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Abstract

We present a methodology for computing normal forms in discrete systems, such as those described
by Poincaré maps. Our approach begins by calculating high-order derivatives of the flow with respect to
initial conditions and parameters, obtained via jet transport, and then applying appropriate projections
to the Poincaré section to derive the power expansion of the map. In the second step, we perform
coordinate transformations to simplify the local power expansion around a dynamical object, retaining
only the resonant terms. The resulting normal form provides a local description of the dynamics around
the object, and shows its dependence on parameters. Notably, this method does not assume any specific
structure of the system besides sufficient regularity.

To illustrate its effectiveness, we first examine the well-known Hénon-Heiles system. By fixing an
energy level and using a spatial Poincaré section, the system is represented by a 2D Poincaré map.
Focusing on an elliptic fixed point of this map, we compute a high-order normal form, which is a twist
map obtained explicitly. This means that we have computed the invariant tori inside the energy level
of the Poincaré section. Furthermore, we explore how both the fixed point and the normal form depend
on the energy level of the Poincaré section, deriving the coefficients of the twist map as a power series
of the energy level. This approach also enables us to obtain invariant tori inside nearby energy levels.
We also discuss how to obtain the frequencies of the torus for the flow. We include a second example
involving an elliptic periodic orbit of the spatial Restricted Three-Body Problem. In this case the map
is 4D, and the normal form is a multidimensional twist map.
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1. Introduction

The study of dynamical systems has traditionally involved simplifying complex systems to make them more
manageable for analysis. A key tools in this process is the computation of normal forms, which simplify
dynamical systems by reducing them to their essential elements through change of coordinates. This
technique is commonly applied to understand the local behaviour of systems near invariant structures
such as equilibrium points or periodic orbits. Generally, a normal form process consists of a series of
changes of variables that transforms the Taylor expansion of a vector field (or a map) up to a certain
order according to some criteria. Dependence of parameters is often included when normal forms are used
to analysize bifurcations of equilibrium (or fixed) points.

In Hamiltonian systems, specialized methods dealing directly with Hamiltonian functions have been
developed. Notably, Birkhoff and Kolmogorov normal forms [Bir27, Mos68, Arn78, Bru88], have proven
invaluable, especially for studying the dynamics in a neighbourhood of equilibrium points (i.e. bifurca-
tions, non-linear stability and KAM theory [Kol54]). Technique based on manipulating the Hamiltonian
function has been extended to cope also with expansions about periodic and quasi-periodic orbits via a
combination of Floquet Theory and Taylor-Fourier series [GJ04, GJ05, GJL05, JV98, And02, JJCR20].
However, applying Floquet Theory in autonomous Hamiltonian systems, where periodic orbits occur in
families, can lead to particularly cumbersome coordinate transformations. These additional complexities
are well-documented in [JV98], in contrast to other studies that focus on isolated periodic orbits (examples
of isolated periodic orbits are the dynamical equivalents of equilibrium points of a periodically perturbed
autonomous system).

In this paper, we approach the computation of normal forms about periodic orbits via the Poincaré
map. The periodic orbit is seen as a fixed point of the Poincaré map and one can avoid dealing with
the Floquet Change of variables when computing the linear terms of the normal form. Although the
examples in this paper focus on periodic orbits of Hamiltonian systems, our method does not assume any
specific structure, such as Hamiltonian or symplectic properties, beyond regularity assumptions. This
generalization makes the approach applicable to a broader range of systems, including those that are
dissipative or non-Hamiltonian, thus enhancing its utility across various fields of study and a wide variety
of systems.

The Poincaré map, first introduced by Henri Poincaré in [Poi99], reduces the dimension of a continuous
system by capturing the intersections of a trajectory with a chosen section. This reduction allows for the
study of complex systems in a lower-dimensional space, making it easier to analyse the local dynamics.
Our method leverages this dimensional reduction by first computing high-order derivatives of the system
using jet transport and project them to the section, based on the recent methodology in [GJJC`23]. This
approach provides a more detailed representation of the system’s local behaviour around the dynamical
object, making the analysis more manageable.

Subsequently, the algorithm performs coordinate transformations to simplify the local representation,
retaining only the essential resonance terms. This procedure, which includes formal power expansions
and techniques based on the Implicit Function Theorem, systematically reduces the complexity of the
system while preserving the key dynamical features necessary for understanding the system’s behaviour.
By removing non-resonant terms, the method provides a clearer, more focused view of the dynamics near
critical points, allowing for more efficient analysis.

A key contributions of this work is its robust performance under parameter dependence. The method
is designed to handle changes in system parameters without losing accuracy or stability, making it partic-
ularly useful for studying families of systems or systems with external perturbations. This flexibility sets
it apart from classical approaches, which may struggle to accommodate such variations by introducing
model-dependent procedures.

To demonstrate the effectiveness of the proposed method, we apply it to the explicit construction of
high-dimensional twist maps, a type of dynamical system where the twist condition ensures quasi-periodic
motion. As a by-product of this construction, we introduce a general frequency recovery method for high-
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dimensional tori, which is then used to fully visualize these twist maps and their tori. This development
not only showcases the practical utility of the method but also contributes to the broader understanding
of multi-dimensional dynamical systems.

In summary, this paper introduces a comprehensive, systematic method for computing normal forms
in discrete systems without relying on specific structural assumptions. By utilising high-order derivatives,
jet transport, and resonance-preserving transformations, this method offers a powerful and flexible tool
for the study of both classical and modern dynamical systems.

This paper is organized as follows. We begins with a self-contained discussion of preliminary tools
in Section 2. We then present the detailed normal form procedure in Section 3. Section 4 is devoted to
study the frequency recovery of a torus from a Poincaré map. Following that, Section 5 uses the normal
form procedure to describe the torus construction of an elliptic point and how to recover the frequency
from it. Finally, Section 6 provides some examples to illustrate the normal form computation as well as
the torus construction.

2. Preliminaries

The numerical computation of the normal forms in this work relies on several preliminary tools, which
can be studied independently. The common problem is to compute infinitesimal expansions in different
settings. These computations are done using automatic differentiation to obtain numerical high-order
derivatives. When applied to an ODE solver, automatic differentiation results in a technique called jet
transport. In [GJJC`23], it is proved that jet transport is equivalent to solving high order variational
equations. In Section 2.1 we explain the jet transport concept and generalize the results in [GJJC`23].

In the example developed in Section 6.1 we compute the Kolmogorov normal form about a fixed point
of a certain Poincaré map, also taking into account the dependence on the Hamiltonian (which in this
paper is considered an internal parameter). This approach is used to capture an open set of the phase
space (if the energy is kept fixed, the normal form only captures a codimension one neighbourhood of the
fixed point). Considering parameter dependence involves extra steps in our algorithm, namely:

i) The dependence of fixed points on the energy needs to be of high order. As the fixed point can be
obtained as an implicit function of an equation, we can combine the Implicit Function Theorem and
the parameterization method (see [CFdlL05]) to compute the Taylor expansion of the fixed point
with respect to the parameter. In section 2.3 we explain how this can be achieved.

ii) The variational equations have to be solved also with respect to parameters. The parameter is internal
(is a function of the phase variables) and typically, the dependence of the fixed point with respect to
the parameter is required up to low order (comparatively speaking to the order of the normal form).
Then, it is advisable to be able to solve variational equations with a different prescribed order for the
parameter. This is achieved by using an arithmetic of nested jets, i.e., jets with symbols represent the
derivatives with respect to the phase variables whose coefficients are jets with symbols representing
the derivative with respect the parameter. This is covered in Section 2.2.

iii) The eigendecomposition problem of the linear stability of the fixed point must also be obtained with
respect to the parameter. In Section 2.4 we summarize briefly the techniques [Sun85, Sun90] that
solve the problem.

2.1 Jet transport

The concept of jet was firstly introduced by Charles Ehresmann in 1951, see [Ehr51]. Given α : Rs Ñ Rm

be an ℓ-th continuously differentiable map, defined in a subset of Rs). Its ℓ-jet is a map that provides a
correspondence between a point x0 and α and the Taylor polynomial of order ℓ expanded about x0. That
is:
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J ℓ
x0

rαspδq “

ℓ
ÿ

j“0

αjpδq, αjpδq
def
“

j
ÿ

|k|“0

akδ
k, ak “

1

k1! ¨ ¨ ¨ ks!

Bkα

Bδk11 ¨ ¨ ¨ Bδkss
px0q, (1)

where ak P Rm, δ “ pδ1, . . . , δsq is a set of s symbols, k “ pk1, . . . , ksq P Ns is a multi-index, |k|
def
“

k1 ` ¨ ¨ ¨ ` ks, and δk
def
“ δk11 ¨ ¨ ¨ δkss . As in the classical Taylor polynomial, the combinatorial terms

involving the multi-index k in ak are due to repetitions of the crossing derivatives. The point x0 is,
typically, called the source and αpx0q the target of the Jet.

Remark 1 (about an heuristic range of validity). We consider the set of symbols δ in (1) as a formal
variable to operate with, or as an “indeterminate” with no specific value. However, in practice, many
times it is also convenient to quantify the range of values of δ. Thus, if α “ pα1, . . . , αmq denotes the
coordinate maps, we define the validity range of the jet J ℓ

x0
rαspδq in (1) with tolerance ϵ as a number δmax

on the uniform hypercube δ P r´δmax, δmaxss given by the formula

δmax “ δmaxpϵ; J ℓ
0rαspδqq

def
“ min

i“1,...,m
10νi ,

νi
def
“ max

"

log10pϵq ´ log10 |αi
ℓ´1pδq|

ℓ´ 1
,
log10pϵq ´ log10 |αi

ℓpδq|

ℓ

*

.
(2)

The formula (2) is heuristic, and it is motivated by the square root test for the convergence of a power
series, which states that the ℓ-square root of the ℓth coefficient tends to the inverse of the convergence
radius of the series. Thus, our choice of δmax comes from isolating |δ| in the inequality |αi

jpδq| ď ϵ
for j P tℓ ´ 1, ℓu. We define the safety validity range δ‹ as the validity range multiplied by a safety
factor, e.g. δ‹

def
“ 0.95δmax. This heuristic number δ‹ can be used to scale the jet and prevent numerical

overflow/underflow. In particular, we will use it to scale the output of the normal form algorithm, see
Remark 10.

Given two differentiable maps α : Rs Ñ Rm and β : Rm Ñ Rr, the composition of jets satisfies the
following equality up to order ℓ

J ℓ
αpx0qrβs ˝ J ℓ

x0
rαspδq “ J ℓ

x0
rβ ˝ αspδq. (3)

It is straightforward (by Schwarz’s lemma) that if t ÞÑ αt is differentiable, then the derivative with
respect to t of the jet is the jet of the derivative, i.e.

B

Bt
J ℓ
0rαtspδq “ J ℓ

0

”

B

Bt
αt

ı

pδq. (4)

Given a point x0 P Rn we will denote by J ℓ,s
x0 pRmq the set of all jets with seed x0 of order ℓ and s

symbols. This leads to a compact writing of the variational equations.

Definition 2 (ℓ-th jet differential equation). Given fixed integers ℓ, s ě 1, let txptqu be the solution of

a smooth initial value problem 9xptq “ f ˝ xptq and xp0q “ x0 in Rn. If X : R Ñ J ℓ,s
x0 pRnq, we define the

ℓ-th order jet differential equation as

9Xptq “ J ℓ
xptqrf s ˝Xptq. (5)

The ODE system (5) is defined on the space of jets of order ℓ, in particular, the equality in (5) must
be interpreted in such a space. Note that the number of symbols s and the order ℓ can be arbitrary but
they must be fixed to define (5).

Any initial condition of Xp0q P J ℓ,s
x0 pRnq gives an admissible initial value problem. A solution Xptq

is a jet that is transported jointly with the trajectory xptq. The exact interpretation of the jet Xptq will
depend on the initial jet value Xp0q, the symbols δ, and the order ℓ.
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Following the notation in (1), the equation associated to Xj is called variational equation of order j
(j ă ℓ). Computing of Xj requires Xi, for i “ 0, . . . , j ´ 1.

Theorem 3 proves that the jet associated to the flow of an ODE can be seen as an ODE system in
the space of jet of the form (5). In particular, when Xp0qpδq “ x0 ` δ for s “ n symbols, then Xptq
corresponds to the high-order derivative up to order ℓ of the time t map at x0.

Theorem 3. Let txptqu be the solution of the smooth initial value problem 9xptq “ f ˝ xptq with xp0q “ x0
in Rn. Then Xptq “ J ℓ

x0
rxptqs satisfies (5).

Proof. Using (4), xptq is a solution, and (3), we derive

B

Bt
J ℓ
x0

rxptqs “ J ℓ
x0

”

B

Bt
xptq

ı

“ J ℓ
x0

rf ˝ xptqs “ J ℓ
xptqrf s ˝ J ℓ

x0
rxptqs.

Theorem 3 provides a systematic way to compute high-order variational flows, thereby providing a
neighbourhood approximation of the orbit txptqu. Indeed, if a numerical stepper of an ODE in Rn performs
its operations in the space of jets, then the same numerical stepper as for the ODE in Rn but with jet
operations will be able to provide the derivatives of the flow with respect to the initial conditions. This
was proved in detail in [GJJC`23] for some families of numerical steppers and more recently in [PF23]
for generalized linear integrators.

It is important to emphasize that the method described in [GJJC`23] is different from others, such as
those applied to specific ODE models, methods based on numerical differentiation and its extrapolation to
higher orders, or approaches that use symbolic differentiation of the vector field f to explicitly construct
the system (5), see [ABBR12].

The method in [GJJC`23] is quite general, relying on automatic differentiation (AD) to implicitly
evaluate a system of the form (5) without explicitly generating the full expression. AD offers a compu-
tational approach to perform derivative evaluation of an algorithm, provided it can be represented by a
combination of elementary expressions. AD has already been applied successfully in different areas such
as in dynamical systems [HCL`16, PP15] and in more general settings [GC91].

Forward AD is used to obtain high-order derivatives of the output of an algorithm with repect to
its input. Computationally, this is achieved by replacing the standard arithmetic of real numbers with
truncated formal power series arithmetic, which encodes these high-order derivatives – referred to as
jet. In conjunction with numerical integration of a differential equation the jet is transported through
the solution of the equation, leading to the concept of jet transport. The output is a truncated power
series that contains the trajectory and the high-order derivatives with respect to the initial inputs. These
approach has been used in several papers [Mur20, JN21, GJNO22].

The Taylor expansion of the flow can also be computed by differentiating symbolically the original
vectorfield to obtain the variational equations up to high order and then solving them numerically. The
main takeaway of Theorem 3 is that both approaches are exactly the same (if the same method to solve
the ODE is used). Notice that, the symbolic approach produces a number of repeated equations (due to
crossing derivatives) that have to be collected in a suitable way. In the jet transport approach, where
the derivatives are automatic (or semi-analytic), this problem is solved by collecting repeated terms at
each operation of the polynomial arithmetic (see [Knu98]). Recently, the public software [JZ05] has been
enhanced to support jet transport [GJZ22].

The procedure outlined in Algorithm A is also applicable to discrete systems that depend on pa-
rameters under suitable considerations. Specifically, we need the invariant object to be given depending
on such parameters. Section 2.3 describes such a procedure, leveraging the implicit function theorem.
The key point is that the different terms involved can be obtained systematically by using the automatic
differentiation and jet transport.

Once a local truncated expansion of the invariant object with respect to parameters is obtained, a
local representation in the phase space is required. Section 2.2 introduces a new arithmetic that saves
computation of coefficients and allows to obtain a local representation with different levels of accuracy.
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Finally, we verify that the new arithmetic works well with the Algorithm A. Section 2.4 addresses the
only remaining consideration: the eigen-decomposition of the matrix appearing in the step 3.

2.2 Nested jets

The paper [GJJC`23] proves that the use of jet transport of an ODE is the same as computing high-
order variational equations. In particular, the result applies to Poincaré maps, which under generic
assumptions are (local) diffeomorphisms. These maps describe discrete dynamical systems given by an
underlying ODE. The input of these maps are an initial condition and the output are the solution of the
ODE at a final time of the trajectory. That final time can be either known or unknown. In the first case,
the map is called stroboscopic Poincaré map and in the second case, spatial Poincaré map. The later fixes
a section, say Σ, in the state space such that starting with an x P Σ, it integrates T pxq units of time until
the ODE-solution lies in Σ after crossing a finite number of times such a section.

We denote the discrete dynamical system associated to a Poincaré map as

x̄ “ P px;T pxq, λq, (6)

where the T pxq denotes the final time of integration (possibly depending on x) and λ denotes a parameter
of the system. Here, we use the semicolon notation ; to indicate the arguments that follow are either
parameters or depend on previous arguments. Note that one can always extend the phase space of the
ODE to incorporate the dynamics of the parameter, with 9λ “ 0; however the discrete system (6) would
remain the same. A straightforward application of jet propagation with all the variables of the system
could result in the generation of unnecessary coefficients, making the process optimizable.

A key distinction when T depends on x is the need to correct the output by performing projections
onto the section Σ. This required step is not possible for all numerical integrators, as it is limited by the
order of the numerical stepper. In simple terms, the idea is to add a symbol, say s, in the input data x
and evaluate P at x`s. As a consequence, one must compute T px`sq. It is an infinitesimal correction of
the ODE-flying time. These corrections can be computed by ensuring that P px` s;T px` sq, λq belongs
to Σ. They depend on the geometry of Σ and in [GJJC`23] formulas and procedures for this process were
discussed when Σ is an affine hyperplane.

It is also interesting to compute high-order derivatives with different orders. Indeed, suppose we
compute a dynamical object of (6) up to a certain order, say ms, while simultaneously expressing the
object in a neighbourhood of the parameter λ. This requires a formal power series expansion around λ;
or equivalently, to introduce a symbol u and evaluate at λ ` u instead of λ. For performance reasons,
these two neighbourhoods may have different accuracy levels. More formally, if s and u denote two set of
symbols, then we need to compute

P px` s;T px` sq, λ` uq

with exponents on u up to mu and on s up to ms. This problem is addressed by considering power series
whose coefficients are also truncated power series. Proper adjustmentss to the stepsize control ensure
that the jet transport still provides the required high-order variational needed to compute the high-order
derivatives of P . This process has recently been systematized in the software package [GJZ22] optimizing
to some set of symbols and orders in the jets.

2.3 Taylor expansion of implicit functions

In certain contexts, the procedure for obtaining an invariant object must satisfy an implicit equation. In
such cases, it is often possible to construct a recursive algorithm that compute the expansion order-by-
order. The recursive methods can be stopped at a prescribed order, and the resulting output can then
serve as the input for a Newton-like algorithm to compute a set of new coefficients expansion all at once.

Let F : Rn ˆ R Ñ Rn be a smooth function for which there exist a pair px0, 0q, x0 P Rn, such that

F px0, 0q “ 0.
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Then, the Implicit Function Theorem states that, provided that DxF px0, 0q is invertible, there exists a
smooth locally defined implicit function u ÞÑ xpuq such that

F pxpuq, uq “ 0, (7)

for each u in neighbourhood of 0. In particular, as long as F is differentiable, then we can consider the
first derivative of the implicit function. Moreover, we can compute it. Differentiating equation (7) with
respect to the second variable, u, leads to the following expression:

d

du
F pxpuq, uq “ DxF pxpuq, uq

d

du
xpuq `

B

Bu
F pxpuq, uq “ 0.

Evaluating the last equation at u “ 0 we obtain a formula for the first derivative at u “ 0

x1 :“
d

du
xp0q “ ´ rDxF px0, 0qs

´1 B

Bu
F px0, 0q.

If F is a smooth function, then x can be Taylor-expanded around the origin. Notice that, we already
have the linear expansion:

xr1sptq “ x0 ` x1u.

Again, equation (7) provides a way to compute recursively, higher terms of the Taylor expansion of
the implicit function x. Let us assume that we have already computed an expansion of order ℓ and let us
see how to obtain order ℓ` 1. That is, suppose we have

xrℓspuq “

ℓ
ÿ

k“0

xku
k.

If we evaluate and use equation (7), we get

F

˜

ℓ
ÿ

k“0

xku
k ` xℓ`1u

ℓ`1, u

¸

“ 0,

where the coefficients x0, x1, . . . , xℓ are all already known while xℓ`1 is not. Now, we expand the last
equation but only minding the terms of order ℓ` 1 or less. We have

F

˜

ℓ
ÿ

k“0

xku
k, u

¸

` DxF

˜

ℓ
ÿ

k“0

xku
k, u

¸

xℓ`1u
ℓ`1 ` Opuℓ`1q “ 0.

Now, we name the expansion

F

˜

ℓ
ÿ

k“0

xku
k, u

¸

“

ℓ`1
ÿ

k“0

Fku
k.

Then, the pℓ` 1q-th term can be isolated easily:

xℓ`1 “ ´
“

DxF px0, 0q
‰´1

Fℓ`1.

Remark 4. In our examples, we are going to consider fixed points of Poincaré maps constructed in a
spatial section. Therefore, the procedure described here will also provide a local expansion with respect
to he parameters of the period. See Section 6.1.2 later on.

Remark 5. The procedure also admits the use of scaling factor. This involves in scaling the symbol
u by a factor ϱ, called scaling factor. The goal is to minimise the error propagation by preventing
the norms of the coefficients from growing or shrinking too rapidly with the order. For example, see
[Ric80, FdlL92, GJNO22]. Typically, the procedure is run twice: first up to a specified order, to estimate
ϱ (e.g. by using the square root test), and then it is run again, this time multiplying the x1 coefficient by
ϱ. As a result, the iterative process scales all subsequent coefficients xk.
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2.4 On parameter-dependence eigenpairs

An application of Section 2.3 is the computation of power series expansion of the eigenvalue problem. Let
Apuq be a power series in the variable u whose coefficients are n-by-n square matrices. Let us consider
the eigenvalue problem associated to Apuq which gives as an output power expansions for the eigenvalue
problem at u “ 0. In the following, we give a brief summary of [Sun85, Sun90] where they investigated
sufficient spectrum conditions on Ap0q that allow for the computation of such an expansion.

Let vi be a right eigenvector and let wi be a left eigenvector of the eigenvalue µi of Ap0q. That is,
they satisfy

Ap0qvi “ µivi and wH
i Ap0q “ wH

i µi,

where p¨qH denotes the conjugate transpose.

Let us assume that µ1 is simple, i.e. µ1 ‰ µi for i ‰ 1. If V “ pviq and W “ pwiq are the matrices
with columns vi and wi respectively normalised as wJ

i vi “ 1, then

WHAp0qV “

ˆ

µ1
M2

˙

, M2
def
“ diagpµ2, . . . , µnq.

Let us compute the expression

WHApuqV “

ˆ

a11puq a12puqJ

a21puq A22puq

˙

.

Then we apply Section 2.3 with the function

F pz, uq
def
“ a21puq `

`

A22puq ´ a11puqIn´1

˘

z ´ za12puqJz

to find zpuq. Here we can either use an ad-hoc implementation that evaluates F pz, uq with jets or use
the new arithmetic of jets of jet described in Section 2.2; that is jets of n´ 1 symbols and degree 2 with
coefficients being jets of as many symbols of u and degree as those in Apuq. We need M2 ´ µ1In´1 to be
invertible, which holds due to the assumption of simple eigenvalue µ1. Therefore, after computing zpuq,
we have

µ1puq
def
“ a11puq ` a12puqJzpuq, v1puq

def
“ v1 ` V2zpuq,

with V2
def
“

`

v2 ¨ ¨ ¨ vn
˘

. Thus, µ1puq and v1puq satisfy Apuqv1puq “ µ1puqv1puq.

Remark 6 (normalization condition). All eigenvalue problem is unique up to scaling of its eigenvector.
Here we fix this lack of uniqueness by imposing wJ

i vi “ 1. Standard eigen-decomposition software routines
may not ensure this normalization and in such a case, we can always scale either wi or vi with w

J
i vi.

Remark 7 (complex eigenvalue). Note that if pµ1p0q, v1p0qq is a complex simple eigenpair (in the complex
eigen-decomposition), then the parameter-dependence solution of its conjugate pµ1p0q, v1p0qq will simply
be the conjugate expansions, i.e. µ1puq “ µ1puq and v1puq “ v1puq.

Remark 8 (about the simplicity assumption). The construction of the parameter dependence of an eigen-
pair relies heavily on the assumption that the eigenvalue is simple. This assumption is essential for
applying the Implicit Function Theorem to the function F . In fact, if }u} is sufficiently small, the new
parameterized eigenvalue will also be simple, as noted in [Wil65]. However, when dealing with multiple
eigenvalues, the theory becomes more complex due to the loss of regularity. For a general approach, see
[Kat66] or for the case of real multiple engienvalues, refer to [Bro79].
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3. Normal forms on discrete dynamical systems

A normal form is a (local) simplified representation of a dynamical system that retains and reflects the
system’s behavior. The algorithm we present assumes a discrete dynamical system x̄ “ P pxq, which may
depend on parameters and is defined on a suitable subset of Rn. We also assume that the system is at
least finite continuously differentiable.

In our experiments, as well as in some of the sections, we assume the discrete system arises from
the flow of an underlying ODE system. After a specific integration time, the flow produces the discrete
system. We assume this discrete system has a fixed point, i.e. P px0q “ x0 which corresponds to a periodic
orbit of the continuous dynamical system. Notice that this setup trivially includes the normal form of
an equilibrium point. Moreover, a similar procedure can be adapted to the case of closed curves, which
corresponds to quasi-periodic solution, as discussed in [GJNO22]. However, for clarity of exposition, we
will not formalize it here and hope to address it in the future.

Normal forms are classified based on the resonance terms that survive after applying the normal form
procedure. In sufficiently smooth systems, the Poincaré-Dulac Theorem, [Arn83] proves that, locally,
any discrete system is formally equivalent to a formal discrete dynamical system only containing resonant
monomials. Hence, the procedure begins with obtaining a local expression of the solutions around the fixed
point, generically, by a Taylor expansion. Following this, a finite sequence of coordinate transformation is
applied, with each iteration either eliminating or revealing a term in the normal form based on resonance.

The transformations in the procedure must produce equivalent dynamical systems. Specifically, a
(dynamical) system G1 is equivalent to G2 when there exists a (smooth) change of coordinates c1 such
that G1 ˝ c1 “ c1 ˝G2. Thus, what we will do is to build a sequence of equivalent dynamical systems Gk,
each with their corresponding change of coordinate ck such that Gk`1 “ c´1

k ˝ Gk ˝ ck. In each iteration
k, the new system is either simplified, or a resonance term is revealed and must be preserved for the next
iteration. The process finishes after a predetermined finite number of iterations.

In general, the process done up to order k will not guarantee a convergent result, i.e. the terms beyond
k may still leads to a divergent expansion. Nevertheless, the truncated expansion will have an asymptotic
behaviour and the transformed expansion up to order k will only contain resonance terms and it will
standardize the dynamical system in a small neighbourhood.

3.1 Semi-analytical construction of a normal form

Algorithm A describes a systematic procedure to compute high-order terms of a normal form of a discrete
dynamical system. The algorithm assumes as input a fixed point of the discrete dynamical system, which,
if derived from an underlying ODE, amy represent an equilibrium or a periodic orbit. For clarity of
exposition, we will assume the latter case, as it includes the equilibrium case.

The algorithm assumes that one is able to compute a local expansion around the fixed point; which
means, in case of an ODE, to integrate high-order variational equations, see Section 2.1.

Pseudo-Algorithm A (Normal form construction of a fixed point of a discrete dynamical system).

‹ Input: Fixed point x0 of a Poincaré map P : U Ă Rn Ñ Rn and scaling factor ϱ (by default 1)

‹ Output: Changes of coordinates c0, c1, . . . , ck, . . . and normal form around x0

1. Gpsq Ð P px0 ` sq “
ř

|k|ě0

ř

|j|“k

Gjs
j obtained by a jet transport process at x0

2. c0psq Ð x0 ` s
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3. Let V and D be matrices over C of eigenvectors and eigenvalues of G|j|“1 respectively, i.e.

D “ V ´1G|j|“1 V “

¨

˚

˝

Λ1

. . .

Λn

˛

‹

‚

4. c1psq Ð pϱV qs

5. F 1 Ð pc0 ˝ c1q´1 ˝G ˝ pc0 ˝ c1q

6. For k “ 2, 3, . . .

6.a) ckpsq Ð s´
ř

|j|“k

bjs
j with

bj,i “
F k´1
j,i

Λi ´ Λj
, Λj def

“ Λj1
1 ¨ ¨ ¨Λjn

n , i “ 1, . . . , n

bj,i Ð 0 if Λi ´ Λj is close to zero (resonance case)

6.b) F k Ð c´1
k ˝ F k´1 ˝ ck.

Algorithm A is justified as long as the matrixD is diagonal, which may require using complex numbers.
Indeed, the change of coordinate ck corrects the order k and its inverse has the form

c´1
k psq “ s`

ÿ

|j|“k

bjs
j `Op|s|2k´1q.

Assume we have applied the algorithm k ´ 1 times and let us try step k. The F k´1 (in absence of
resonances) will only have the first order and orders higher than or equal to k ´ 1, that is,

F k´1psq “ Ds`
ÿ

|j|“k

F k´1
j sj `Ok`1.

Then the F k resulting from the conjugacy ck will have the form

F kpsq “ c´1
k ˝ F k´1 ˝ ckpsq “ Ds`

ÿ

|j|“k

`

F k´1
j ´Dbj

˘

sj ` bj ¨ pDsqj `Ok`1,

where Ok`1 denotes higher-order terms. Since D is a diagonal matrix, the choice of bj leads to zero
coefficients for |j| “ k.

Let us now highlight some key points regarding the general procedure.

Remark 9 (eigenvalues). The algorithms assumes at step 3 that first derivative of the diffeomorphism at
x0 diagonalizes with possibly complex number. Degenerate cases exist and ad-hoc procedures may be
needed, especially when the denominator in step 6a becomes very small.

Remark 10 (scaling factor). The normal form we compute follows a semi analytical construction in the
sense that it does not guarantee decay with each iteration. When fixed an iteration, say N , we can
estimate the decay of part of the coefficients and use that as the scaling factor ϱ to control the growth of
the coefficient norms, preventing them from exceeding arithmetic accuracy. This involves re-running the
procedure with the estimated ϱ.

Remark 11 (resonance treatment). Algorithm A keeps the resonant terms at step 6a. By setting bj,i “ 0
that coefficient will not be turned to zero when computing F k at step 6b.
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Remark 12 (storage of the changes of coordinates). The changes of coordinates c0, c1, . . . , ck have a very
particular form, that is, just x0 for c0, V for c1, and bj for |j| “ k in ck. These terms plus the identity
when |j| “ 1 for k ‰ 1 are the only possible non-zero terms of the changes of coordinates. Thus, all the
c0, . . . , ck can be stored in just one power series up to order k. An ad-hoc code to perform the evaluation
action of c “ c0 ˝ ¨ ¨ ¨ ˝ ck can be implemented effectively without computing explicitly the composition of
power series.

Remark 13 (correctness test). To check whether the final transformed dynamical system is accurate, one
performs a test that certifies that the order of the power series is the requested one. Let a P Rn with
}a} “ h and let F k “ c´1 ˝G ˝ c where c

def
“ c0 ˝ ¨ ¨ ¨ ˝ ck. If

eh “ }c ˝ F kpaq ´G ˝ cpaq},

then log2peh{eh{2q « k` 1. Note that the test may not work for all h or k due to numerical cancellations
and limitations in the numerical representation of numbers.

Remark 14 (computational complexity). The most computationally intensive step in Algorithm A occurs
at the beginning, during the computation of Gpsq. This step involves calculating high-order derivatives of
the Poincaré map P , which can be highly nonlinear and may require computing a flow map. The remaining
steps consists primarily of algebraic manipulation of jets. See Section 6 for some timing reports.

Remark 15 (multiple shooting). If the P is described as r equidistance multiple shooting, then the di-
mension of the fixed point x0 consists in multiple copies of each intermediate section and the eigenvalues
are rth root of unit, as described in [GJNO22] and earlier works. In particular, the resonance treatment
in the step 6a becomes the same.

3.2 Polynomial composition and reverse maps

The performance of Algorithm A is dominated by step 6b which involves composition and reversion of
truncated power series. These operations have already being addressed in the 1-symbol case by classical
authors like Thacher [Tha66], Brent [BK78], and Knuth [Knu98, §4.7]. Different authors have provided
several versions including recursive and iterative schemes. [PP15] compared these schemes and concluded
that a recurrent scheme is, generically, faster for higher orders. Our algorithm operates with an arbitrary,
though finite, number of symbols.

The inversion c´1
k can easily be computed in our case. Trivially, c´1

0 psq “ ´x0 ` s, c´1
1 psq “ V ´1s,

and for k ě 2 what we really need to compute is not c´1
k but its composition with pF k´1 ˝ ckq, called the

general power series reversion. More precisely, let qpsq be a power series. Then to compute c´1
k ˝ qpsq we

need to find the coefficients of hpsq such that ck ˝ h “ q, that is,

hpsq ´
ÿ

|j|“k

bjphpsqqj “ qpsq, (8)

which is solved by power matching as long as qp0q “ 0. We always have that the first order homogeneous
polynomials coincide, i.e., h1 “ q1 and thus we start solving from the order 2.

If we have ms symbols in s, then the algorithm that solves (8) only needs 2ms ` 1 power series of
storage. Its performance is dominated by the composition operator which in the worst case is OpN2q,
where N is the order of the truncated power series. The new release in [GJZ22] provides a numerical
implementation for composition and reverse functions of truncated power series for arbitrary number of
symbols and degrees that we use for this paper.

3.3 Normal form with respect to parameters

Algorithm A can also be adapted to compute local power expansion of the normal form with respect to
a parameter, with some modifications. These changes begins with the input, where the fixed point x0
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must now be provided as a map u ÞÑ x0puq. This adaptation requires the use of Section 2.2 to obtain a
formal power expansion of the fixed point in terms of the parameter λ. Specifically, it involves applying
Section 2.3 to the fixed point condition.

The remaining steps consists of adapting the procedure to the new setting. Specifically, i) the jet
transport process for computing G will now involve jets of different orders to compute Gps, uq Ð P px0 `

s, λ`uq, as detailed in Section 2.2; ii) the eigen-decomposition in step 3 will require methods in Section 2.4;
iii) the composition of reverse map in Section 3.2 will become straightforward using arithmetic of jets
of different orders; iv) the resonance condition in step 6a will essentially be the same, with the only
adjustment being that for nearby resonance with respect to u, the power expansion on u might have a
reduced validity range; and v) an additional scaling factor ϱu can be introduced to scale the expansion
on the symbol u.

4. Frequency recovery from a Poincaré map

Using explicit normal forms in Poincaré maps enables us to compute quasi-periodic solutions that reside
within invariant tori. It also allows us to recover all the frequencies associated with that torus sliced by a
section on the Poincaré map. This capability enhances the study of quasi-periodic solutions to ordinary
differential equations, providing crucial insights into the structural and geometric properties of dynamical
systems.

This is particularly significant in the context of Hamiltonian systems. In integrable systems, quasi-
periodic motion fills the phase space, providing a rich framework for analysis. Furthermore, as the
celebrated KAM theorem demonstrates, when a non-integrable perturbation is introduced, these quasi-
periodic solutions continue to occupy extensive regions of the phase space, highlighting their importance
in the study of dynamical behavior.

A quasi-periodic function is a map ψ : R Ñ Rm that can be written as ψptq “ Ψptω0 `θ00, . . . , tωd `θ0dq

where Ψ: Td`1 Ñ Rn, Ω
def
“ pω0, . . . , ωdq is called the frequency vector, and pθ00, . . . , θ

0
dq is the initial

phase. Given a smooth vector field f defined for some open set of Rm, a quasi-periodic trajectory to the
flow given by f is a smooth quasi-periodic function that satisfies the following invariance equation:

d
ÿ

i“0

Bψpθq

Bθi
ωi “ f pψpθqq , θ “ ptω0 ` θ00, . . . , tωd ` θ0dq. (9)

If xk,Ωy “ 0 for some k P Zd`1, we say that Ω is resonant. The module

MΩ “ tk P Zd`1 : xk,Ωy “ 0u,

is called resonance module associated to the vector of frequencies Ω and it can be shown that it is a
subgroup of Zd`1. When dimMΩ “ 0, the vector Ω is said to be non-resonant and the trajectory ψ fills
densely an invariant pd`1q-torus i.e. Td`1 “ Rd`1{Zd`1. For this reason, it is customary in the literature
to refer to quasi-periodic solutions as invariant tori. More generally, if dimMΩ “ d` 1 ´ r, the solution
is dense in a r-dimensional torus and notice that in the extreme case, dimMΩ “ d, the solution is, in
fact periodic. This one is called completely resonant case.

When a quasi-periodic orbit is cut by a suitable section Σ, it becomes a quasi-periodic orbit of the
associated Poincaré map PΣ and its dimension (namely, the number of angles used to parameterise the
solution) is reduced by one (see Figure 1). More precisely, the reduced invariant torus can be parameterised
as φ : Td Ñ Σ and satisfies the invariance equation

PΣ ˝ φ “ φ ˝Rω,

where Rωpsq “ s` ω is the fixed-rotation map of angle ω P Td.
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Thus, the vector of frequencies ω of the sliced invariant torus is changed and depends on the section
Σ. The goal of this section is to study how we can recover the frequencies of the original quasi-periodic
function once we have computed its restriction to a Poincaré section1.

To cope with this problem it is crucial that the torus is invariant by the flow. Thus, we can make
this question solvable by considering the inner dynamics on the torus which we have assumed to be linear
and quasi-periodic. Hence, the starting point of the discussion is a linear quasi-periodic flow on a torus,
commonly called Kronecker flow.

Definition 16 (Kronecker flow). A Kronecker (linear quasi-periodic) flow on Td`1 is a function

KΩ : Td`1 ˆ R Ñ Td`1

pθ, tq ÞÑ θ ` tΩ.

The vector Ω P Td`1 is called vector of frequencies. If xk,Ωy ‰ 0 for all k P Zd`1zt0u, the flow is said to
be non-resonant.

A Kronecker flow KΩ is the explicit solution to the linear Ordinary Differential Equation written in
angle variables 9θ “ Ω. In particular, tKΩp¨, tq : t P Ru is a family of symplectic diffeomorphisms of the
torus that form a group: KΩp¨, t1 ` t2q “ KΩp¨, t2q ˝ KΩp¨, t1q and KΩpθ, 0q “ θ. Thus for a fixed t,
the map KΩp¨, tq is, in fact, a rigid rotation of the torus by an angle Ω and, elementary, is a symplectic
transformation.

In a general situation, a pd` 1q-torus is embedded in an ambient space Rm and it is common to slice
it using a section that is also defined in Rm. Again, our point of view is intrinsic to the torus. In the
following, we provide a few standard definitions stated intrinsically. First we note that a general section
can be defined as the graph of torus function.

Definition 17 (Section). A section Σ of a torus Td`1 is a subset defined by an equation

Σ “ tθ P Td`1 : σpθq “ 0u,

where σ : Td`1 Ñ R is a function. The section is said to be smooth if σ is smooth.

In this work, we are interested in suitable sections of tori. For a section to be suitable, it has to comply
with a dynamical condition and a topological condition. The dynamical condition requires the section to
be transversal to a given Kronecker flow on the torus, which is the standard hypothesis for a section to
be a Poincaré section.

Definition 18 (Poincaré section on a Kronecker flow). A smooth section Σ is a Poincaré section of the
Kronecker flow KΩ if it is transversal, i.e.

x∇σpθq,Ωy ‰ 0, for all θ P Σ.

The topological condition asks the section to actually remove an angle of the torus. We call such a
section, a natural one.

Definition 19 (Natural Section). A smooth section Σ of a pd ` 1q-torus is said to be natural if Σ is
diffeomorphic to Td.

Given a Poincaré section and an initial condition, a relevant quantity is the so-called flight time, i.e.
the minimal positive time needed by a trajectory to reach the section. Notice that this can be defined for
any initial condition, regardless of whether if it is contained in the section or not. For an initial condition
on the Poincaré section, the flight time is the minimal time to return to the section for first time, which
is even a more relevant quantity for our purposes. In this situation, the flight time is called return time.
We can, therefore build a map associating the flight time to each initial condition.

1Notice that if the Poincaré map is given by a temporal section the answer is trivial.
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Σ

Figure 1: Representation of a Kronecker flow defined in a two-dimensional torus. A natural section Σ is
depicted in red. See text for more details.

Definition 20 (Flight and return time maps). Given a Kronecker flow KΩ and a Poincaré section Σ, the
function

TΣ : Td`1 Ñ R
θ ÞÑ min

TPR`
tKΩpθ, T q P Σu,

is called flight time map. The restriction of the flight time map to Σ is called the return time map.

The notion of Poincaré map itself can be stated intrinsically at this point.

Definition 21 (Poincaré map). Given a Poincaré section Σ and a Kronecker flow KΩ on Td`1, we say
that the map

PΣ : Σ Ñ Σ

θ ÞÑ KΩpθ, TΣpθqq,

is the Poincaré map related to Σ.

A natural section is defined by a topological property. Our computational approach, however, rely on
parameterization of the section. There are, of course, infinitely many of them but we are interested on
a parameterization that preserves the internal dynamics, i.e. one that makes the Poincaré map a rigid
rotation of the d-torus. We call this kind of parameterization, compatible with the dynamics.

Definition 22 (Parameterization compatible with the dynamics). Let Σ be a natural Poincaré section.
A parameterization φ : Td Ñ Σ is said to be compatible with the dynamics if there exists ω P Td such
that

PΣpφpsqq “ φps` ωq, for all s P Td.

Lemma 23 (Existence of a parameterization compatible with the dynamics). Given a quasi-periodic flow
on a torus KΩ and a natural Poincaré section, there always exists a parameterization compatible with the
dynamics.

Proof. We treat first the case Σℓ “ tθℓ ” 0 pmod 1qu for some ℓ between 0 and d. Let us consider the
parameterization given by

φℓ : Td Ñ Σℓ

s “ ps0, s2, . . . , sℓ´1, sℓ, . . . , sdq ÞÑ ps0, s2, . . . , sℓ´1, 0, sℓ`1, . . . , sdq.
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θ0

θ 1

Σ0Σ

s

s+ ω = PΣ0 (s)

φ(s+ ω) = PΣ(φ(s))

φ(s)

Figure 2: Construction of the homeomorphism that maps an arbitrary Poincaré section to a constant one.
This is used in the proof of Lemma 23.

In this case the section is a straight line in the coordinates pθ0, θ2, . . . , θdq. Moreover, the time return map
is constant over Σℓ. Indeed, it is determined by the equation 1 ` ΩℓTΣℓ

” 2 pmod 1q, therefore

TΣℓ
“

1

Ωℓ
.

By construction,

PΣℓ
pφℓpsqq “ φℓps` ωq,

if ω “ φ´1
ℓ pΩ{TΣℓ

q.

Let us consider now a general section Σ. We can define a parameterization of this section by means
of the following commutative diagram (see also Figure 2):

Td Σℓ

Σ

φℓ

φ
KΩpφℓpsq,TΣpφℓpsqqq

Given θ̃ P Σ, it can be written as θ̃ “ φpsq, for some s P Td. Then:

PΣpφpsqq “ KΩ pφpsq, TΣpφpsqqq

“ KΩ pφpsq, TΣℓ
pφpsqq ` TΣps` ωqq

“ KΩps` ω, TΣps` ωqq “ φps` ωq.

Therefore, φ is a KΩ-compatible parameterization.

Theorem 24 (Invariance of the averaged return time). Let KΩ be Kronecker flow on Td`1, Σ a natural
Poincaré section and TΣ the flight time map, then

ż

Σ
TΣ “

1

Ωℓ
,

for some ℓ P t0, . . . , du depending on Σ.
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Proof. The section Σ is natural and, therefore, by Lemma 23, there exists ℓ and a KΩ-compatible param-
eterization φ homotopic to φℓ. The result follows from the change of variables theorem and the fact that
a Kronecker flow is volume preserving i.e. detDθKΩpθ, tq “ 1 for all t. It follows that,

ż

Σ
TΣ “

ż

Σℓ

TΣ ˝KΩ pφℓpsq, TΣpφℓqq ds “

ż

Σℓ

TΣℓ
“

1

Ωℓ
.

Remark 25. The average of the return-time does not depend on the Poincaré section as long as it is
homotopic to tθℓ ” 0 pmod 1qu. This means that there are pd` 1q-different averages for each torus.

Notice that the accuracy of the recovered frequency depends, essentially, on the accuracy of the
frequencies computed on the Poincaré section and the return time map. At least, under quite general
conditions of regularity on the return time map (which are guaranteed by the smoothness of the Poincaré
section). Then, we can take advantage on the convergence properties of the trapezoidal rule to compute
the integral in Theorem 24 (or equivalently to (19) later on).

Theorem 26 ([DB08]). Suppose that the trapezoidal rule is applied with step-size h to integrate a function
f over T. Let us define the Fourier transform of f as

f̃pχq “

ż

T
fpsq expp´2πiχsqds,

and Ephq the integration error. Then,

Ephq „ 2f̃p1{hq.

This classic result states that the integration error of the trapezoidal rule applied to a periodic func-
tion behaves as its Fourier coefficients. In particular, if the function is a trigonometric polynomial, the
integration error is zero provided that h ď 1{p2N ` 1q where N is the degree of the polynomial. If the
function is analytic, the integration error decreases exponentially with the integration step (this is called
super-convergence). This results applies to the integral in Theorem 24 by using Fubini’s Theorem in each
integral coordinate.

4.1 Visualization of tori

In computer graphics, basic object visualization is achieved by creating a mesh of the object and connecting
these mesh points with lines and faces. In our setting we have two possible objects to visualize: the full
torus for the flow, Td`1, and a codimension 1 slice, Td, see Figure 1.

Let us assume that we have a Poincaré map PΣ from a Poincaré section Σ Ă Td`1 and a Kronecker
flow KΩ on Td`1 as in the Definition 21. A slice of Td`1 compatible with the Kronecker dynamic is given
by the graph of an invariant curve φ : Td Ñ Σ that satisfies Definition 22 for an angle ω P Td. Thus, to
visualize such a slice the dynamic of the torus is just to plot the graph of φ.

On the other hand, to visualise the torus Td`1 only having as inputs PΣ, φ, and ω may require deriving
additional information. Indeed, the frequency vector Ω in Td`1 may not be given explicitly in a generic
setting such as when PΣ is a flow coming from a spatial section of an ODE and the pair pφ, ωq has been
obtained after imposing the invariance equation PΣ ˝φ “ φ ˝Rω. Then, in such a context, the frequency
vector Ω P Td`1 is not known explicitly. Nevertheless, Theorem 24 indicates that we can obtain Ω and
therefore we can visualize Td`1 using φ, Ω, and the ODE-flow. In particular, the torus Td`1 will be
discretised by using φ and the flow. However, to show the lines and faces connecting nicely mesh points,
we must untangle the Kronecker dynamics.

More precisely, assume, without loss of generality that after a possible diffeomorphism, Σ is homeo-
morphic to the natural section Σ0 “ tθ P Td`1 : θ0 ” 0 pmod 1qu. From Theorem 24 we get a number
ω0 and then the frequency vector Ω P Td`1 can be written in terms of the known ω P Td. The explicit
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relation is Ω “ Ω0p1, ωq. Now, the internal dynamics of Td`1 is given by the Ω-Kronecker flow, hence,
the mesh points will consist in evaluation of a map ψ : Td`1 Ñ Td`1 of the form:

ψpθ0 ` tΩ0, θ2 ` tΩ2, . . . , θd ` tΩdq

for pθ0, θ2, . . . , θdq P Td`1. The map ψ parameterizes the Td`1 and it can be obtained in terms of φ and
PΣ by isolating t. Indeed, if pθj10 , θ

j2
2 , . . . , θ

jd
d q is a mesh node, let τ

def
“ TΣpθj21 , . . . , θ

jd
d q be the flying time,

then the mesh point will be

ψpθj10 , . . . , θ
jd
d q “ φpθj21 ` θj10 τΩ1, . . . , θ

jd
d ` θj10 τΩdq ` θj10 τ. (10)

The expression in (10) untangles the internal torus dynamics first by starting always from elements in Σ0,
using the internal dynamics KΩ, and by taking a point on the slice φ such that after θj10 τ time, it lands
in a point which is properly connected with the previous node.

5. Explicit torus construction on elliptic Hamiltonian points

Motivated by classical problems in Mechanical Systems, we present an application where high-order nor-
mal forms computed by Algorithm A, allow for the explicit derivation of invariant tori and characterization
of the full frequency vectors. The framework we are about to present arises naturally in Hamiltonian sys-
tems or in systems with conserved quantities. A Poincaré map in these systems inherits specific properties,
such as, energy conservation. Thus if a Poincaré map P described as a time-flow map after fixing an energy
level and a spatial section has a fixed point z0, then the monodromy matrix inherits spectrum constraints
due to the energy conservation. In particular, the product of the eigenvalues of such a matrix must be
equal one.

The setting we present considers a fully elliptic fixed point z0, i.e., the eigenvalues of its monodromy
matrix all lie on the unit circle. Then the procedure explicitly computes the changes of coordinates such
that the original system is (locally) conjugated to an integrable system of the form

ˆ

I
θ

˙

ÞÑ

ˆ

I
θ ` ωpIq

˙

, (11)

where pI, θq are coordinates in a high-dimensional cylinder.

The orbits in (11) are all in invariant tori whose rotation vectors depend on the action I and they
determine the dynamic in each of those objects. Maps like (11) are called twist maps and they are the
equivalent to integrable Hamiltonian system.

The map I ÞÑ ωpIq identifies an action I with its frequency vector ωpIq. When such a map is invertible
then, one is able to identify frequencies with actions. This invertibility is a necessary condition for the
existence of tori in perturbed systems. By the inverse function theorem, the map I ÞÑ ωpIq is (locally)
invertible as long as detω1pIq ‰ 0. This condition is called twist condition and it appears in KAM theory.
The construction process we present will be able to check the twist condition and quantify the existence
of tori in nearby system.

Remark 27 (dimension). Notice that the described Poincaré map P is a 2n-dimensional system, however,
the full phase space dimension will be is 2n` 2; one extra for fixing the energy level and a second one for
fixing a spatial section.

5.1 Construction of high-dimensional twist maps

Let us consider an elliptic fixed point z0 P R2n of a discrete dynamical system P , i.e. P pz0q “ z0
and assume that the matrix DP pz0q has complex eigenvalues λ1, sλ1, . . . , λn, sλn such that λjsλj “ 1 for
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j “ 1, . . . , n. If we apply Algorithm A, then there will be unavoidable resonances due to the eigenvalue
structure. Indeed, the resonance condition at order k is translated into

λi ´

n
ź

l“1

λjll λ
´jn`l

l “ 0 or λ´1
i ´

n
ź

l“1

λjll λ
´jn`l

l “ 0. (12)

for j “ pj1, . . . , j2nq P N2n, |j| “ k, and i “ 1, . . . , n. For clarity of exposition, we assume that all the
eigenvalues are pairwise different. Then a resonance will occur whenever jl “ jn`l for all l ‰ i and
ji ´ jn`i “ ˘1.

In such a case the normal form will consist in ppi, qiq for i “ 1, . . . , n of the form:

pips1, . . . , s2nq “ λisi `
ÿ

kě1

ÿ

|j|“k
jl“jn`l, @ l‰i
ji´jn`i“1

ajs
j , qips1, . . . , s2nq “ sλisn`i `

ÿ

kě1

ÿ

|j|“k
jl“jn`l, @ l‰i
ji´jn`i“´1

bjs
j , (13)

whose monomial exponents coincide with a zero denominator in step 6a of the Algorithm A.
Equation (13) satisfies two relevant properties: i) both have the same number of monomials and ii)

the eigen-decomposition gives conjugate eigenvectors, bj “ aj .

Remark 28 (about consistency requirement). The order pp1, . . . , pn, q1, . . . , qnq and expressions in (13)
are determined by step 3 of Algorithm A and, in particular, by its change c1psq. It is indeed possible
to rearrange everything as long as it is consistent and it keeps track of all coordinate and symbols
permutations. In the writing of (13) we have implicitly assumed that the diagonal eigenvalue matrix has
entries ordered by λ1, . . . , λn, λ1, . . . , λn and the eigenvector matrix has columns v1, . . . , vn, v1, . . . , vn,
where vi is eigenvector of eigenvalue λi for i “ 1, . . . , n.

By assumption, the eigenvalues lie on the unit circle, i.e. λi “ e2πiαi for i “ 1, . . . , n. Therefore,
the whole normal form ppi, qiq can be expressed by power series ωi whose complex exponential recovers
ppi, qiq. More precisely, let us consider complex symbols w1, . . . , wn such that wjwj “ r2j with rj a real
symbol. Then we pick, for instance, pi to compute ωi

pipw1, . . . , wn, w1, . . . , wnq “ e2πiωipr1,...,rnqwi, i “ 1, . . . , n. (14)

Equivalently, one could have considered

qipw1, . . . , wn, w1, . . . , wnq “ e´2πiωipr1,...,rnqwi, i “ 1, . . . , n, (15)

which means that ωi is determined up to a sign.
The relation (14) shows an explicit way to compute ωi via power series manipulation. More precisely,

by isolating (logarithm and 2πi quotient) ωi from

e2πiωipr1,...,rnq “
pips1, . . . , sn, sn`1, . . . , s2nq

si

ˇ

ˇ

ˇ

ˇ

si“wi
sn`i“wi

wiwi“r2i

, i “ 1, . . . , n.

Similarly, one could have deduced how to get ´ωi from (15).

Proposition 29. For all i “ 1, . . . , n, the power series ωi in (14) has real coefficients and it is of the
form

ωiprq “ αi `
ÿ

kě1

ÿ

|j|“k

αi,2jr
2j ,

with r “ pr1, . . . , rnq. In particular, if pi is truncated at order N , then ωi is only known up to order tN2 u.

Proof. Let us prove by contradiction that αi,2j are all real. If they have an imaginary part since r is a
real vector symbols, then ωiprq would also have imaginary power series part and that would contradict
its construction in (14).
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5.1.1 Example: twist map in the plane

Equation (13) has explicit monomials that persist under the normal form process. These monomials have
exponents that satisfy the resonance condition (12). As an example, when n “ 1, (13) becomes

p1ps1, s2q “ λs1 ` a2,1s
2
1s2 ` a3,2s

3
1s

2
2 `O6

q1ps1, s2q “ λs2 ` a2,1s1s
2
2 ` a3,2s

2
1s

3
2 `O6

where O6 stands for high order terms. Note that (13) contains extra crossing terms for n ě 2.
The polynomial Qpwq

def
“ p1pw,wq “ λw ` a2,1w

2w ` a3,2w
3w2 ` O6 allows to compute the corre-

sponding twist map. Indeed, if ww “ r2, then

λw ` a2,1w
2w ` a3,2w

3w2 “ e2πipα0`α2r2`α4r4qw `O6

where αk are computed recurrently

l2k “
1

λ

ˆ

ak`1,k ´
1

k

k´1
ÿ

j“1

j ak´j`1,k´j l2j

˙

, α2k “
l2k
2πi

k ě 1,

which comes from imposing the condition

λ exp

ˆ

2πi
ÿ

kě1

α2kr
2k

˙

“ λ`
ÿ

kě1

ak`1,kr
2k.

5.2 Effective computation of invariant tori

The output of Algorithm A up to order N is the normal form with its changes of coordinates c1, . . . , cN .
If c

def
“ c1 ˝ ¨ ¨ ¨ ˝ cN , then we build an invariant tori of radii r “ pr1, . . . , rnq by

zpθ1, . . . , θnq
def
“ z0 ` cpr1e

2πiθ1 , . . . , rne
2πiθn , r1e

´2πiθ1 , . . . , rne
´2πiθnq, (16)

which satisfies (up to an accuracy level)

G ˝ zpθq “ z
`

θ ` ωprq
˘

, for all θ P Tn, (17)

where ω “ pω1, . . . , ωnq obtained by (14) and G is a local expansion of P at z0.
The radii r must be within the validity range of the computation accuracy. The conditions such an

accuracy will also determine the error in the equality (17). There are different source of errors, such
as the order N or the accuracy of the local approximation G. Note also that because a normal form
is generically a semianalytical series, so is ωi. These series have an asymptotic property but, in case of
divergence, their validity range tends to zero instead of to a convergent radii.

Remark 30 (about signs). Note that one must be coherent with the signs of ωi. That is, if one uses the ωi

from (15) or mixes between (14), then (16) must be changed accordingly in order to satisfy the invariance
equation (17).

5.3 Tori construction from frequency recovery

The main conclusion of Theorem 24 is that all natural sections have the same averaged return time as long
as they are homotopic on the torus (i.e. they eliminate the same angle). Moreover, the averaged return
time on the section can be used to recover the frequencies of the original torus. Following the setting of
the previous sections, the local expansion of P at the fixed point z0 also provides the local expansion of
the flying time. More precisely, if P pxq “ ΦpT pxq, xq where Φ is the baseline evolution process from the
initial condition x to flying time T pxq onto a Poincaré section, then the local expansion is a formal power
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series expansion Gpsq “ P pz0 `sq. In the procedure to obtain Gpsq we also get the power series T pz0 `sq.
Let T psq be the formal power series defined by composition of the changes of coordinates c1, . . . , cN from
Algorithm A, i.e.

T psq
def
“ T

`

z0 ` c1 ˝ ¨ ¨ ¨ ˝ cN psq
˘

. (18)

Then Theorem 24 says that for r “ pr1, . . . , rnq, the frequency ω0prq satisfies

1

ω0prq
“

ż

Tn

T pr1e
2πiθ1 , . . . , rne

2πiθn , r1e
´2πiθ1 , . . . , rne

´2πiθnq dθ. (19)

Thus the tori in the ODE phase space has frequency vector ω̂prq
def
“ ω0prq

`

1, ω1prq, . . . , ωnprq
˘

. These tori
can be visualized via a meshing process for each r, see Section 4.1. This process consists in evaluating
a map ψ : Tn`1 Ñ R2n in terms of its local parameterization zpθq, its evolution baseline process Φpt, xq,
and frequency vector ω̂. More precisely,

ψpθj00 , θ
j1
1 , . . . , θ

jn
n q “ Φ

`

θj00 τ, zpθj11 ` θj00 τω0ω1, . . . , θ
jn
n ` θj00 τω0ωnq

˘

.

with τ “ T pr1e
2πiθ

j1
1 , . . . , rne

2πiθjnn , r1e
´2πiθ

j1
1 , . . . , rne

´2πiθjnn q.

Notice that in contrast to (10), we are using the actual flow from the ODE rather than the Kronecker
flow in local torus coordinates.

Remark 31 (about the coherence requirement). As it was pointed in Remark 30, formula in (19) must
be consistent with the computation choice of ωi. Thus, (19) will provide the frequency for ωi in (14).
Moreover, r must be within the validity range of all the ωiprq.

Remark 32 (preventing a numerical issue). From a numerical point of view, if the only goal is to compute
(19), then one may omit and explicit computation of (18) to reduce the source of errors. Instead, one can
compute the integral by trapezoidal rule’s in a suitable mesh of θ P Tn with a good convergence rate, see
Theorem 26.

6. Experiments

We use the public domain software taylor [GJZ22], which is an upgraded version of [JZ05]. The ex-
periments were conducted on a standard laptop: an Intel i5 1.80GHz CPU with 4 cores, 8GB of RAM.
Compilation was done using GNU C Compiler 12.2.0 with usual flags like -O3. The total runtime ranged
from 2 to 3 minutes. The most resource-intensive tasks are i) computing the local initial approximation
and ii) composition and reverse operation in Algorithm A. A minimally documented code sample is avail-
able2. Due to the flexibility of [GJZ22], the code can easily be extended to arbitrary precision arithmetic,
though it is not necessary for the current experiments.

We considered two experiments. The first involves the normal form, twist map, torus visualization
of the Hénon-Heiles system expanding with respect to an energy level, see Section 6.1. The model is
straightforward to describe and can be visualized easily. We have provided an thorough and detailed
explanation, including a comparison of results across varying orders.

The second experiment also falls within the area of Mechanical Systems, where twist maps have
traditionally been studied, see Section 6.2. The procedure largely mirrors that of the Hénon-Heiles
experiment but extends to higher dimensions, so we have omitted repetitive details for clarity.

Both experiments are self-contained and do not require external datasets, aside from initial guesses of
the dynamical objects that we already provide.

2https://github.com/joang/nofo4maps.

https://github.com/joang/nofo4maps
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6.1 The Hénon-Heiles system

The Hénon-Heiles (HH) system is a Hamiltonian model proposed by Michel Hénon and Carl Heiles for
the motion of a massless star under the attraction of an effective potential due to other stars in a galaxy
[HH64]. The model is a two degrees of freedom Hamiltonian system with Hamiltonian

H “ Hpx, y, px, pyq “
1

2
pp2x ` p2yq `

1

2
px2 ` y2q ` x2y ´

y3

3
. (20)

The HH system stands out as a classical and simple example of chaotic conservative system. A common
approach of investigation is through Poincaré maps. We will define such a map with elements on the
section Σ

def
“ tx “ 0u, with normal direction n⃗ “ p1, 0, 0, 0qJ. The dynamics is described by a family of

Area Preserving Maps (APM) parametrized by the energy (i.e. the Hamiltonian value).

We consider a discrete system given by the planar Poincaré map, P , obtained by using the spatial
section Σ, the energy level h0

def
“ 0.125 (which determines px), and the flow associated with the Hamil-

tonian in (20). Thus, P first maps a value z “ py, pyq to px, y, px, pyq P R4 with x “ 0, and pxph0, x, zq

determined by the Hamiltonian value h0. Then, it integrates the flow up to a time T determined after a
second crossing with the section Σ and it returns to z̄ “ pȳ, p̄yq. The whole discrete system described by
P can be summarised as

z̄ “ P pT pz, h0q, z, h0q, (21)

where z “ py, pyq P R2 and the return time T depends on z and the energy level h0.

Note that because px is determined by the energy level h0, not all z P R2 is admissible. Therefore, the
Poincaré map will be defined on a subset Ω on the plane. Note also that to discover the return time T ,
we must perform a root-finding method, such as a Newton method on the temporal variable.

6.1.1 Computation of a fixed point

We apply a Newton method to find a fixed point z0 of the map P , i.e. z0 “ P pT pz0, h0q, z0, h0q. The
method requires to compute the derivative with respect to z which is related with the variational equations
of the underlying ODE system given by the Hamiltonian (20). As the section Σ is spatial, the flight time
is not constant. This requires to compute a projection of such a variational onto the section Σ (see
[GJJC`23]). To perform the projection, we need to perform an infinitesimal correction of the variational
flow around z0. Thus, we use a degree 1 jet with symbol s and compute P pT pz ` sq, z ` sq (we have
temporary removed the h0 dependency in this section for clarity). Since the return time T depends on z,
we have that T pz` sq “ T0 ` τ1s where T0 is the return time of the periodic orbit to the section Σ and τ1
is the infinitesimal time correction. The value τ1 is determined by imposing that the variational flow is in
Σ. Once τ1 is computed, we perform a temporal step with stepsize τ1s, which will correct the variational
flow and it will provide the final 2 ˆ 2 matrix DzP pT pzq, zq needed by the Newton method (and in the
stability of the final periodic orbit z0).

Figure 3 illustrates iterations of the Poincaré map P for different py, pyq values and common energy
level h0 as well as a periodic orbit on tpy “ 0u with concrete values:

y0 “ 0.30266681746984 and T0 “ 6.07561578432290. (22)

The periodic orbit given on (22) is elliptic and its linear stability is given by the monodromy matrix
DzP pT pz0q, z0q. This matrix has the eigenvalues e˘2πiα with α “ 0.32460020136926.

6.1.2 Computation of a curve of fixed points parametrized by the energy

The fixed point condition on the Poincaré map P depends on a parameter h0. This parameter is not
explicit on the underlying ODE since it is given as a conserved quantity.
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We want to demonstrate the power of jet transport by parametrizing the fixed point pz0, T0q given in
(22) in terms of the energy level h0. Let us consider the function

F pz, hq
def
“ P pT pz, hq, z, hq ´ z (23)

and let us apply the Implicit Function Theorem to F pzphq, h0 ` hq “ 0. The procedure, detailed in
Section 2.3, requires that the monodromy matrix DzP pT pz0, h0q, z0, h0q is invertible, which is indeed true.

The scheme involves the computation of high-order variational flows that each of them must be
projected onto Σ to output a jet in 1 symbol in h. These derivatives with respect to the Hamiltonian
value of the flow are obtained by using jet transport. Their projection onto the section Σ are done by
computing the τk in the formal power series:

T pz0 ` h, h0 ` hq “ T0 `

N
ÿ

k“1

τkh
k. (24)

Assume by induction that all the power series are truncated up to a degree, say m, and each of the τk have
been computed recurrently. That is, assume we know τj for j “ 1, . . . , k´ 1, τk consists in imposing that
the k-th derivative of the flow is in Σ, which gives an explicit expression involving the normal direction n⃗
of Σ, the tangent direction (i.e. the vector field evaluation) of the periodic orbit, and the k-th coefficient
of the current jet. With the τk known, we correct the k-th derivative of the flow by applying a Horner’s
method on the temporal expansion of the vector field of the jet up to order m.

The computed m-th coefficient is precisely the one that we can now correct by solving the linear
system with matrix DzF pz0, h0q. Repeating sequentially this process with k “ 1, . . . , N , we obtain the
coefficients (in R2) of

z0phq “ z0 ` z1h` ¨ ¨ ¨ ` zNh
N . (25)

As a by-product, we also obtain an expansion around the period T0 that approximates the period of the
different periodic orbits varying the energy level h, i.e. T0phq

def
“ T pz0phq, h0 ` hq.

Note that, the fixed point curve is obtained using the same section Σ for all energy h0 ` h. This is a
realistic condition because the coefficients in (25) are infinitesimal values around z0.

We use the validity range hmax
def
“ hmaxp10´16, z0phqq of the jet z0phq of order N following (2). To

compare the impact of the degree, we perform systematically a uniform scale, that is, h Ð h‹σ with
σ P r´1, 1s.

Figures 3 shows, for different degrees in h, the hmax of the truncated power series of y and the period
with the same tolerance ϵ “ 10´16. Note that due to symmetries of the Hamiltonian (20), the curve pyphq

will be zero, meaning that the curve of fixed points will all lie in the axis tpy “ 0u. Since hmax depends
on the degree, the figure also shows the periodic curves and energy values reached up to the maximum
degree considered.

6.1.3 Total power expansion at the fixed point curve

To apply the Algorithm A we first need to compute derivatives of the diffeomorphism P on the fixed point
curve z0phq with period curve T0phq. Note that if we were not performing the expansion on the energy
around h0, then it would be enough to compute the derivatives on the data pz0, T0q, i.e. with h “ 0.

Computing derivative of P with respect to the initial condition requires to compute high-order varia-
tional flows. In the HH model, it is achieved by using jet transport of a jet with 2 symbols (as many as
coordinates of z) and a given degree D. The coefficients of these jets are other type of jets that encode
the expansion with respect to the energy level, i.e. 1 symbol jet with another given degree N . Thus, what
we want to compute is a nested jet:

Gph, sq
def
“ P pT pz0phq ` s, h0 ` hq, z0phq ` s, h0 ` hq. (26)



24 Explicit Numerical Computation of Normal Forms for Poincaré Maps
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Figure 3: (1,1): Poincaré map (21) for the energy level h0 “ 0.125 and a fixed point with period T0 in
(22). (1,2): Periodic orbits for energies h0 and h0 ˘ h‹ with h‹ “ 0.02640858620272 associated to a
degree 20. (1,3): Values of the energy using different degrees. (2,1): Increment of the hmax when using
more degrees. (2,2-3): Values of y and period in terms of the degree in h.

The output is a jet in s with coefficients zjphq for |j| “ 0, . . . , D. Note that the number of coefficients
needed in (26) is much smaller than using a jet with 3 symbols and degree N ` D, due to simple
combinatorial reasons as explained in Section 2.2.

Similarly as it happened when computing z0phq, the derivatives of the variational flow must be pro-
jected onto the uniform energy section Σ. This is achieved by finding τjphq in the power expansion

T ph, sq
def
“ T pz0phq ` s, h0 ` hq “ T0phq `

D
ÿ

|j|“1

τjphqsj . (27)

Notice that because the data structures are nested jets, also the zero term in (27) needs to be projected
to the section as well since only the zero coefficient in T0phq is the flying time to section for the orbit.
Thus, before finding any τjphq we must first apply the initial correction given by T0phq. That is, to apply
a Horner’s method of the time-expanded vector field at the current jet and up to order maxtN,Du. Then
the condition for τjphq as homogeneous polynomial of order |j| is the same as the one used in (24) with the
difference that now we need the value of the vector field as a polynomial in h. All these jet manipulations
are provided by the software [GJZ22].

Repeating sequentially the process for |j| “ 0 up to D, we obtain the projected jet of jets Gph, sq on
the section and period expansion T ph, sq. These jets have a total of

`

2`D
2

˘`

1`N
1

˘

real numbers for each
coordinate. In this section we have used pN,Dq “ p20, 20q for the first Figures 3-4, and pN,Dq “ p14, 5q

for Figures 5-6.
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Since the coefficient |j| “ 1 provides the energy expanded monodromy matrix of the periodic orbit z0
at energy h0, we can compute the energy dependent eigenvalues. In the HH case, it can be done by a
direct planar eigenvalue formula or by the described method in Section 2.4. We check that the imaginary
part is never zero on the safe validity interval r´h‹, h‹s. Thus, the curve of fixed points z0phq are all
elliptic in that energy interval. Figure 4 shows the validity range increment and the argument α0phq of
the eigenvalues λphq “ e˘2πiα0phq of the elliptic fixed curve z0phq for different degrees in h.

6.1.4 Normal form and twist map around the fixed point curve

The jet of jets Gph, sq in (26) serves as input of the Algorithm A to output another nested jet pph, sq
(in complex arithmetic) that encodes a normal form and a change of coordinates cph, sq around the fixed
point curve z0phq. The step 6a in the algorithm determines possible obstructions due to resonances. In
the case of HH, which is conservative, the a-priori resonance conditions translate into:

λphq ´ λphqj1λphq´j2 “ 0 or λphq´1 ´ λphqj1λphq´j2 “ 0, (28)

for some pj1, j2q P N2 and λphq being the energy dependent eigenvalue. The combinations j1 ´ j2 “ ˘1
are unavoidable resonances satisfying (28). Thus, in absence of other resonances, the normal form pph, sq
with components p1 and p2 will look like

p1ph, sq “ λphqs1 ` p2,1phqs21s2 ` p3,1phqs31s
2
2 ` ¨ ¨ ¨

p2ph, sq “ λphq´1s2 ` Ğp2,1phqs1s
2
2 ` Ğp3,1phqs21s

3
2 ` ¨ ¨ ¨

(29)

where the wide bar denotes the coefficient-wise complex conjugate and s “ ps1, s2q.
Note that if there was an h̃ in the validity range of λphq that satisfied a resonance condition (28), then

we would still have a normal form like in (29) as long as the validity range for h was shrunk to be up to
the smallest h̃ on resonance. Through a non-rigorous numerical check, in our case of study, we do not
need to shrink the validity range in h. The check amounts to numerically computing the quantities

min
σPr´1,1s

|Rph‹σq|

where h‹
def
“ 0.95hmaxp10´16;Rq is a safe validity range of the jet Rphq in each of the LHS of (28). The

results of these computations are far from zero in different thinner σ meshes in r´1, 1s.
Once the normal form (29) has been computed, we construct the twist map as described in Section 5.1

by symbolically taking a complex number w such that w sw “ r2 and using one of the two jets of jets in
pph, sq, e.g. p1, we arrive to an integrable system parametrized by the energy h0 ` h

ˆ

θ
r

˙

ÞÑ

ˆ

r
θ ` ωph, rq

˙

with ωph, rq “ α0phq `

D´1
ÿ

k“1

α2kphqr2k. (30)

The jet of jets ωph, rq satisfies the relation described in Section 5.1, namely

e2πiωph,rq “
p1ph, sq

s1

ˇ

ˇ

ˇ

ˇs“ps1,s2q“pw, swq

w sw“r2

.

This relation shows the way to compute ωph, rq by applying the logarithm (of jets) and dividing by the
imaginary number 2πi. Note that if we were used p2 instead of p1, we would have obtained an equivalent
twist map but with ´ωph, rq.

Remark 33 (numerical observation). Theoretically α2kp0q in (30) are reals. Numerically, these numbers
will have (small) imaginary part. Due to round-off propagation these imaginary parts cannot be neglected
when evaluating ωph, rq. The size of these imaginary parts can vary from using the scaling factor in the
normal form computation, see Remark 10.

Figure 4 shows the α0phq and α2phq validity ranges and their range value therein. Clearly α2phq is far
from zero which implies the existence of perturbed tori.
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Figure 4: Increment validity ranges of α0phq and α2phq of the twist construction (30) and its values
varying the energy level.

6.1.5 Invariant curve and torus frequencies

The twist map in (30) provides an explicit torus construction for the original HH system around the
fixed elliptic point curve around z0 and energy level h0, (22). Indeed, Algorithm A also provides the
change of coordinates cph, sq from normal form coordinates to the original system. This change is given
by composition of the polynomials in s, i.e. c “ c1 ˝ ¨ ¨ ¨ ˝ cN (where the composition here refers to the
variable s only).

We build the invariant curve zh,r : T Ñ R2 of the HH system by computing

zh,rpθq
def
“ z0phq ` cph, re2πiθ, re´2πiθq, (31)

where z0phq is given in (25). These invariant curves parametrized by h and r satisfy an invariant equation,
that is More precisely, for all h and r in their validity ranges,

Gph, zh,rpθqq “ zh,rpθ ` ωph, rqq, for all θ P T, (32)

with Gph, sq given in (26). The equation (32) is invariant in the sense that for all θ, the image by G (or
P ), it results in another element in the curve that has been shifted by ωph, rq from the original one.

The invariant curve (31) is an embedding of 2-dimensional invariant object Kh,r homeomorphic to T2.
If we parametrize by a map Kh,r : T2 Ñ R4, there is a frequency vector pω1ph, rq, ω2ph, rqq such that

Kh,r “ tKh,rpθ1 ` tω1ph, rq, θ2 ` tω2ph, rqq : pθ1, θ2q P T2 and t P Ru, (33)

is diffemorphic to T2. Theorem 24 tells us how to compute the frequency vector. First we compute
ω1ph, rq as the inverse of the quantity

T1ph, rq
def
“

ż 1

0
T

`

h0 ` h, cph, re2πiθ, re´2πiθq
˘

dθ, (34)

where T ph, sq is given in (27). Note that to obtain (34), we must compute

T ph0 ` h, cph, sqq “ T0phq `
ÿ

kě1

ÿ

i`j“k
i,jPN

ai,jphqsi1s
j
2,

we substitute s “ pre2πiθ, re´2πiθq, and we finally use the linear properties of the integral to deduce

T1ph, rq “ T0phq `
ÿ

kě1

a2k,2kphqr2k,

which similarly to Proposition 29 we can deduce that a2k,2kphq are real numbers.
Once we have ω1ph, rq, we then have ω2ph, rq “ ω1ph, rqωph, rq.
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Figure 5: (1,1): Increment of validity ranges with respect to the radius r. (1,2-3): Values of ωp0, rq and
T1p0, rq using different degrees in r. (2,1): Invariant curve using r‹ “ 0.0100188767417 of degree 14.
(2,2): Return time of each of the of the invariant curve. (2,3): Invariant tori (grey), flow of the point
with θ “ 0 in the invariant curve (red), fixed point (green) for an ωp0, r‹q “ 0.32406438163539.

6.1.6 Full torus visualization

A graphic visualization of the tori associated to an invariant curves is possible if one knows the invariant
curve zh,rpθq and the frequency vector ωph, rq in (32). We compute a table of values Kh,rpθ1, θ2q in a
suitable mesh of angles θ1 and θ2. This mesh must be rectangles on the associated surface, for graphic
visualization we must disregard the internal torus dynamics and adjust the table of values on the vertices
of these rectangles. By knowing the internal dynamics of the torus, we can perform such rectangle
connections, as it has been described in Sections 4.1 and 5.3.

Last panel in Figure 5 show a 3D torus versions with an integration of a point while Figure 6 shows
its coordinate projection.

6.2 The Restricted Three Body Problem

The Restricted Three Body Problem (RTBP) is a model conceived to describe the motion of a test
particle under the gravitational influence of two massive bodies (the so-called primaries). The primaries
are assumed to move along a solution of the two body problem, typically, in circles along its common
centre of mass. A classical textbook is [Sze67]. Formally speaking, the RTBP is a Hamiltonian system
with three degrees of freedom, that, in suitable units and frame of reference reads as:

H “ Hpx, y, z, px, py, pzq “
1

2
pp2x ` p2y ` p2zq ` ypx ´ xpy ´

1 ´ µ

r1
´
µ

r2
, (35)
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Figure 6: Coordinate projections of the torus in Figure 5.

where µ ď 1{2 is the mass in adimensional units of the smaller primary, r21 “ px ´ µq2 ` y2 ` z2 is the
squared distance of the test particle to the larger primary, r22 “ px ´ µ ` 1q2 ` y2 ` z2 is the squared
distance to the smaller primary and px “ 9x´ y, py “ 9y ` x, pz “ 9z are the momenta.

It is common knowledge that the RTBP has five equilibrium points Li, i “ 1, . . . , 5, named the
Lagrangian Points. The collinear points (L1, L2 and L3) were discovered by Euler and are linearly
unstable. On the other hand, the equilateral points (L4 and L5) are linearly stable if µ ă µR. Here,

µR
def
“

1

2

´

1 ´
a

23{27
¯

« 0.0385208965,

is the so-called Routh critical value. For µ ą µR, the equilateral points are of complex-saddle type and,
therefore, linearly unstable.

The stability of the equilateral points has awaken the interest of researchers since the discovery of
the Trojan asteroids. Nonlinear behaviour near the Lagrangian points is a more involved issue. The
Lyapunov centre theorem (see, for instance [AP95]) states that there is a family of periodic orbits that
emanate from each eigenspace related to an elliptic (i.e. purely imaginary) eigenvalue.

Long term stability of trajectories near the equilateral points is provided by KAM theory in the case
of two degrees of freedom (that is, if only the invariant subspace tz “ 0, pz “ 0u is considered). The
case of three degrees of freedom is more involved due to the existence of Arnold diffusion, i.e. a process
of diffusion driven by secondary unstable periodic orbits. This kind of instability, although generic is
slow and consequently, the system behaves as a stable one for long time spans. These time spans can be
estimated and the diffusion bounded by means of normal form techniques. In this example, we explore the
neighbourhood of the equilateral L4 for µ “ 0.04. Notice that this mass ratio is above Routh value, hence
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L4 is not linearly stable. The normal linear behaviour within the invariant subspace tz “ 0, pz “ 0u is
of complex-saddle type. However, the orthogonal eigenspace has elliptic character and by the Lyapunov
Theorem, it emanates a family of periodic orbits. Due to the fact that the family is locally (near L4)
orthogonal to the subspace tz “ 0, pz “ 0u, this family is usually called vertical family of Lyapunov
orbits. Close enough to L4, the family inherits the linear character of the equilibrium it raises from.
However, at sufficient distance from tz “ 0u, the family is totally elliptic and therefore practical stability
is to be expected nearby.

6.2.1 Elliptic fixed point

We have selected a periodic orbit that is already analysed in [JV98] where a normal form based approach
is employed to bound Arnold diffusion of long time spans. This periodic orbit is a periodic orbit of the
vertical Lyapunov family characterised by a value of approximately pz “ 0.25 (which is equivalent to fix
a certain value of the Hamiltonian (35)).

The coordinates of the periodic orbits (as a fixed point of the Poincaré map related to the section
Σ “ tz “ 0, pz ą 0u are given in Table 1, left column. The right column of 1 contains additional
information: The first two rows provide the period of the orbit (T0) and the value of the hamiltonian
(H0). By means of equation (35) and fixing H0, one can recover the value of pz. The third and fourth
row of the right column in Table 1 contain information about the linear normal behaviour related to the
orbit as a fixed point of the Poincaré map. That is, the eigenvalues of the Jacobian matrix of the map are
given by λ˘

1 “ e˘2πiα1 and λ˘
2 “ e˘2πiα2 . The arguments of these eigenvalues, α1 and α2, are the values

provided by Table 1. These values indicate, at linear order, the frequencies of the families of invariant
curves emanating from the fixed point which are tangent the eigendirections (see [JV97]). These values
are usually called normal frequencies of the fixed point.

We have applied the algorithms explained in previous sections of the present paper to this periodic
orbit. However, let us stress that, in [JV98], the approach is based on the Lie transformation method
generalized to handle Taylor-Fourier series. Transforming the Hamiltonian function is, in fact, a standard
method used in other works where normal forms about periodic orbits are computed, see [GJMS93,
And02, GJ01, JJCR20, RJJC21a, RJJC21b, RJJC23]. As a side comment, all these mentioned works
consider normal forms in periodic-time dependent Hamiltonian systems (namely, periodic perturbations
of the restricted three body problem). The autonomous case tackled and in [JV98] is more involved as
the Floquet Change of variables necessary to arrange the second order of the Hamiltonian demands extra
care (again, see details in [JV98]). As we work directly on the Poincaré map, we do not need to cope with
the Floquet Change.

x -4.669907803550578e-01

y 8.616112997374480e-01

px -8.347975347250995e-01

py -4.524543662846999e-01

T0 6.286004008046577e+00

H0 -1.449088268767175e+00

α1 2.531623016040890e-01

α2 3.314789011607125e-01

Table 1: Coordinates of the fixed point in the Poincaré section Σ with Hamiltonian H0, period T0, and
normal frequencies α1 and α2. See text for more details.

6.2.2 Normal form and twist construction

We have implemented the methodology explained in the previous sections to compute a 4-dimensional
twist map associated to the Poincaré map at the specific energy level H0 in Table 1. In particular, and
as opposed to Section 6.1, in the present case, the Poincaré map has not been expanded with respect to
the energy level.



30 Explicit Numerical Computation of Normal Forms for Poincaré Maps

The first step to apply Algorithm A, consists on computing the Taylor polynomial of the Poincaré at
the fixed point of Table 1. As an example, the expansion up to order 11 and 4 symbols takes about 45
seconds of CPU time.

After that, Algorithm A runs in around 3.2 minutes since in the neighbourhood provided by the
high-order Poincaré derivatives only avoidable resonances are present. Hence, the algorithm’s provides
changes of coordinates and four truncated power series of the form (13), we have used as scaling factor
ϱ “ 5.788752759731585e-03. Then we solve (14), using jets of 2 symbols, to obtain ω1pr1, r2q and
ω2pr1, r2q in Proposition 29.

Adding up, two-dimensional twist coordinates can be computed in 0.7 seconds in a neighbourhood of
the periodic orbit in Table 1. The twist map condition given by the determinant of the following matrix

¨

˚

˚

˚

˚

˝

B2ω1

Br21
p0, 0q

B2ω1

Br22
p0, 0q

B2ω2

Br21
p0, 0q

B2ω2

Br22
p0, 0q

˛

‹

‹

‹

‹

‚

“
1

p2πϱq2

¨

˝

-4.136303897444691e-04 -9.728663974782056e-04

1.067616548567459e-03 1.155469385927883e-03

˛

‚.

If the determinant is different from zero, twist theorem ensures the persistence of two-dimensional KAM
tori in the Poincaré section. Notice that these tori are three-dimensional in the original flow.

Table 2 shows the coefficients of the twist ω1 and ω2 at degree 10. Note that all the monomials are
power 2 because of the radius, which means that the effective degree is 5. According to Proposition 29
the imaginary part of these coefficients are all real. In practice if the normal form is not scaled by the
scaling factor ϱ, some of these imaginary part can numerically be far from machine precision.

2πω1pr1, r2q 2πω2pr2, r2q k1 k2

1.590665653770496e+00 2.082743361413116e+00 0 0

-4.136303897444691e-04 1.067616548567459e-03 2 0

-9.728663974782056e-04 1.155469385927883e-03 0 2

1.239784629654938e-06 -3.469582163280214e-06 4 0

7.461178082695058e-06 4.782396906736634e-05 2 2

1.435493977600822e-05 3.999811918947041e-05 0 4

-4.893940486298444e-09 1.655876677634510e-08 6 0

-1.292392321865263e-07 5.015554940815004e-06 4 2

-4.379452993341237e-06 1.561084997403964e-05 2 4

-4.282160824526974e-06 9.558121027085274e-06 0 6

5.466632652962671e-12 -4.803565938164035e-11 8 0

1.378767712290349e-09 4.400815440393997e-07 6 2

-4.659485001412326e-07 2.440400198268105e-06 4 4

-1.062580313218477e-06 3.659445392752820e-06 2 6

-5.662648052671416e-07 1.623507030996212e-06 0 8

1.407435407399248e-13 -1.189493967595100e-13 10 0

-6.179070785891979e-12 3.898101773945702e-08 8 2

-7.158869553581880e-08 3.554868055453147e-07 6 4

-2.982243507624324e-07 9.711485715284952e-07 4 6

-3.648117449889493e-07 1.000066965663802e-06 2 8

-1.420755214098244e-07 3.514612623405018e-07 0 10

Table 2: Coefficients of 2πωipr1, r2q “
ř

k1,k2
αi
k1,k2

rk11 r
k2
2 in its power expansion of r1 and r2 for i “ 1, 2.

Figure 7 shows validity ranges, rmax with tolerance ϵ “ 10´16, and it uses a r‹ (see the value in the
caption) what is the 0.95 times the minimum of the rmax of ω1 and ω2. Note that r‹ lies in the unit
scaling of ϱ from which the normal form was computed.

Using the period expansion T psq and the changes of coordinates c1˝¨ ¨ ¨˝cN of Algorithm A we compute
the ω0pr1, r2q as the integral in Theorem 24 and plotted in Figure 7. The computation of ω0 uses a mesh
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of 32 ˆ 32 for pθ1, θ2q for each pr‹σ1, r‹σ2q, which meshes pσ1, σ2q in a same equispaced 32 ˆ 32 mesh
of r0, 1s2 to compute the integral. The overall computational time to mesh ω0 takes around 56 minutes.
Note that in the mesh of pσ1, σ2q can easily be parallelized and the bottleneck here is mostly for a plotting
purpose.
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Figure 7: (1,1): Increment of validity ranges with tolerance ϵ “ 10´16. (1,2-3): values of ωjpr‹, r‹σ2q,
j P t1, 2u. (1-3,2): surfaces of ωjpr‹σ1, r‹σ2q, j P t0, 1, 2u. Here r‹ “ 6.303157471364387e-01.

6.2.3 Torus visualizations

Fixed the r‹ as in Figure 7’s caption, we compute the intrinsic frequency vector

ω1pr‹, r‹q “ 2.530751124713419e-01 and ω2pr‹, r‹q “ 3.316219283594150e-01.

Using the changes of coordinate c0 ˝ c1 ˝ ¨ ¨ ¨ ˝ cN from the Algorithm A with N “ 11, we obtain, in just 2
seconds, torus parametrizations of px, y, px, pyq : T2 Ñ R4 in a neighbourhood of the fixed Poincaré point
in Table 1. For each of these points we can compute the flying time TΣ to the section by a direct integration
(we could have used the expansion T too). Figure 8 shows these 2-D torus using a 32 ˆ 32 equispaced
mesh of pθ1, θ2q. In particular, we have added in red (scaled by 0.002) the unit vectors corresponding to
ppx, pyq.

Moreover, by using the ω0pr‹, r‹q “ 9.995532699061624e-01, and the flow from the ODE Hamiltonian
(35), we can visualize the 3-D torus as described in Section 5.3. In this case, Figure 9 shows first some
slices of θ0 all with the red scaled unit vector of ppx, py, pzq except for the ones starting at the section Σ.
We have also plotted the integration of two points on Σ which corresponds to an orbit that reaches the
initial torus with a shift pω1, ω2q. The other two are just the straightforward 3-D tori plots of px, y, zq

and ppx, py, pzq.
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vector to indicate the direction of time at that point. (1,3): Return time surface of the 2-D torus.
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Figure 9: (1,1): Slices of the full torus of pω0, ω1, ω2q with two trajectories from Σ to itself. (1,2-3): 3-D
plots for the variables px, y, zq and ppx, py, pzq respectively.
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Maeztu Program for Centers and Units of Excellence in R&D (CEX2020-001084-M). AJ has also been
supported by the Air Force Office of Scientific Research under award number FA8655-24-1-7059. MJC
has also been supported by the Spanish grant PID2020-118281GB-C31 (MICINN/AEI/FEDER, UE).

Statements and Declarations

The authors declare no conflict of interests.

References
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