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Campus Bellaterra, 08193 Bellaterra, Spain

vieiro@maia.ub.es

October 18, 2024

Abstract

This paper contains a proof of a refined version of Neishtadt’s the-
orem which states that an analytic near-identity map can be approx-
imated by the time-one map of an autonomous flow with exponential
accuracy. We provide explicit expressions for the vector fields and give
explicit bounds for the error terms.

Keywords— near-the-identity maps, discrete averaging, embedding of a map into
flow

The classical result of Neishtadt [3] states that an analytic near-the-identity family
of maps can be approximated by time-one maps of autonomous vector fields, with
approximation error decaying exponentially fast as the parameter vanishes. The
rate of decay is controlled by the ratio of two parameters δ/ε, where ε characterises
the distance to the identity in a complex δ-neighbourhood of the domain of the
map. Neishtad’s theorem provides a useful tool for studying dynamics of close-
to-the identity maps. Its proof is based on the classical averaging for rapidly
oscillating time-periodic flows and does not provide explicit expressions for the
vector fields in terms of the original map. Therefore, checking the accuracy of an
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approximation for an individual map becomes difficult and finding an expression
for the vector field impossible from the practical point of view.

In this note we use discrete averaging to provide explicit expressions for the vector
fields which approximate a near-identity map f and give explicit expressions for
the approximation errors.

We consider an analytic (or real-analytic) map f : D0 → Cn defined on a subset
D0 ⊂ Cn (or Rn). We suppose that there is δ > 0 such that the analytic continua-
tion of f onto Dδ, a complex δ-neighbourhood of D0, is close to the identity map ξ
and define

ε = ∥f − ξ∥Dδ
. (1)

In this paper we use the infinity norm for vectors and supremum norms for func-
tions. Let m ∈ N and define an interpolating vector field of order m,

Xm(x) =
m∑
k=1

(−1)k−1

k
∆k(x), (2)

where the finite differences are defined recursively

∆0(x) = x, ∆k(x) = ∆k−1(f(x))−∆k−1(x) for k ≥ 1. (3)

We say that Xm is obtained with the help of discrete averaging as Xm is a weighted
sum of fk(x) for 0 ≤ k ≤ m. Indeed, it is not too difficult to check that

∆k(x) =

k∑
i=0

(
k

i

)
(−1)k−if i(x).

Theorem 1. If a map f is analytic in Dδ and ε/δ ≤ 1/6e, then the interpolating
vector field Xm of order 2 ≤ m ≤ Mε + 1, where Mε = δ

6eε , is analytic in Dδ/3,
∥Xm∥Dδ/3

≤ 2ε and

∥ΦXm − f∥D0 ≤ 3ε

(
6(m− 1)ε

δ

)m

. (4)

Moreover, for m = ⌊Mε⌋+ 1

∥ΦXm − f∥D0 ≤ 3 ε exp (−δ/6eε) . (5)

Proof. We consider the map f as a member of the family

fµ = (1− µ)ξ + µf

where µ is a complex parameter. Obviously the function fµ is analytic in the same
domain Dδ as the function f . Then |∆1(x)| = |fµ(x) − x| ≤ |µ|ε for any x ∈ Dδ

and any µ. Let µ1 = δ/ε and

µm =
2δ

3ε(m− 1)
for m ≥ 1 .
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If |µ| ≤ µm, then for every x0 ∈ Dδ/3 the first iterates xk := fk
µ(x0) ∈ Dδ and

|xk+1 − xk| ≤ |µ|ε provided 0 ≤ k ≤ m− 1 . The definition (3) implies that

∆k(x0) =

k−1∑
j=0

(−1)k−j−1

(
k − 1

j

)
∆1(xj).

Since
∑k

j=0

(
k
j

)
= 2k we get

∥∆k∥Dδ/3
≤ 2k−1|µ|ε .

Since |∆k(x)| ≤ ∥∆′
k−1∥ |µ|ε where the supremum norm is taken over |µ| < µk

and |x − x0| < µkε, we can check that ∆k(x0) = O(µk). Applying the maximum
modulus principle (MMP)1 in µ to each component of ∆k(x0), we get

∥∆k∥Dδ/3
≤ 2k−1µkε

(
|µ|
µk

)k

.

Let Xm,µ be defined by (2) with f replaced by fµ. Then Xm,µ is analytic in Dδ/3

for |µ| ≤ µm and admits the following upper bound

∥Xm,µ∥Dδ/3
≤

m∑
k=1

1

k
∥∆k∥Dδ/2

≤ εµm

2

m∑
k=1

(
2|µ|
µm

)k

≤ ε|µ|
1− 2|µ|

µm

.

Then we get that for |µ| ≤ µm/4

∥Xm,µ∥Dδ/3
≤ 2ε|µ| .

For our range of m we have µm ≥ 4. Then the domain of validity of the upper
bound includes µ = 1 and we get

∥Xm∥Dδ/2
≤ 2ε.

We also get that for |µ| ≤ µm/4 and m ≥ 2

∥Xm,µ∥Dδ/3
≤ εµm

2
=

δ

3(m− 1)
≤ δ

3
.

Then the orbit of the vector field Xm,µ with an initial condition in D0 remains in
Dδ/3 during one unit of time and

∥ΦXm,µ − ξ∥D0 ≤ ∥Xm,µ∥Dδ/3
≤ 2ε|µ| .

1We use the following simple statement of Complex Analysis: if a function g is an
analytic function of µ bounded in an open disk |µ| < r and g(k)(0) = 0 for k = 0, 1, . . . ,m,
then the maximum modulus principle implies that |g(µ)| ≤ (|µ|/r)m sup|µ|<r |g(µ)|. Of
course, if the function extends continuously onto the boundary of the disk, the supremum
can be replaced by the maximum over |µ| = r.
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In order to apply arguments based on the MMP, we need to check that ΦXm,µ has
the same Taylor polynomial of degree m in µ as the map fµ. Proofs of similar
claims can be found in [1, 2]. First we define an auxiliary vector field

Ym,µ(x) =

m∑
k=1

µkak(x)

where a1 = f − ξ and ak with k ≥ 2 are defined recursively by

ak = −
k∑

j=2

1

j!

∑
i1+···+ij=k

Lai1
. . . Laij

ξ

where differential operators Lag = a · ∇g act on a vector valued function g
component-wise. Expanding the time-t map Φt

Ym,µ
in Taylor series in t we get

Φt
Ym,µ

= ξ + tYm,µ +
m∑
k=2

tk

k!
Lk
Ym,µ

ξ +O((tµ)m+1). (6)

Our choice of ak implies that the terms of order µk cancel each other for k =
2, . . . ,m when t = 1:

Φ1
Ym,µ

= ξ+Ym,µ+
m∑
k=2

1

k!
Lk
Ym,µ

ξ+O(µm+1) = ξ+µa1+O(µm+1) = fµ+O(µm+1).

Iterating the map we get that Φk
Ym,µ

= fk
µ +O(µm+1). Using the equation (2) with

f replaced by Φ1
Ym,µ

we obtain a vector field X̂m,µ = Xm,µ+O(µm+1). We note that

X̂m,µ is the derivative at t = 0 of the Newton interpolating polynomial of degree m
defined by the points Φt

Ym,µ
with t = 0, 1, . . . ,m. Since the interpolation is exact on

polynomials of degree m, the equation (6) implies that X̂m,µ = Ym,µ + O(µm+1).
Combining these two estimates we get that Xm,µ = Ym,µ + O(µm+1), i.e., Ym,µ

is the Taylor polynomial of degree m in µ for the vector field Xm,µ. Since the
time-one map of a vector field depends smoothly on the vector field we conclude
that

Φ1
Xm,µ

= Φ1
Ym,µ

+O(µm+1) = fµ +O(µm+1).

Therefore the Taylor expansion in µ of ΦXm,µ matches the Taylor expansion of fµ
up to the order m.

Since ∥ξ − fµ∥D0 = |µ| ∥ξ − f∥D0 ≤ |µ|ε, we get that

∥ΦXm,µ − fµ∥D0 ≤ ∥ΦXm,µ − ξ∥D0 + ∥ξ − fµ∥D0 ≤ 3ε|µ|.

The MMP based on the bound in the disk |µ| ≤ µm/4 can be applied with µ = 1
to get the desired estimate

∥ΦXm − f∥D0 ≤ 3ε

(
4

µm

)m

= 3ε

(
6ε(m− 1)

δ

)m

.
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The right-hand side depends on m and takes the smallest values near Mε. There
is a unique integer m ∈ [Mε,Mε + 1). Then, for this m,

µm

4
=

δ

6ε(m− 1)
≥ δ

6εMε
= e > 1.

In particular, it satisfies the assumption used in the proof, and we can conclude
that

∥ΦXm − f∥D0 ≤ 3ε e−Mε = 3 ε exp

(
− δ

6eε

)
.

Theorem is proved.

Remark 2. For the sake of completeness we present the bounds for the case of
m = 1 separately. The interpolating vector field is given by X1(x) = f(x)− x and

∥ΦX1 − f∥D0 ≤ 2ε2

δ
.

Proof. In order to check this bound we can consider X1,µ = fµ − ξ = µ(f − ξ).
Obviously,

∥X1,µ∥Dδ
= ∥µ(fµ − ξ)∥Dδ

= |µ|ε.

Then ∥ΦX1,µ − fµ∥D0 ≤ 2|µ|ε provided |µ|ε < δ. Since ΦX1,µ − fµ = O(µ2), the
MMP implies the desired bound

∥ΦX1 − f∥D0 ≤ 2εµ0

µ2
0

=
2ε2

δ

where µ0 = δ/ε.

The error bounds of Theorem 1 can be improved by implementing a symmetric
interpolation scheme instead of the Newton one, in a way similar to [1]. We also
note that in the case of a symplectic map f , the interpolating vector field (2) is
typically not Hamiltonian. On the other hand, it can be shown to be a small
perturbation of a Hamiltonian vector field [1, 2], with the size of the perturbation
being comparable with the approximation errors of Theorem 1.
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