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Abstract

We study a class of one-dimensional family of quasiperiodically forced maps Fa,b(x, θ) =
(fa,b(x, θ), θ + ω), where x is real, θ is an angle, and ω is an irrational frequency, such that
fa,b(x, θ) is a real piecewise linear map with respect to x of certain kind. The family depends
on two real parameters, a > 0 and b > 0. For this family, we prove the existence of non-
smooth pitchfork bifurcations. For a < 1 and any b there is only a continuous invariant curve.
For a > 1 there exists a smooth map b = b0(a) such that: a) For b < b0(a), fa,b has two
continuous attracting invariant curves and one continuous repelling one; b) For b = b0(a)
it has one continuous repelling invariant curve and two semicontinuous (non-continuous)
attracting invariant curves that intersect the unstable one in a zero-Lebesgue measure set
of angles; c) For b > b0(a) it has one continuous attracting invariant curve. The case a = 1
is a degenerate case that is also discussed in the paper. It is interesting to note that this
family is a simplified version of the smooth family Ga,b(x, θ) = (arctan(ax) + b sin(θ), θ+ ω)
for which there is numerical evidence of a non-smooth pitchfork bifurcation. Finally, we also
discuss the limit case when a→ ∞.
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1 Introduction

In this paper we study the dynamics of the quasiperiodically forced map (x̄, θ̄) = Fa,b(x, θ),
where {

x̄ = ha(x) + b sin θ,

θ̄ = θ + ω mod 2π,
(1)

for (x, θ) ∈ R× T1, ω /∈ 2πQ and ha is the continuous piecewise linear map

ha(x) =


−π
2

if x ≤ − π

2a
,

ax if − π

2a
< x <

π

2a
,

π

2
if x ≥ π

2a
.

(2)

This dynamical system depends on two parameters: b is a real value and a is a real value strictly
larger than 0.

The motivation to study this map comes from [JMAT18], that studies the map{
x̄ = arctan(ax) + b sin θ,

θ̄ = θ + ω mod 2π,
(3)

which is a rescaled version of a map already studied in [Jäg03]. First, assume that a > 1
and that b = 0. In this case, it is clear that the map x 7→ arctan(ax) has exactly three fixed
points, that are seen in (3) as three (constant) invariant curves, one repelling and two attracting.
When b becomes different from zero (but small), the three invariant curves can be continued
w.r.t. b (for instance, using the Implicit Function Theorem) and they become three non-constant
invariant curves, one repelling and two attracting. Note that (3) is invariant by the symmetry
S : (x, θ) 7→ (−x, θ + π) and, therefore, if θ 7→ φ(θ) is an invariant curve of (3),

φ(θ + ω) = arctan(aφ(θ)) + b sin θ,

then θ 7→ −φ(θ + π) is also an invariant curve of (3). As the system cannot have more than
three invariant curves (see also [Jäg03]), the repelling curve is self-symmetric and the attracting
curves are one the image of the other by the symmetry S. If a is small enough (but larger than
1), when the value of b increases the three invariant curves meet in a pitchfork bifurcation and,
after that, only one self-symmetric attracting curve exists ([Jäg03, JMAT18]). The situation
seems to be different when a is large. In this case, when b is increased and the three invariant
curve approach, they start to wrinkle and they seem (numerically) to become a strange set when
they merge for a critical value b∗. After the merging, if we increase again the value of b, the
strange set becomes a smooth (but very wrinkled) attracting curve, see [JMAT18].

The map Fa,b given by (1) is a “simplified” version of (3) that aims to approximate the main
dynamical features of (1), specially for large values of a. We also note that (1) has the same
symmetry S : (x, θ) 7→ (−x, θ + π) as (3).

Figure 1 shows the attracting sets of (1) for several values of the parameters. For these plots
we have chosen ω to be the golden mean (ω = π(

√
5 − 1)) and a = 4. The first plot (b = 1.8)

shows two attracting curves that are ‘mirror’ images under the symmetry S. As we will show
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Figure 1: Attracting sets of (1) for different values of the parameters. The horizontal axis is θ
and the vertical is x. The frequency ω is the golden mean.

later, there is a repelling self-symmetric invariant curve between these two. When the parameter
b is increased, the two attracting curves start to wrinkle and to approach the repelling curve
and it seems that they merge into a single self-symmetric attracting curve as it happens in the
pitchfork bifurcation but, in this case, the merging process seems to happen through a strange
attracting set.

In this paper we prove that, for each ω /∈ 2πQ and for a > 1, there exists a critical value
b∗ = b∗(a, ω), such that when 0 < b < b∗ the map Fa,b has three continuous invariant curves, two
attracting (that are mirror images under S) and one repelling which is self-symmetric. When
b = b∗ the map has only one continuous curve (which is repelling and self-symmetric), plus two
semicontinuous invariant curves that are mirror images under S. Each semicontinuous curve
intersects the continuous repelling curve in a dense set of points, and the θ coordinates of these
points have zero measure in [0, 2π]. The semicontinuous curve above the repelling one is upper
semicontinuous and the one below the repelling curve is lower semicontinuous. Finally, when
b > b∗, we show that there exists a unique self-symmetric invariant curve. In other words, we
show the existence of a non-smooth pitchfork bifurcation, in the sense that for b < b∗ there are
three continuous invariant graphs, for b > b∗ there is only one continuous graph and for the
critical value b = b∗ there exists a strange invariant set that can be described as follows: the
upper boundary is given by an attracting upper semicontinuous graph and the lower boundary is
given by an attracting lower semicontinuous graph. Moreover, the set also contains a continuous
repelling curve, and the two semicontinuous attracting graphs intersect the continuous repelling
curve on a dense set of values of θ. This set is also invariant by the symmetry S.

The case 0 < a ≤ 1 is also considered. We show that, for a < 1 there is only one invariant
curve which is attracting. The case a = 1 is a bit more involved due to the neutral character of
the map around the origin. We show that for b < b∗(1, ω) there is a one parametric family of
invariant curves (parametrized over a nontrivial closed interval) and, for b ≥ b∗(1, ω), there exists
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a

b

b = b∗(1)

a = 1

b = b∗(a)

Figure 2: The parameter space (a, b) for the model (1). The blue zone corresponds to a single
attracting self symmetric invariant curve, the green zone to three invariant curves, one repelling
and self symmetric and two attracting curves that are mirror images under S. The red curve
corresponds to SNAs. Crossing the red line when a > 1 results in a non smooth pitchfork
bifurcation.

a unique attracting invariant curve. All this is summarized in Figure 2 (see also Section 2.4 for
another discussion of this figure).

A limit case is when a→ +∞. To study this case we introduce the map

h(x) =


−π
2

if x < 0,

0 if x = 0,
π

2
if x > 0,

(4)

which is the pointwise limit of ha(x) when a→ ∞ (and also the pointwise limit of the arctan(ax)
function that appears in (3)). Figure 3 shows the attracting sets for different values of b. This
case is simpler, but it still has some similarities with the previous one. Here, the critical value
for b is π/2 and, as we will see, it is the limit of the previous value b∗(a, ω) when a tends to
infinity. When ha = h and b < π/2 the map (1) has two continuous invariant curves,

φ0(θ) =
π

2
+ b sin(θ − ω), γ0(θ) = −π

2
+ b sin(θ − ω).

Both are, in fact, superattracting since all initial conditions land on one of these curves in a
finite number of iterates. As before, the curves are mirror images by the symmetry S. When b
reaches π/2 these curves touch x = 0 (at θ = 3π/2 + ω for φ0 and θ = π/2 + ω for γ0). There
are two different situations, depending on the sign of sin(π/2+ω). If this sign is positive, there
are two disjoint attracting curves that are discontinuous on one point, and if it is negative (this
is the case when ω is the golden mean), the attracting set is the union of two attracting curves,
with a dense set of discontinuities. It is remarkable that, in both cases, none of the attracting
curves is invariant. Finally, when b > π/2, there is only one invariant curve which is attracting
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Figure 3: Attracting sets of (4) for different values of the parameters. The horizontal axis is θ
and the vertical is x. The frequency ω is the golden mean.

and has a finite number of discontinuities. The number of discontinuities goes to infinity when
b tends to π/2 from above.

Finally, Figure 4 shows the attracting sets of the different maps corresponding to (3), (1)
and (4). Each column refers to one of the maps, the first row corresponds to b = 1 and the
second row to b = 10. We have used the value a = 10 to show the strong similarities between
these maps when a is large. This similarity is one of the motivations to study the piecewise
linear map of this paper as an intermediate step to understand (3).

The existence of SNAs in quasiperiodically forced skew-product is known since the examples
of [GOPY84] and [Kel96] (see also [JNOT07, LYL+20] and references therein). It is worth
noting that numerical methods are quite limited to study SNAs, as pointed out in [JT08].
Studies of non-smooth saddle-node bifurcations in quite general situations can be found in
[NDJS11, Fuh16, FGJ18]. A first investigation of non-smooth pitchfork bifurcations in a concrete
model is contained in [Gle04].

Acknowledgements. This work has been supported by the Spanish grant PID2021-
125535NB-I00 (MCIU/AEI/FEDER, UE), and the Spanish State Research Agency through
the Severo Ochoa and Maŕıa de Maeztu Program for Centers and Units of Excellence in R&D
(CEX2020-001084-M). A.J. and J.C.T have also been supported by the Catalan grant 2021 SGR
01072, and Y.Z has been supported by the China Scholarship Council (Grant 202006220142).
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Figure 4: The first, second and third columns contain the attracting sets for the maps (3), (1)
and the discontinuous map given by (4), respectively, for different values of the parameters. The
horizontal axis is θ and the vertical is x. The frequency ω is the golden mean.

2 A piecewise linear quasiperiodically forced system

In this section we focus on the invariant curves of (1) with ha defined as in (2), with ω /∈ 2πQ.
We consider a > 0 but, to simplify the reading, the presentation has been split in the cases
a > 1 (Sections 2.1 and 2.2) and a ≥ 1 (Section 2.3). As we will see, the values a = 1, b = b∗

(b∗ is defined below) is a critical point in the parameter space (a, b) and it will be discussed in
Section 2.4.

Now, let us assume that a ̸= 1 (and a > 0). Suppose that this map has an invariant curve η
such that η(θ) ∈ [−π/(2a), π/(2a)] for all θ ∈ T1. Imposing the invariant condition,

η(θ + ω) = ha(η(θ)) + b sin θ = aη(θ) + b sin θ, (5)

we obtain a closed expression for η,

η(θ) = − b sinω

(cosω − a)2 + sin2 ω
cos θ +

b(cosω − a)

(cosω − a)2 + sin2 ω
sin θ. (6)

The condition η(θ) ∈ [−π/(2a), π/(2a)] implies a restriction for the values of a and b: it is easy
to see that the restriction is

|b| ≤ b∗ = b∗(a) =
π

2a

√
1− 2a cosω + a2. (7)

Moreover, there exist two angles θ± such that η′(θ±) = 0. We have that

cos θ± = ± sinω√
1 + a2 − 2a cosω

, sin θ± = ∓ cosω − a√
1 + a2 − 2a cosω

.
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and

η(θ±) = ∓ b√
1 + a2 − 2a cosω

.

In the limit case b = b∗, we have that η(θ±) = ∓ π
2a and η′(θ±) = 0. This implies this curve is

no longer invariant if |b| > b∗. Note that, for a = 1 and b < b∗, η is still an invariant curve but
it is not the only invariant curve, and it is unique again for a = 1 and b = b∗. The details are
discussed in Section 2.3.

For any a > 0, it follows that the image of the set {(x, θ) such that x ≥ π/(2a), θ ∈ T1} is
the curve φ0(θ) = π/2 + b sin(θ − ω).

Lemma 1. If a > 0 and 0 ≤ b ≤ b∗, we have that

min
θ∈T

(φ0(θ)− η(θ)) =
π

2
− ab√

1 + a2 − 2a cosω
= amin

θ∈T

( π
2a

− η(θ)
)
.

Moreover, the first minimum is attained at the single point θ0 = θ−+ω and the second minimum
is attained at the single point θ− = θ0 − ω.

Proof: By taking derivatives, it is easy to see that the angle θ0 for which we have the minimum
distance satisfies:

cos θ0 =
β√

α2 + β2
, sin θ0 = − α√

α2 + β2
,

where

α =
ab(1 + a cosω − 2 cos2 ω)

1− 2a cosω + a2
, β =

ab sinω(a− 2 cosω)

1− 2a cosω + a2
.

Moreover,

φ0(θ0)− η(θ0) =
π

2
−
√
α2 + β2,

and then

φ0(θ0)− η(θ0) =
π

2
− ab√

1 + a2 − 2a cosω
.

To see that θ0 = θ− + ω we note that (5) implies

φ0(θ)− η(θ) = a
( π
2a

− η(θ − ω)
)
, ∀θ ∈ T. (8)

As the maximum of η is attained at θ−, the minimum of a(π/(2a)− η(θ)) is attained at θ−, and
using (8) we deduce that θ− = θ0 − ω. □

As a conclusion, we have that φ(θ0) = η(θ0) if and only if b = b∗, and that the curves are
disjoint if b < b∗. If b > b∗ the two curves meet transversally in two points. Finally, η is self-
symmetric by the symmetry of the map S : (x, θ) 7→ (−x, θ + π). This symmetry also implies
that if we replace φ0(θ) by γ0(θ) = −π

2 + b sin(θ−ω) the distance between γ0 and η is the same
as the distance between φ0 and η.

Lemma 2. We recall that φ0(θ) = π/2 + b sin(θ − ω) and that γ0(θ) = −π
2 + b sin(θ − ω). Let

us define λ0 = φ0 − η, and

φn+1(θ) = ha(φn(θ − ω)) + b sin(θ − ω),

γn+1(θ) = ha(γn(θ − ω)) + b sin(θ − ω),

λn+1(θ) = ha(λn(θ − ω) + η(θ − ω))− aη(θ − ω).

for all n ≥ 0. Then, if a > 0, we have that
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1. λn = φn − η for any n ≥ 0,

2. if 0 ≤ b ≤ b∗, then λn ≥ 0,

3. the sequences {φn}n≥0 and {λn}n≥0 are decreasing and {γn}n≥0 is increasing.

Proof:

1. By definition it is true for n = 0, so we will proceed by induction: we assume that it is
true for n− 1, and we show it holds for n.

λn(θ) = ha(λn−1(θ − ω) + η(θ − ω))− aη(θ − ω)

= ha(φn−1(θ − ω))− η(θ) + b sin(θ − ω) = φn(θ)− η(θ),

where we have used that η(θ) = aη(θ − ω) + b sin(θ − ω).

2. This follows from Lemma 1.

3. Let us start by showing that φ1 ≤ φ0:

φ1(θ) = ha(φ0(θ − ω)) + b sin(θ − ω) ≤ π

2
+ b sin(θ − ω) = φ0(θ).

Now, using that ha is an increasing function we can easily check that if φn−1 ≤ φn−2 then
φn ≤ φn−1 and the result on {φn}n follows by induction. To show that {γn}n is increasing
we can use a similar proof, or simply to recall that γn is the mirror image of φn by the
symmetry S. Finally, as λn = φn − η we have that {λn}n is decreasing. □

For each b ∈ [0, b∗] we consider the following subsets of R× T1,

A+ = {(x, θ) ∈ R× T1 | η(θ) ≤ x ≤ π/2 + b sin(θ − ω)},
A− = {(x, θ) ∈ R× T1 | − π/2 + b sin(θ − ω) ≤ x ≤ η(θ)}.

Note that S(A+) = A− and viceversa. In what follows we focus on the set A+, and the results
will be translated to A− by the symmetry S.

Lemma 3. If a > 0 and |b| ≤ b∗, then Fa,b(A+) ⊂ A+.

Proof: If (x, θ) ∈ A+ we can distinguish two cases:

1. If x ≥ π/(2a) then Fa,b(x, θ) = (π/2 + b sin(θ), θ + ω) ∈ A+.

2. If η(θ) ≤ x ≤ π/(2a) then η(θ + ω) = aη(θ) + b sin(θ) ≤ ax + b sin(θ) ≤ π/2 + b sin(θ), and
this also implies that Fa,b(x, θ) ∈ A+. □

Then, we have a compact invariant set given by

Λ+ =
∞⋂
n=0

Fn
a,b(A+).

As, for each θ, {φn(θ)}n is a decreasing sequence that is bounded from below (by η(θ)), it has
a limit. Therefore, the pointwise limit of {φn}n is an at least upper semicontinuous invariant
curve φ∞ contained in Λ+. Moreover, (x, θ) ∈ Λ+ if and only if η(θ) ≤ x ≤ φ∞(θ).
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As {λn(θ)}n is decreasing and bounded from below by 0, it has a limit λ(θ) = limn→∞ λn(θ)
that is at least upper semi-continuous. We have

λn+1(θ) =

{
π/2− aη(θ − ω) if λn(θ − ω) + η(θ − ω) ≥ π/(2a),
aλn(θ − ω) if λn(θ − ω) + η(θ − ω) ≤ π/(2a).

(9)

Now, we define

In = {θ ∈ T1 | λn(θ − ω) + η(θ − ω) ≥ π/(2a)}.

Note that if θ ∈ In+1 then

λn(θ − ω) + η(θ − ω) ≥ λn+1(θ − ω) + η(θ − ω) ≥ π/(2a),

which implies that In+1 ⊂ In. Then I =
⋂∞

i=0 In ̸= ∅ is a compact set such that if θ ∈ I then

λ(θ) =
π

2
− aη(θ − ω).

2.1 A strange non-chaotic attractor

In this section we assume that a > 1 is fixed and that b = b∗. As a side comment, it easily follows
from (7) that b∗ → π/2 when a → ∞. The goal here is to show that the repelling continuous
invariant curve η and the two attracting invariant curves φ∞(θ) and γ∞(θ),

−π
2
+ b sin(θ − ω) ≤ γ∞(θ) ≤ η(θ) ≤ φ∞(θ) ≤ π

2
+ b sin(θ − ω),

are such that γ∞(θ) is lower semicontinuous, φ∞(θ) is upper semicontinuous and all three curves
are different. Each of the curves φ∞, γ∞ intersects η on a dense set of zero measure of values of
θ. This means that the curves φ∞, γ∞ are not continuous everywhere.

Lemma 4. Let us define θ0 as the only zero of λ0 = φ0 − η . Then, λn has exactly n+ 1 zeros
at θ0, θ0 + ω, . . . , θ0 + nω.

Proof: Given any value n ≥ 1, we note that

Fn−1
a,b∗(a)(η(θ0 − nω), θ0 − nω) = (η(θ0 − ω), θ0 − ω),

Fn−1
a,b∗(a)(φ0(θ0 − nω), θ0 − nω) = (φn−1(θ0 − ω), θ0 − ω).

As η(θ0 − ω) = π/(2a) and φn−1(θ0 − ω) ≥ η(θ0 − ω) we have that

Fa,b∗(a)(η(θ0 − ω), θ0 − ω) = Fa,b∗(a)(φn−1(θ0 − ω), θ0 − ω)

and this implies that λn(θ0) = φn(θ0) − η(θ0) is zero. To complete the existence of the n + 1
zeros note that, if θ is a zero of λn then from (9) it follows that λn+1(θ + ω) = aλn(θ) = 0.

To see that these are the only zeroes, we start from the fact that λ0 has only one zero and
we proceed by induction. If the result is true for n ≥ 0 and we assume that λn+1 has an extra
zero θ1 then from (9) there are two possibilities: i) π/2− aη(θ1 − ω) = 0, or ii) λn(θ1 − ω) = 0.
For the first option, note that π/2− aη(θ1 − ω) = λ0(θ1) which contradicts the fact that λ0 has
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θ0 as its only zero. The second option implies that λn has an extra zero. We can repeat this
reasoning until we show (either using i) or ii)) that λ0 has an extra zero. □

Moreover, we have that λ0(θ0) = 0 and λ0(θ) > 0, for all θ ∈ T1 \ {θ0}. Then, λn(θ) has
n + 1 double zeros at θ0, θ0 + ω, . . . , θ0 + nω. This implies that λ(θ) is equal to zero in all
the forward orbit of θ0. Note that, when λn(θ) is very small it means that φn(θ) is very close
to η(θ) so it implies that λn+1(θ + ω) = aλn(θ). This justifies to define, by continuity, that
λn+1(θ + ω)/λn(θ) = a when λn(θ) = 0. Therefore, we define

ψn(θ) =


λn+1(θ + ω)

λn(θ)
if λn(θ) ̸= 0,

a if λn(θ) = 0.

(10)

We note that ψn(θ) > 0 for all θ ∈ T1 \ {θ0 − ω}.

Lemma 5. For a ≥ 1 and every n ≥ 1,

0 ≤ ψn−1(θ) ≤ ψn(θ) ≤ a,

for all θ ∈ T1.

Proof: It is clear that

ψn(θ) =


λ0(θ + ω)

λn(θ)
if λn(θ) + η(θ) ≥ π/(2a),

a if λn(θ) + η(θ) ≤ π/(2a).

(11)

Now we have to distinguish several cases, depending on the pieces of the map ha.

1) λn−1(θ) + η(θ) ≥ π/(2a).

1.a) λn(θ) + η(θ) ≥ π/(2a). In this case,

ψn−1(θ) =
λ0(θ + ω)

λn−1(θ)
and ψn(θ) =

λ0(θ + ω)

λn(θ)
.

Then, as λn(θ) ≤ λn−1(θ) we have that ψn(θ) ≥ ψn−1(θ).

1.b) λn(θ) + η(θ) ≤ π/(2a). Here,

ψn−1(θ) =
λ0(θ + ω)

λn−1(θ)
and ψn(θ) = a.

Now, because λn−1(θ) + η(θ) ≥ π/(2a) we obtain

λn−1(θ) ≥
π

2a
− η(θ) =

1

a

(π
2
− aη(θ)

)
=

1

a
λ0(θ + ω),

and, therefore, ψn(θ) ≥ ψn−1(θ).

2) λn−1(θ) + η(θ) ≤ π/(2a). In this situation, as we also have λn(θ) + η(θ) ≤ π/(2a), we
conclude that ψn(θ) = ψn−1(θ) = a.
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To complete the proof, we use (11):

ψn(θ) =
λ0(θ + ω)

λn(θ)
≤ λ0(θ + ω)

π
2a − η(θ)

=
λ0(θ + ω)

λ0(θ + ω)/a
= a.

□

Lemma 6. The sequence {ψn}n converges pointwise to a measurable and integrable function ψ,
and ∫ 2π

0
logψ(θ) dθ ≤ 0.

Proof: Let us see first that the functions logψn are integrable. As Lemma 5 shows that
0 ≤ ψn ≤ a and ψ0 ≤ ψn, we only have to see that logψ0 is integrable. This follows from the
fact that

ψ0(θ) =


π/2− aη(θ)

π/2− aη(θ − ω)
if λ0(θ) + η(θ) ≥ π/(2a),

a if λ0(θ) + η(θ) ≤ π/(2a),

that is, ψ0 is well defined, continuous and it only takes the value 0 for a single value of θ = θ0,
which is a zero of multiplicity two. This implies that logψ0 is integrable and, therefore, all
logψn are integrable. Moreover, as {λn(θ)}n is a decreasing sequence for all θ we have that, for
a set of values of θ of full measure (those for which λn(θ) ̸= 0),

ψn(θ) ≤
λn(θ + ω)

λn(θ)
.

Hence, for those values of θ,

logψn(θ) ≤ log λn(θ + ω)− log λn(θ).

As log λn is an integrable function (the zeroes of λn are of multiplicity 2), we have that∫ 2π

0
logψn(θ) dθ ≤

∫ 2π

0
log λn(θ + ω) dθ −

∫ 2π

0
log λn(θ) dθ = 0.

Finally, using the dominated convergence theorem, the statement follows. □

Theorem 2.1. For each θ ∈ T1, let us consider the sequence {φn(θ)}n.

a) The sequence {φn(θ)}n has a limit for each θ, and the function φ∞ defined as the point
limit

φ∞(θ) = lim
n→∞

φn(θ),

is upper semicontinuous and invariant.

b) The set A = {θ ∈ T1 such that φ∞(θ) = η(θ)} is dense and it has zero Lebesgue measure.

Proof:
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a) We note that φ∞ is well-defined since, for each θ, the sequence {φn(θ)}n is decreasing
and bounded from below. This also implies that the function φ∞ is upper semicontinuous. The
invariance follows from the definition of the sequence φn,

φn+1(θ) = ha(φn(θ − ω)) + b∗ sin(θ − ω).

b) As θ0 belongs to A, all the points θ0 + kω, k ∈ N, belong to A. Since ω/(2π) is irrational,
A is dense in T1. To show that A has zero Lebesgue measure we will show first that

A \ {θ0 − ω} ⊂ {θ ∈ T1 such that ψ(θ) = a}.

To see it, let us select an arbitrary point θ ∈ A, θ ̸= θ0 − ω. Then, φ∞(θ) = η(θ) < π/(2a).
Therefore, there exists a value n0 (depending on θ) such that φn(θ) < π/(2a) for n ≥ n0. This
implies that λn+1(θ+ω) = aλn(θ) and this is equivalent to ψn(θ) = a for all n ≥ n0 and, hence,
ψ(θ) = a. To complete this part, let us assume that the Lebesgue measure of A is not zero.
Then, by ergodicity, A has to have total measure. This implies that the measure of the set of
values of θ such that ψ(θ) = a has total measure and then, since a > 1,∫ 2π

0
logψ(θ) dθ = log a > 0,

which contradicts Lemma 6. Therefore, A has zero measure. □

Let us now focus on Lyapunov exponents. It is well known that the Lyapunov exponent of
an invariant curve ϕ of a smooth map is

Λ =
1

2π

∫ 2π

0
log(|∂xf(ϕ(θ), θ)|) dθ. (12)

In our case, f(x, θ) = ha(x) + b sin θ and ha is piecewise linear, and its derivative is well defined
except in two points, x = ±π/(2a). Moreover, the attracting curve φ∞ crosses x = π/(2a), which
means that we cannot directly write the formula (12) since the derivative w.r.t. x is not well
defined at x = π/(2a). On the other hand, ha has left and right derivatives at x = π/(2a) equal
to a and 0 respectively. The value a corresponds to an expansion (a > 1) while 0 corresponds to
a compression. For the moment being, let us define the derivative of ha at x = π/(2a) as a and
let us compute the Lyapunov exponent of φ∞. We note that, with this assumption, the curve
φ∞ will be considered “as repelling as possible”.

Proposition 1. The Lyapunov exponent of φ∞ is −∞.

Proof: Let us first show that the measure of the set

B = {θ ∈ T1 such that φ∞(θ) > π/(2a)},

is strictly positive. To see it, let us assume that it is zero. Then, we consider λ = φ∞ − η and
let us show that all the Fourier coefficients of λ, λ(k), are zero:

λ(k) =
1

2π

∫ 2π

0
λ(θ)e−kωi dθ =

1

2π

∫
T1\B

λ(θ)e−kωi dθ.
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As φ∞(θ) ≤ π/(2a) for θ ∈ T1 \ B, the functions φ∞ and η take values on [−π/(2a), π/(2a)]
and, as they are invariant, we have that λ(θ + ω) = aλ(θ), which forces that λ(k)ekωi = aλ(k)

and, as a > 1, we conclude λ(k) = 0 and then λ = 0 a.e., which contradicts b).

Now,

Λ =
1

2π

∫ 2π

0
log
(
h′a(φ∞(θ))

)
dθ

=
1

2π

(∫
B
log
(
h′a(φ∞(θ))

)
dθ +

∫
T1\B

log
(
h′a(φ∞(θ))

)
dθ

)
=

1

2π

(
(−∞)meas (B) + (log a)meas

(
T1 \B

))
= −∞,

because meas (B) > 0. □

Remark 1. Note that the value assigned to h′(π/(2a)) is irrelevant as long as it is finite.

Proposition 2. There exists a set E ⊂ T1 with total Lebesgue measure such that, for any point
(x0, θ0) ∈ R× E such that x0 > η(θ0), the orbit (xn+1, θn+1) = Fa,b∗(xn, θn) satisfies that there
exists a natural value m = m(x0, θ0) such that xm = φ∞(θm). That is, the orbit starting at
(x0, θ0) arrives to the attracting curve φ∞ in a finite number of iterates.

Proof: Let us choose an arbitrary point (x0, θ0) (for the moment being, θ0 ∈ T1). As x0 > η(θ0),
we have that η(θn) < xn (n ≥ 0). Let us define the rotation Tω : T1 → T1 as Tω(θ) = θ+ω. We
recall that we have defined the set B as

B = {θ ∈ T1 such that φ∞(θ) > π/(2a)},

Then, we define the set C as

C =
⋃
n∈N

T−n
ω (B).

As the Lebesgue measure is invariant and ergodic by Tω (recall that ω is irrational), using
Theorem 1.5 in [Wal82] we obtain that C has total measure. Now, we distinguish several cases.

a) Case φ∞(θ0) ≤ x0, θ0 ∈ C.

As θ0 ∈ C, there exists a value n0 ∈ N such that θn0 = Tn0
ω (θ0) ∈ B. Then, we have that

π/(2a) < φ∞(θn0) ≤ xn0 , and this implies that φ∞(θn0+1) = xn0+1.

b) Case η(θ0) < x0 ≤ φ∞(θ0), θ0 ∈ D = {θ ∈ T1 such that φ∞(θ) ̸= η(θ)}.
We note that this is a total measure set. First, let us note that there exists n0 ∈ N ∪ {0}
such that xn0 > π/(2a) (otherwise, we would have that xn − η(θn) = an(x0 − η(θ0)) and
then xn would become unbounded). Then, xn0+1 = φ0(θn0+1) ≤ φ∞(θn0+1) and, on the
other hand, φ0(θn0+1) ≥ φ∞(θn0+1), which implies xn0+1 = φ∞(θn0+1).

To complete the proof we define E = C ∩D, which is also of full measure. □

Remark 2. As we have mentioned before, we can use the symmetry S to transport these results
to the set A−. So, we can define φ−(θ) = −φ∞(θ + π) and then it is a lower semicontinuous
function such that the set {θ ∈ T1 such that γ∞(θ) = η(θ)} is dense and it has zero Lebesgue
measure. Moreover, the Lyapunov exponent of γ∞ is −∞ and the orbit starting at an arbitrary
point (x0, θ0) such that x0 < η(θ0) arrives to γ∞ in a finite number of iterates.
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2.2 Non-smooth pitchfork bifurcation

In this section we still assume that a > 1. The goal here is to show that, for 0 < b < b∗, the map
Fa,b has three continuous invariant curves, one repelling and two attracting, and for b > b∗, the
map Fa,b has only one invariant curve which is continuous and attracting. We have already seen
in Section 2.1 that, when b = b∗, the two attracting curves that existed for 0 < b < b∗ collide
with the repelling curve creating a strange non-chaotic attractor.

2.2.1 Three invariant curves

Let us start with the case b < b∗. The existence of a repelling curve η has already been shown
at the beginning of Section 2. Note that we only need to show the existence of an attracting
invariant curve above η, since by means of the symmetry S we will obtain immediately the
existence of another attracting invariant curve below η.

Proposition 3. If 0 < b < b∗ there exists a unique continuous attracting invariant curve φ∞
such that η(θ) < φ∞(θ) ≤ φ0(θ) = π/2 + b sin(θ − ω) for all θ ∈ T1.

Proof: Let us define δb > 0 as (see Lemma 1)

δb = min
θ∈T

( π
2a

− η
)
=

π

2a
− b√

1 + a2 − 2a cosω
> 0,

and let us also define η0(θ) = η(θ) + δb. Obviously, η0(θ) ∈ [−π/(2a), π/(2a)]. Moreover,
Lemma 1 also implies that η0(θ) ≤ φ0(θ). Next, let us define the sequences

ηn(θ) = ha(ηn−1(θ − ω)) + b sin(θ − ω), φn(θ) = ha(φn−1(θ − ω)) + b sin(θ − ω),

for n ≥ 1 and for all θ ∈ T. Let us see that η0(θ) ≤ η1(θ):

η1(θ) = ha(η0(θ − ω)) + b sin(θ − ω) = aη0(θ − ω) + b sin(θ − ω)

= aη(θ − ω) + aδb + b sin(θ − ω) = η(θ) + δb + (a− 1)δb > η0(θ).

The monotonicity of ha implies that ηn(θ) ≥ ηn−1(θ) and ηn(θ) ≤ φn(θ) for all n ≥ 1 and
θ ∈ T. Therefore, the sequence {ηn}n≥0 is increasing and bounded from above, which implies
that it is pointwise convergent to a lower semicontinuous invariant curve η∞. We have seen in
Lemma 2 that the sequence {φn}n≥0 is decreasing and bounded from below, which implies that
it is pointwise convergent to an upper semicontinuous invariant curve φ∞.

To complete the proof, we will show that η∞ = φ∞. To this end, let us choose a fixed
θ0 ∈ T and let us consider the images of (η0(θ0), θ0) by the map Fa,b. It is clear that η0(θ0) ∈
[−π/(2a), π/(2a)], and the iterates of this point are defined as

Fn
a,b(η0(θ0), θ0) = (ηn(θ0 + nω), θ0 + nω).

Let us see that, after a suitable number (n0) of iterates of the map Fa,b, the first component
satisfies ηn0(θ0+n0ω) > π/(2a). So, assume that this is not true. This would imply that, for all
n, we have ηn(θ0+nω) = η(θ+nω)+anδb which is absurd since anδb is not bounded. Therefore,
by continuity of the maps ηn, there exists a small open neighbourhood I0 of θ0 such that, for
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all θ ∈ I0, we have that ηn0(θ + n0ω) > π/(2a). The definition of the map Fa,b implies that the
next image of these points satisfies that ηn0+1(θ + (n0 + 1)ω) = φ0(θ + (n0 + 1)ω) for all θ ∈ I0
which means that, on the set I0, the two limit curves η∞ and φ∞ coincide. Finally, as the two
curves are invariant and coincide on an open set, they must be equal. Moreover, this attracting
invariant curve is continuous. □

2.2.2 One invariant curve

Here we consider the case b > b∗. We proceed in a similar way as in the previous section.

Proposition 4. If a ≥ 1 and b > b∗ there exists a unique, self-symmetric continuous attracting
invariant curve.

Proof: Let us consider the sequences {φn}n≥0 and {γn}n≥0 that have been defined in Lemma 2,
with pointwise limits φ∞ and γ∞ respectively. We recall that φ∞ and γ∞ are related by the
symmetry S. To show that φ∞ = γ∞ (this also implies that they are continuous and self-
symmetric) we will show that φn coincides with γn for n large enough. To this end, we will
prove first that there exists a point θ0 such that, for a suitable n1, φn1 coincides with γn1 on an
open neighbourhood of θ0. Then, we will show that this implies that φn2 = γn2 for a suitable
n2 > n1. Let us see the details.

Let θ0 be the value that minimizes φ0(θ)− η(θ). According to Lemma 1,

φ0(θ0)− η(θ0) =
π

2
− ab√

1 + a2 − 2a cosω
= amin

θ∈T

( π
2a

− η(θ)
)
, (13)

and, if b > b∗, we have that φ0(θ0) − η(θ0) < 0. Let us see that there exists n0 ≥ 0 such that
φn0(θ0 + n0ω) < −π/(2a). First, from (13) we see that

φ0(θ0)− η(θ0) ≤ a
( π
2a

− η(θ0)
)
<

π

2a
− η(θ0),

which implies that φ0(θ0) < π/(2a). If φ0(θ0) < −π/(2a) then n0 = 0. Otherwise, let us consider
the points φn(θ0+nω) and note that they cannot be inside [−π/(2a), π/(2a)] for all n because, if
they are inside this interval they must satisfy that φn(θ0+nω)−η(θ0+nω) = an(φ0(θ0)−η(θ0))
which means that the distance from φn to η is unbounded and this is impossible. Therefore, let
us define n0 as the first value of n for which φn(θ0 + nω) is outside [−π/(2a), π/(2a)]. Hence,
using that min (π/(2a)− η(θ)) < 0 we have

φn0(θ0 + n0ω)− η(θ0 + n0ω) = an0+1min
θ∈T

( π
2a

− η(θ)
)
≤ min

θ∈T

( π
2a

− η(θ)
)
≤ π

2a
− η(θ0 + n0ω),

which implies that φn0(θ0 + n0ω) ≤ π/(2a) and, as φn0(θ0 + n0ω) is outside [−π/(2a), π/(2a)],
we conclude that φn0(θ0 + n0ω) < −π/(2a).

By continuity, there exists an open neighbourhood I0 of θ0 such that φn0(θ+n0ω) < −π/(2a)
for all θ ∈ I0. This means that φn0+1(θ+(n0 +1)ω) = γ0(θ+(n0 +1)ω) for all θ ∈ I0. Defining
n1 = n0 + 1, this forces that φn1(θ + n1ω) = γ0(θ + n1ω) = φ∞(θ + n1ω) = γ∞(θ + n1ω)
for all θ ∈ I0. This implies, as the sequence {γn}n is increasing and bounded by γ∞, that
φn1(θ+ n1ω) = γn1(θ+ n1ω). Moreover, φn(θ+ nω) = γn(θ+ nω) for n ≥ n1 and, as ω /∈ 2πQ,
we conclude that there exists n2 ≥ n1 such that φn2 = γn2 = φ∞ = γ∞. □
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2.3 The case a ≤ 1

Let us focus first with the case a < 1, b ≥ 0. If C(T,R) denotes the vector space of continuous
functions from T to R endowed with the sup norm, it is clear that an invariant curve of Fa,b is
a fixed point of the map F : C(T,R) → C(T,R) defined as

F(φ)(θ) = ha(φ(θ − ω))− b sin(θ − ω).

It is immediate to check that F is a Lipschitz function with Lipschitz constant a < 1 so it is
contractive. Then, the Banach fixed point theorem implies that there exists a unique invariant
curve in C(T,R).

Now let us consider the case a = 1. This is a degenerate case, for instance for 0 < b < b∗

there is a continuous family of invariant curves: Lemma 1 implies that the invariant curve η
defined in (6) is at a finite distance db of x = ±π/2 and then all the curves η + δ with δ a
constant such that |δ| ≤ db are also invariant. If b = b∗ then δ = 0 and this set of invariant
curves reduces to a single one, η. The distance db is attained at a some angle θ0. As η + db is
an invariant curve, we have that η + db ≤ φ∞ ≤ φ0. Moreover, φ0(θ0) = η(θ0) + db and then
φ∞(θ0) = η(θ0) + db. To see that these are the only invariant curves let us discuss the different
options separately.

a = 1, 0 < b < b∗. Let us consider the sequence {λn}n defined in Lemma 2 and then the sequence
{ψn}n defined in (10). Lemma 5 shows that the sequence {ψn}n is increasing and bounded
by 1. Moreover, as λn(θ) is never zero, (10) implies that

ψn(θ) =
λn+1(θ + ω)

λn(θ)
≤ 1, (14)

and, as λ(θ) = limn→∞ λn(θ), then

λ(θ + ω) ≤ λ(θ) for all θ ∈ T1. (15)

As λ is an upper semicontinuous function, let us see that the previous inequality implies
that λ is a constant function. To this end, we choose two arbitrary values θ̂ and θ̃ to show
that λ(θ̂) ≤ λ(θ̃): as ω /∈ 2πQ we select an integer sequence {kn}n, kn > 0, such that
{θ̂ − knω}n tends to θ̃. Using (15) we have that the sequence {λ(θ̂ − knω)}n is increasing
and λ(θ̂) ≤ λ(θ̂ − knω) for all n. Therefore,

λ(θ̂) ≤ lim
n→∞

λ(θ̂ − knω) ≤ λ(θ̃).

This scheme can also be used to show that λ(θ̃) ≤ λ(θ̂), to conclude that λ is a constant
function. Therefore, as we have seen above that λ(θ0) = db, we conclude that λ ≡ db. To
finish this case, we note that any invariant curve must be either above or below η. If it is
above, then it must be contained between φn and η for all n, so it must be between φ∞
and η. Therefore, it must be one of the invariant curves η + δ for 0 ≤ δ ≤ db. Finally, if
the invariant curve is below η we arrive to the same conclusion by using the symmetry S.

a = 1, b = b∗. The idea is to prove (15) and then the proof is exactly the same as in the previous
item. The main difference to define ψn is that we have to take into account that λ can be
zero. If θ is a value such that λ(θ) = 0, then λ(θ + ω) = 0 and (15) holds. If λ(θ) ̸= 0
then there exists a n0 such that if n ≥ n0, λn(θ) > 0. Therefore, (14) holds and then (15)
holds.

a = 1, b > b∗. This case is included in Proposition 4.
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2.4 A codimension two bifurcation

It is interesting to compare these results with the ones in [JMAT18] for the model (3). To
simplify this comparison, we focus on the case where ω is the golden mean, ω = π(

√
5− 1). In

the model (3), if the parameter a > 1 is close enough to 1, there is a smooth pitchfork bifurcation
of invariant curves, going from three curves (two attracting and one repelling) for b small that
merge into one neutral curve when b reaches a critical value b∗ that becomes attracting when
b > b∗. This picture changes drastically when a is large enough: there is still three smooth
curves for b small and one curve for b large, but the neutral bifurcating curve does not look
like a continuous curve but a SNA. The paper [JMAT18] contains a numerical computation of
the pitchfork bifurcating invariant curve starting from low values of a (where still is a smooth
curve) and going up in a from there. It turns out that these bifurcating curves becomes more
and more wrinkled until the number of Fourier modes needed to approximate them becomes
very large (near 5×107) and the computation is stopped. The last computed curve corresponds
to (a, b) = (5.348847, 1.905990). The numerical simulations seem to show that, shortly after this
point (i.e., for larger values of a), there exists critical values for the parameters, namely (â, b̂)
such that, from this point on, the smooth bifurcating curve is replaced by a SNA.

This situation is very similar to what happens in the model (1), where all the previous
calculations are done explicitly in the previous sections. We have seen that

1. the critical value (â, b̂) is here (1, π
√
2− 2 cosω/2),

2. there exists a curve (a, b∗(a)), defined for a ≥ 1, such that, for a > 1, the model has a
SNA for each point of this curve,

3. for a > 1, if we cross transversally the previous curve there is a nonsmooth pitchfork
bifurcation of invariant curves,

4. for 0 < a < 1 and b < b̂, there is only a smooth attracting invariant curve that, if we
increase the value of a (and keeping the value of b), this curve becomes three invariant
curves after crossing a = 1.

These properties are also shown in Figure 2. We note that the critical value (â, b̂) seems to play
the same role in both models. It is remarkable that to unfold all the possible behaviours of the
system around this point two parameters are needed.

3 A piecewise constant quasiperiodically forced map

Here we focus on the pointwise limit case when a → ∞ (either in (2) or (3)), that is, the map
(x̄, θ̄) = Fb(x, θ) defined as {

x̄ = h(x) + b sin θ,

θ̄ = θ + ω mod 2π,
(16)

where b > 0 and now h is defined as

h(x) =


−π
2

if x < 0,

0 if x = 0,
π

2
if x > 0.
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As before, we assume ω to be irrational (ω /∈ 2πQ). We are interested in the existence of
invariant curves, that in this case do not need to be continuous.

It follows from (7) that, when a tends to infinity, the critical value b∗(a) tends to π/2. It is
also immediate to see that, if 0 < b < π/2, the map (16) has two smooth attracting invariant
curves given by φ0(θ) = π/2 + b sin(θ − ω) and γ0(θ) = −π/2 + b sin(θ − ω).

3.1 The case b = π/2

This case is similar to the previous one, in the sense that for a total measure set of values
of θ the attractor lies on two disjoint attracting curves, φ0(θ) = π/2 + (π/2) sin(θ − ω) and
γ0(θ) = −π/2+(π/2) sin(θ−ω). The difference with the case b < π/2 comes from the orbits for
which φ0 or γ0 takes the value zero. It is clear that γ0(θ) is zero when θ = π/2 + ω and φ0(θ)
is zero when θ = 3π/2 + ω. We distinguish two cases, based on the sign of sin(π/2 + ω) (note
that this value cannot be zero since then ω would belong to 2πQ).

The first case is when sin(π/2+ω) < 0 (and, therefore, sin(3π/2+ω) > 0). In this case there
are two disjoint attracting curves. One of these curves coincides with γ0 except for one point:
at π/2 + 2ω it takes the value (π/2) sin(π/2 + ω). The other curve coincides with φ0 except for
the point 3π/2 + 2ω where it takes the value (π/2) sin(3π/2 + ω).

The second case is when sin(π/2+ω) > 0 (and, therefore, sin(3π/2+ω) < 0). Here, the orbit
on the curve γ0 that reaches the value x = 0 for θ = π/2 + ω is sent to x = (π/2) sin(π/2 + ω)
which is negative so the next iterate falls on the curve φ0 and stays there. Similarly, there is
an orbit on φ0 that ends on γ0. So the attracting set can be described as the union of two
discontinuous curves.

3.2 The case b > π/2

As we will see, in this case there is only one invariant curve, which is attracting and discontinuous.

Theorem 3.1. When b > π
2 the dynamical system (16) has a unique discontinuous attracting

invariant curve. Moreover,

a) the number of discontinuities is at least 2,

b) when b→ (π2 )
+ the number of discontinuities tends to infinity.

Proof: As before, we denote φ0(θ) = π/2 + b sin(θ − ω) and γ0(θ) = −π/2 + b sin(θ − ω) that
are not invariant since now b > π/2. It is clear that the set between the two curves,

A = {(x, θ) ∈ R× T1 | γ0(θ) ≤ x ≤ φ0(θ)},

is invariant by the map Fb. It is clear that the set

Ω =
∞⋂
n=0

Fn
b (A),

is non-empty and satisfies that Fb(Ω) = Ω. Let us define γn(θ) = h(γn−1(θ − ω)) + b sin(θ − ω)
and φn(θ) = h(φn−1(θ−ω))+b sin(θ−ω). Both sequences are bounded, {γn}n is increasing and
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{φn}n is decreasing. Therefore, we can define the functions γ∞ and φ∞ as the pointwise limit
of these sequences. Moreover, as γ0 is the image of φ0 by the symmetry S (and viceversa), we
have that γn is also the image of φn by S, and then γ∞ is the image of φ∞ by S, and viceversa.

If we define the map σ as σ(θ) = b sin(θ − ω) we have that

Im (γ∞) ∪ Im (φ∞) ⊂ Im (γ0) ∪ Im (φ0) ∪ Im (σ) .

If θ is such that φ∞(θ) ̸= 0, then we can consider φn(θ) = h(φn−1(θ − ω)) + b sin(θ − ω) and
taking limits to both sides we can obtain φ∞(θ) = h(φ∞(θ − ω)) + b sin(θ − ω). Analogously,

if γ∞(θ) ̸= 0 we can obtain γ∞(θ) = h(γ∞(θ − ω)) + b sin(θ − ω). Let us denote by θ
(0)
1,2 the

two zeros of φ0 and θ
(0)
3,4 the two zeros of γ0. Let us consider the set T defined as the result of

removing the set of values {(θ(0)j + kω) mod 2π | k ∈ N, 1 ≤ j ≤ 4} from T1. Let us define the
map φ̃∞ as follows: if θ ∈ T , φ̃∞(θ) = φ∞(θ) and, if θ /∈ T , we define its value recurrently

φ̃∞(θ
(0)
j + kω) = h(φ̃∞(θ

(0)
j + (k − 1)ω)) + b sin(φ̃∞(θ

(0)
j + (k − 1)ω)), k ≥ 1.

We note that φ̃∞ is an invariant, not necessarily continuous, curve. The curve γ̃∞ can be defined
analogously. On the other hand, there exist an open interval I1 on which the two functions φ0

and γ0 are strictly positive (and hence, due to the symmetry S, they are strictly negative on the
interval I1 + π). This implies that φ1 and γ1 coincide on I1. As

γn(θ) ≤ γ̃∞(θ) ≤ φ̃∞(θ) ≤ φn(θ), θ ∈ T1, n ≥ 0,

then γ̃∞ and φ̃∞ coincide on the interval I1. As both are invariant, they must coincide. Finally,
let us note that γ̃∞ and γ∞ (respectively φ̃∞ and φ∞) are identical except on a finite (and strictly
positive) number of values of θ. This implies that γ∞ and φ∞ are also identical except on a finite
number of points. In summary, we have shown that there exists an attracting invariant curve
φ̃∞ (or γ̃∞ since they are identical) which is unique, and that the number of discontinuities is
at least 2, so item a) is proved.

To prove item b), let us define θ0 as the minimum of φ0, so θ0 = −π/2 + ω. The symmetry
S implies that θ1 = π/2 + ω is the maximum of γ0. Let us also define the sets

Θ
(i)
M = {θi + kω (mod 2π) | k = 1, . . . ,M}, i = 0, 1.

Note that, for all M ∈ N, the fact ω /∈ 2πQ implies Θ
(0)
M ∩Θ

(1)
M = ∅ and 0 /∈ Θ

(0)
M ∪Θ

(1)
M (if not,

then ω ∈ 2πQ). Let us see that, for a given number of discontinuities nd, there exist a value
bnd

> π/2 such that the attracting curve has at least nd discontinuities for b ∈ (π/2, bnd
]. To

this end, we will construct nd intervals where the attractor is on φ0 and another nd intervals,
interspersed with the previous intervals, where the attractor is on γ0. This will guarantee the
existence of more than nd discontinuities. To this end, let us choose a value Mnd

such that each

of the sets Θ
(0)
M and Θ

(1)
M contain nd points that are interspersed with points of the other set: in

other words, there exist angles 0 < α1 < · · · < αnd
< 2π in Θ

(0)
M and 0 < β1 < · · · < βnd

< 2π

in Θ
(1)
M such that αj < βj for j = 1, . . . , nd. The existence of these angles is ensured by the fact

that both Θ
(0)
M and Θ

(1)
M fill densely the circle whenM → ∞. The final step is to construct small

open intervals, Iαj , Iβj
, with αj ∈ Iαj and βj ∈ Iβj

and such that the attractor is on γ0 for Iαj

and on φ0 for Iβj
. Let us start by defining the intervals Iθi = (θi − δ, θi + δ), i = 0, 1. Let δ > 0
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be such that all the intervals Iθi+kω (i = 0, 1, 0 ≤ k ≤Mnd
) are disjoint. We note that δ goes to

zero when nd goes to infinity. Now, let us choose a value of b, bnd
, such that the interval centered

in θ0 and of radius δ, Iθ0 , is the largest open interval centered in θ0 such that φ0(Iθ0) < 0. By
symmetry, Iθ1 = Iθ0 + π is the largest open interval centered in θ1 such that γ0(Iθ1) > 0. Then,
the attracting invariant curve φ̃∞ satisfies that φ̃∞(θ) < 0 if θ ∈ Iθ0 + kω and φ̃∞(θ) > 0 if
θ ∈ Iθ1 + kω, 1 ≤ k ≤ Mnd

. In particular, as nd of these intervals are interspersed, we ensure
the existence of nd discontinuities. We note that this number of discontinuities is ensured for
any value of b such that π/2 < b < bnd

. □
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