θ) = a0,j +

N∑
k=1

ak,j cos(kθ) + bk,j sin(kθ),

and the system is solved iteratively by means of a Newton method. The computation of the Jacobian
is similar to the single shooting case, taking into account that not all the equations depend on all
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the unknowns (the coefficients ak,j , bk,j). This implies that the Jacobian has the form

∂F 0

∂c0

∣∣∣∣
θ

∂F 0

∂c1

∣∣∣∣
θ

0 0

0
∂F 1

∂c1

∣∣∣∣
θ

∂F 1

∂c2

∣∣∣∣
θ

0

0 0
∂F 2

∂c2

∣∣∣∣
θ

∂F 2

∂c3

∣∣∣∣
θ

∂F 3

∂c0

∣∣∣∣
θ+ω

0 0
∂F 3

∂c3

∣∣∣∣
θ


,

where ci represent the coefficients a0i, aji, bji.

2.2.1 Initial conditions

We have already mentioned before (Section 2.1.2) that the invariant tori near L1,2 can be found
by means of a continuation method starting from the Lyapunov periodic orbits that exists for the
RTBP (that is, PERTBP for e = 0), increasing the eccentricity till its value for the Sun-Jupiter
system. If we are using multiple shooting, initial conditions have to be given for each curve φj ,
j = 0, . . . , 3. Let us see how we obtain them.

Given a Lyapunov periodic orbit (for e = 0), we start by computing four different parameter-
izations for this orbit, each one with a time shift of π/2 units of time,1 that is, the time needed
to go from one section to the next. In this way, the periodic orbit is seen as four invariant curves
φj , j = 0, . . . , 3 that solve (5) when ω = 2πωp, being ωp the frequency of the periodic orbit. These
curves are the starting point of the continuation process till the Sun-Jupiter eccentricity is reached.

2.3 Linear stability

The linear stability of an invariant curve φ of a discrete dynamical system x̄ = P (x), x ∈ Rn, is
given by the linear skew product {

x = A(θ)x,

θ = θ + ω,
(6)

where A(θ) = DxP (φ(θ)). This sytem is called reducible when there exists a change of variables
y = C(θ)x, continuous with respect to θ, such that the above system can be written as{

y = By,

θ = θ + ω,
(7)

where B = C−1(θ+ω)A(θ)C(θ) does not depend on θ (and it is usually called the reduced matrix).
The dynamics of system (7) can be easily studied by computing the eigenvalues of B.

It is known ([Jor01]) that, if a skew product (6) is reducible, the matrix B and the change of
variables C can be obtained by studying the following generalized eigenvalue problem: find the
couples (λ, ψ) such that

A(θ)ψ(θ) = λTωψ(θ), (8)

1To simplify the language, we refer to the true anomaly f as the time of the PERTBP.
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Figure 4: Invariant curves around L1 (left) and L2 (right) in the section f = 0. The arrows are
vectors that are tangento to the stable and unstable manifolds at each point of the invariant curve.

where λ ∈ C and ψ belongs to the space of continuous functions from T1 to Rn endowed with
the sup norm. We note that, as this is a eigenproblem in an infinite dimensional space, the set of
eigenvalues can be empty, or to contain infinitely many values. In this case, the eigenvalues are
organised in circles.

To compute these eigenvalues, we rewrite (6) as

T−ω ◦A(θ)ψ(θ) = λψ(θ) (9)

and we discretize the operator T−ω ◦ A using truncated Fourier series. This allows to compute a
finite set of eigenvalues/eigenvectors and to choose the right ones, {(λi, ψi)}ni=1 so that the reduced
matrix B is diag(λ1, . . . , λn) and C = (ψ1, . . . , ψn), see [Jor01] for more details.

If an eigenvalue, say λ1, is real and different from ±1 the eigenfunction is the linear approxi-
mation to the corresponding invariant manifold. That is, the linear approximation to the invariant
curve φ is given by

(θ, τ) 7→ φ(θ) + τψ1(θ),

which is tangent to the invariant manifold at τ = 0. This is illustrated in Figure 4.

2.3.1 Multiple shooting

Let us see how to adapt the previous methods to compute the linear stability of an invariant curve
to a multiple shooting environment. We focus on the case where four sections have been used, but
the methods can be easily adapted to any number of sections.

Let us denote by φj the curve contained in section Σfj , j = 0, . . . , 3 such that (4) holds, and let
us define Ai(θ) = DxP

i(φi(θ)). If we consider φ0 as the invariant curve for the map P 3◦P 2◦P 1◦P 0

then its linear stability follows from the eigenproblemA3·A2·A1·A0 u = λTω u which, due to the high
instability of the curve, involves huge numbers and it is not suitable for numerical computations.
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Therefore, to avoid the product of these matrices we consider the following eigenproblem,
A0u = σv,

A1v = σw,

A2w = σz,

Â3z = σu,

⇔


Â3

A0

A1

A2




u
v
w
z

 = σ


u
v
w
z

 , (10)

where Â3 = T−ω · A3. It is easy to see that the eigenvalues σ of this problem are the 4th roots of
the eigenproblem that corresponds to single shooting, that is, A3 ·A2 ·A1 ·A0 u = σ4 Tω u.

As before, we discretize this problem by using truncated Fourier series. As it happens for single
shooting, it is necessary to choose the right set of eigenvalues/eigenfunctions to have an accurate
reresentation of the reducing change of variables and the reduced matrix ([Jor01]). Figure 4 shows
a plot of the stable/unstable directions of φ0.

2.4 Continuation

The computation of families of invariant tori usually starts with the computation of a first torus
in the family followed by a continuation to obtain the family in the interested range. When
dealing with a Lyapunov family, sometimes the initial torus is computed near the fixed point of
the map where the family is born, using information from the linear dynamics around the point
[CJ00, GM01, GJ04]. Here we have used a different approach, as explained in Section 2.1.2: we have
computed a periodic orbit for e = 0 and we have continued it with respect to e till the eccentricity
of Jupiter. Next, we have kept e constant and we have used the frequency of the invariant curve
as the continuation parameter to compute the Lyapunov family of invariant curves.

The families of invariant curves are not continuous, they have a “small hole” around each
resonance. If the system is analytic, the size of these holes decreases exponentially with the order
of the resonance [JV97a] so that the family has a Cantor structure. The set of holes in the family
has small measure. Due to this Cantor structure, the continuation of a family of invariant curves
can be tricky sometimes. If we are in a zone where all resonances are of high order, the holes are so
small that are below the resolution of the double precision arithmetic of the computer so that the
family looks continuous. On the other hand, near a low order resonance we expect to have a larger
hole that can break the continuation process if we try to look for a torus inside. The standard
solution for this difficulty is to choose a larger continuation step so that the next tori we try to
compute is “at the other side” of the hole. For this reason, it is common to compute first the family
with a low accuracy and with a continuation stepsize that is not too small. These results can be
used later as initial points for a more accurate computation.

In this case, we have used a continuation step in the frequency of 10−4 and an accuracy in
the approximation of the invariant curve of 10−9. They are quite small but the continuation has
succeded with these values. Once the family has been computed, it would be easy to increase the
accuracy of some of these tori if needed: adding a suitable number of Fourier modes, a single step
of the Newton process will be enough to match the level of accuracy of the numerical integrator of
the ODE ([JZ05]).

Figure 5 shows some of the computed tori around L1 and L2.
With the above specification of the continuation parameter, the continuation step and the

tolerance value, we have computed 7270 invariant curves around L1, with rotation number ω ∈
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Figure 5: Illustration of the parallel shooting used in this work for the PERTBP: 4 sections in the
independent variable.

[0.394274086132195, 1.121174086130501], and 4498 invariant curves around L2, with rotation num-
ber ω ∈ [5.694237631679274, 6.143937631678226]. These invariant curves correspond to 2D tori
for the flow, with two basic frequencies: one of them is always 1 and come from the eccentricity
of Jupiter while the other is ω/(2π), being ω the rotation number of the corresponding invariant
curve. This means that the second frequency is in the range [2.06275066974, 2.17844039787] (L1)
and [1.90626606621, 1.97783804413] (L2).

For these tori, the eigenvalues related to the unstable direction are on the range [3.60319538152×
106, 2.08973695728× 107] (L1) and [7.33764362520× 105, 2.64109300607× 106] (L2), which means
that, in the worst case, the instability will be related to the maximum 4th root of these values,
which is given by 67.61186347293.

The continuation has stopped at some distance from L1,2, enough to study the dynamics of
comet Oterma ([DJ23a]), which is the main motivation for these computations. This number of
computed tori was also used in [CD23] for the computation of a chain of Arnold diffusion.

3 Computation of the stable and unstable manifolds of a torus

The Lyapunov invariant tori near L1,2 have a stable and an unstable invariant manifold. As it
has been discussed in Section 2.3, the linear approximation to these manifolds is given by the
corresponding eigenfunctions of the eigenproblem (8). To produce a global approximation to these
manifolds we follow the ideas in [Sim90]. To simplify the presentation, let us focus first in the case
of an unstable manifold, so let λ ∈ R, λ > 1 (this is what happens near L1,2 so we do not discuss
the case λ < −1) the unstable eigenvalue and ψ its eigenfunction, so that the linear approximation
to the unstable manifold can be parametrized as in (9). A fundamental set of an invariant manifold
is a piece of the manifold that spans the full manifold by the iteration (backward and forward) of
the Poincaré map. Here, a fundamental set is given by the cylinder

(θ, τ) ∈ T× [h0, h0λ] 7→ φ(θ) + τψ1(θ).
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If |h0| is chosen small enough, this cylinder is close to the true manifold (at a distance of O2(h0))
and it can be used to span the whole manifold by simply applying the dynamics to a suitable mesh
of points on the cylinder. We note that both values ±h0 have to be used to generate both “sides”
of the manifold.

Let us now see how the ideas of fundamental domain and multiple shooting can be combined
to produce a satisfactory visualization of the invariant stable/unstable manifolds in the case of
a highly-unstable environment. In this case, let us call σ the unstable eigenvalue of (10), and
(ψ0, . . . , ψ3) the eigenfunction (we recall that σ4 is an eigenvalue of (8), the eigenproblem for the
single shooting case). The linear approximation to the invariant manifolds is given by

(θ, τ) 7→ {(φj(θ) + τψj(θ))}3j=0 . (11)

Note that, in this case, the dynamics is as follows:

P j(φj(θ) + τψj(θ)) = φj+1(θ) + τσψj+1(θ) +O2(τ), j = 0, 1, 2,

P 3(φ3(θ) + τψ3(θ)) = φ0(θ + ω) + τσψ0(θ + ω) +O2(τ).
(12)

As it has been commented before, we will use the linear approximation to produce an approximation
to a fundamental cylinder, (θ, τ) ∈ T× [h0, σh0]. To this end, we have chosen the value |h0| = 10−5.
Then, we use a mesh of equispaced values in θ and τ on the fundamental domain, we use (11) to
produce a mesh on the manifold and we apply the dynamics to grow the manifold.

As |h0| is small, several iterates are needed to move away from the invariant curve. On the
other hand note that, near the torus, the initial error in the approximation of the manifold does
not grow when we apply the dynamics, since the remaining directions are attracting (the stable
direction) or neutral (the directions of the family of tori). The error only starts to increase when
we move away from the manifold.

I

II

0

1

2

3
4

5

0
1

2

3
4

5

Figure 6: Illustration on how the parallel shooting technique can be used together with the funda-
mental domain concept in order to have a more precise computation of the invariant manifolds of
a torus, using only 2 sections for simplicity. I and II represent the sections and the numbers from
0 to 5 points in these sections. See text for full details.
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Figure 6 shows, schematically, the computation of the invariant manifolds in a multiple shooting
situation, in the case of two sections, namely I and II. Let Q0 : I → II and Q1 : II → I the mapping
from one section to the other one given by the flow. The points labeled with the number 0 represent
the tori, so there is one on each section. The continuous curves starting at point 0 represent their
manifolds. The numbers along the curve (from 1 to 5) denote points on the manifolds. Points 1
are taken at a small distance h0 of the invariant curve 0 inside the linear approximation of the
invariant curve. Point 2 in I is the image of point 1 in II under Q1 and Point 2 in II is the image
of point 1 in I under Q0. The manifold is approximated by the straight line joining 1 and 2. The
remaining points (from 3 to 5) are obtained in an analogous way. To produce a finer mesh on the
manifold, we take a mesh of points in the lines joining 1 and 2 inside sections I and II, and sending
this mesh using Q0,1 we find a mesh between points 2 and 3, and so on.

The computation of stable manifolds follows the same procedure as before, but using the inverse
of the maps P j (the stable manifold becomes unstable by the inverse map). Note that the inverse
maps are easy to obtain since they are the result of integrating backward in time.

4 Results

Let us now present a number of figures showing slices of the stable and unstable manifolds for some
tori around L1 and L2. All the figures presented here lie in Σπ.

In Figures 7 and 8, the subfigures (a) and (b) are composed by the curves coming from Σ 3π
2

for

the stable manifold and from Σπ
2
for the unstable one; the subfigures (c) and (d) are composed, in

addition to the previous ones, by the curves coming from Σ0 for both the stable and the unstable
manifolds; and finally, the subfigures (e) and (f) are composed, in addition to the previous ones,
by the curves coming from Σπ

2
for the stable manifold and from Σ 3π

2
for the unstable one together

with the ones coming from Σπ for both the stable and the unstable manifolds.
Let us explain the last paragraph using other words. We start with an example and generalised

it later. Consider Figure 7(a). It is obtained integrating a mesh of points on a fundamental cylinder
approximating both the stable and the unstable manifolds of TL2 lying in the section Σf3 , i.e., it
is obtained by applying (P 3)−1 and P 1 to the mesh on the fundamental cylinder approximating
the stable and the unstable manifolds, respectively. Figures 7(b), 8(a) and 8(b) are obtained the
same way. For Figures 7(c), 7(d), 8(c) and 8(d) we apply, in addition to (P 3)−1 : Σf3 → Σf2 and
P 1 : Σf1 → Σf2 ,

(P 3)−1 ◦ (P 0)−1 : Σf0 → Σf2 and P 1 ◦ P 0 : Σf0 → Σf2 ,

i.e., both are integrated a time π departing from the section Σf0 , backwards for the points close to
the stable manifold and forward for the ones close to the unstable one.

As for Figures 7(e), 7(f), 8(e) and 8(f) the only difference is that we apply the ones before and

(P 3)−1 ◦ (P 0)−1 ◦ (P 1)−1 : Σf1 → Σf2 and P 1 ◦ P 0 ◦ P 3 : Σf3 → Σf2

together with

(P 3)−1 ◦ (P 0)−1 ◦ (P 1)−1 ◦ (P 2)−1 : Σf2 → Σf2 and P 1 ◦ P 0 ◦ P 3 ◦ P 2 : Σf2 → Σf2 ,

all of them, for the points close to the stable and the unstable manifold, respectively.
We have followed a similar strategy as [Jor01]: Each torus is represented by an invariant curve

in each temporal section, hence an approximation to the, say, unstable manifold is given by a
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shift in the unstable direction of this circle representing the torus. In the application covered in
[Jor01] this shifted circle is iterated by the flow and, as the dynamics is not as unstable as the
one in the context of L1,2 in the PERTBP, these iterations produce a good visualisation for the
manifold. In the case of a highly-unstable environment, we use the fundamental cylinder for this
visualisation and integrate for less time, more points. More specifically, to produce Figures 7, 8
and 9, the interpolation parameter τ is discritized to produce different “circles” (the parameter θ
is also discrtized) which will act as an approximation of the manifold in the given direction.

Although the tori are presented in Figures 7, 8, 9 in pairs, this is not mandatory, as it is not
true that they are related one-to-one, like in the PCRTBP. In other words, TL1

0 for instance, may
have some influence in (and/or be influenced by) TL2

0 , but not only this one, as other ones with
closer values of ω. In fact, this is exactly what is used to compute a chain for the Arnold diffusion
in the case of the PERTBP [CD23].

In Figure 7 we can see how the stable and the unstable manifolds of the considered tori expand
in all directions, while in Figure 8 we consider only the expansion in the direction of Jupiter, in
order to better visualise the folds it has in that region.

For Figure 9 the manifolds presented are the ones of TL1
0 and TL2

0 . They are analogous to Figures
7(e), 7(f), 8(e) and 8(f), i.e., they present points which were integrated for a time π/2, π, 3π/2
and 2π coming from Σf1 , Σf0 , Σf3 and Σf2 (Σf3 , Σf0 , Σf1 and Σf2) close to the unstable (stable)
manifold, with the difference that the only directions presented are the “opposite-to-Jupiter” ones.
The curves presented in red represent a slice of the manifolds that originally go to Jupiter direction.
This serves as an illustration of the phenomenon that there are some parts of these manifolds that
transit between regions, even considering small time integrations such as 2π, which were not the
case for the tori in Figures 7. This is not an statement that they could never experience these type
of transition, instead it is a comparison between different behaviours with the same integration
times. Moreover, these slices transit between regions (going from Jupiter region from the opposite)
guided precisely by the parts of these manifolds that initially grow in these opposite directions,
illustrating the phenomenon that they act as guides for the dynamics.

5 Conclusions

In this work, we have shown how to use the multiple shooting technique to compute invariant tori
in a highly unstable environment, to analize the linear dynamics around them, and to compute
their stable and unstable invariant manifolds.

The computation of invariant tori is done by defining four sections in the phase space and a
map from each section to the next, with the goal of computing the four sections of a 2D torus of the
flow with these sections. Therefore, we compute the four invariant curves given by these sections.

In addition, for the computation of the linear stability of the computed tori, we have shown
how to adapt the computation of the eigenvalues and eigenvectors done to study the stability of
invariant curves of maps to this multiple shooting environtment.

Finally, it was also shown how to use the concept of fundamental domain in order to have a
better visualization of the manifolds of the computed tori, and how the use of this concept together
with the multiple shooting technique lead to improved results.

We have also used continuation methods to obtain the families of tori near L1,2 in the suitable
range to describe the dynamics of comet 39P/Oterma so that these calculations are used in following
papers ([DJ23a, CD23]) to study this transition by showing how these tori and their invariant
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manifolds provide an accurate description of the trajectory of the comet from an orbit outside that
of Jupiter to a inner one and vice versa, and to produce an initial guess for a diffusion orbit in this
model.
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[DJ23b] G. Duarte and À. Jorba. Using normal forms to study Oterma’s transition in the planar
RTBP. Discrete Contin. Dyn. Syst. Ser. B, 28:230–244, 2023.
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[JZ05] À. Jorba and M. Zou. A software package for the numerical integration of ODEs by
means of high-order Taylor methods. Exp. Math., 14(1):99–117, 2005.

[KLMR00] W.S. Koon, M.W. Lo, J.E. Marsden, and S.D. Ross. Heteroclinic connections between
periodic orbits and resonance transitions in celestial mechanics. Chaos, 10(2):427–469,
2000.

[KLMR01] W.S. Koon, M.W. Lo, J.E. Marsden, and S.D. Ross. Resonance and capture of Jupiter
comets. Celest. Mech. Dyn. Astron., 81(1-2):27–38, 2001.

[MO17] K.R. Meyer and D. Offin. Introduction to Hamiltonian dynamical systems and the N -
body problem, volume 90 of Applied Mathematical Sciences. Springer, New York, third
edition, 2017.

[SB02] J. Stoer and R. Bulirsch. Introduction to numerical analysis, volume 12 of Texts in
Applied Mathematics. Springer-Verlag, New York, third edition, 2002.
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Figure 7: Slices of manifolds of the tori TL2
−1330 (left column) and TL1

−2565 (right column).
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Figure 8: Slices of manifolds of the tori TL2
−1330 (left column) and TL1

−2565 (right column) in the region
around Jupiter.
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Figure 9: Slices of the manifolds of TL1
0 and TL2

0 (opposite-to-Jupiter direction) together with some
slices in the direction of Jupiter (in red with interpolated points). On the left side, slices of the
stable manifold of TL1

0 and, on the right side, the stable manifold of TL2
0 .
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