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Abstract

We study nonsmooth bifurcations of four types of families of one-dimensional quasiperi-
odically forced maps of the form Fj(x,0) = (fi(z,0),0 + w) for i = 1,...,4, where z is real,
0 € T is an angle, w is an irrational frequency, and f;(x, ) is a real piecewise linear map with
respect to . The first two types of families f; have a symmetry with respect to =, and the
other two could be viewed as quasiperiodically forced piecewise-linear versions of saddle-node
and period-doubling bifurcations. The four types of families depend on two real parameters,
a € R and b € R. Under certain assumptions for a, we prove the existence of a continuous
map b*(a) where for b = b*(a) there exists a nonsmooth bifurcation for these types of systems.
In particular we prove that for b = b*(a) we have a strange nonchaotic attractor. It is worth
to mention that the four families are piecewise-linear versions of smooth families which seem
to have nonsmooth bifurcations. Moreover, as far as we know, we give the first example of a
family with a nonsmooth period-doubling bifurcation.
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1 Introduction

In this paper, we investigate the dynamics of four families of piecewise-linear quasiperiodically
forced maps. For these families, we want to study a certain type of (nonsmooth) bifurcations
involving invariant and two-periodic curves. These bifurcations are related to the existence of
Strange Nonchaotic Attractors (SNA). A two-periodic curve is a curve which is invariant under
the second iterate of the system, see Definition 1.1 for a formal definition. For the cases we
consider, we say that a bifurcation is nonsmooth whenever, at the bifurcation parameter, some of
the invariant or two-periodic curves involved in the bifurcation fail to be continuous. We prove
that the families we study exhibit nonsmooth bifurcations.

The motivation to study these four maps is due to the previous study in [JTZ24]. In this work,
the authors study the following quasiperiodically forced map, for a > 0, b € R and w & 27Q,

T = hy(x) — bsin(0),

_ ho(r) = ar ifzxe|-Z, X,
0=0+w mod 2, (=) =5 5a)
5 ifre (g, 00)

They prove the existence of a value of a parameter b = b*(a) where a nonsmooth pitchfork bi-
furcation occurs. This system is a piecewise-linear approximation of the smooth system studied
in [JMnAT18] and [J09]. The present study generalizes and extends the results of [JTZ24] by
identifying further models for which similar statements hold and establishing additional properties
of the systems. We will consider four quasiperiodically forced maps of the form

T = h(x) + bg(0),
6 =0+w mod 2,

where b € R is a real parameter, w & 27Q, h: R — R is a piecewise-linear continuous function and
g: T — R is a sufficiently smooth function. The piecewise-linear functions we will present have
constant and linear parts. The linear part depend on a parameter a € R which will encode the
expanding behaviour of the system. The nonsmooth bifurcations will arise when |a| > 1. For the
four systems we consider, we show the existence of a curve of bifurcation b*(a) in the parameter
plane where a nonsmooth bifurcation occurs. The curve of bifurcation can be expressed in terms of
the absolute maximum or minimum of one of the invariant curves. Once we consider a particular
g, we are able to explicitly determine the parameter values at which a nonsmooth bifurcation and
an associated fractalization phenomenon occurs. Concretely, we show the existence of piecewise-
linear versions of nonsmooth saddle-node, nonsmooth pitchfork, and nonsmooth period-doubling
bifurcations. We want to make emphasis on the fact that, as far as we know, this is the first
example of a family of quasiperiodically forced maps where it can be proved that there exists
a nonsmooth period-doubling bifurcation. We avoid the case a = 1 because, in this case, the
linear part of the piecewise-linear systems becomes the identity map. In the non-linear case this
behaviour is not generic.

We now summarize the key contributions and main results of the present study. As we will justify
later, it is enough to study the bifurcation for b > 0. We start with the case |a| > 1.

e For 0 < b < b*(a), we establish the quantity of invariant or two periodic curves the sys-
tems have and we prove that the invariant or two periodic curves are piecewise of the same
regularity as g.

e For b = b*(a), we show that the systems undergo nonsmooth bifurcations. Usually, in
computer simulations, the existence of a nonsmooth bifurcation is perceived through a frac-
talization phenomenon of the invariant curves of the system, when b tends to b*(a). See, for
example, [JTNnOO7] and the references therein. For more details we refer to Section 4.4,
where we define the fractalization of invariant curves. Unfortunately, this is not a charac-
terization of the existence of a nonsmooth bifurcation (see Remark 2.4.3 and examples 2.4.4
- 2.4.5 in [CsMN19]). Nevertheless, under suitable hypotheses, we are able to prove that a



fractalization phenomenon is a necessary condition for the existence of a nonsmooth bifur-
cation, see Theorem 3.10. In contrast, the computer simulations of the four piecewise-linear
systems and the smooth counterparts barely show this fractalization phenomenon (compare
Figures 1 and 2). This could be due to the fact that when two invariant or one invariant
and one two-periodic curves collide, the set of angles corresponding to their intersection is
residual but has zero measure, see Theorem 3.4. The corresponding noncontinuous attracting
invariant curve, which appears for this bifurcation, is called a Strange Nonchaotic Attractor:
it is not the union of finitely many smooth manifolds and it has a zero Lyapunov exponent
(due to the irrational rotation) and a negative Lyapunov exponent. In the case of having a
noncontinuous two-periodic invariant curve, we say that the SNA is the union of the curve
and its image. For an in-depth discussion of the different definitions of SNA, see [AC09].

Additionally, if we fix b = b*(a), we can construct a sequence of continuous curves {@,}n,
which converge pointwise to the attracting curve. The graphs of {¢,}, begin to exhibit
wrinkling as n — co. A curve is said to wrinkle when it exhibits progressively finer foldings,
see Corollary 3.12 for a more precise description of this behaviour. In Remark 3 of Keller’s
paper, the author raises the question of whether, when two invariant curves collide, the graph
of one curve densely fills the region delimited by the two curves. Concerning this question,
in Proposition 3.9 we prove that, at b = b*(a), our systems have an attracting invariant or
two-periodic noncontinuous curve that is dense in a region with positive two-dimensional
Lebesgue measure. Moreover, in Remark 4.5 we comment that the proof of Proposition
3.9 also applies to Keller’s systems. As a final conclusion to the study of these systems, in
Theorem 3.11, we give a criteria for a nonsmooth bifurcation in terms of the convergence of

a particular sequence of curves.

e For b > b*(a), we prove that some of invariant or two periodic curves that exist for 0 < b <
b*(a) disappear and the remaining curves are piecewise of the same regularity as g.

For the case |a| < 1, using the Banach Fixed Point Theorem we prove the existence of a unique
Lipschitz invariant curve, for all b € R.

Similar results have been proved for other classes of maps [Kel96, Bje09, JTZ24, Fuhl6]. In
the case of continuous dynamical systems, [DnNnO23, NnO08, DnNnO25, DnNnO24] provide
rigorous proofs of the existence of nonsmooth bifurcations of some families of nonautonomous
scalar differential equations.

To finish with the introduction, we give a brief outline of the contents in the following sections.
Below in Section 1.1, we introduced the quasiperiodically forced systems. In Section 2, we present
the invariant curves of the systems and some basic properties concerning these curves. In Section 3,
we state the main results of the work: we describe the bifurcation of the systems, we give conditions
for which we can prove the nonsmoothness of the bifurcation, we describe the attracting behaviour
of the attracting set for the parameters of bifurcation, we show the closure of an attracting curve
is a set with positive two-dimensional Lebesgue measure for the parameters of bifurcation and,
finally, we describe the fractalization process in these systems and we give a characterization of
the noncontinuity of the attracting curve in terms of the uniform convergence of a sequence of
continuous curves. In Section 4, we provide the detailed proofs for the system (4), with some
comments for the other systems, and some other supplementary results about the systems and
the invariant curves. In Sections 3, 4.1, 4.2, 4.3, 4.4 we study the nonuniformly contractive case
(when we can have an SNA) and in Section 4.5 we consider the uniformly contracting case (when
we have a unique attracting invariant curve). Concretely, in Section 4.1 there are the proofs
of Theorems 3.4, 3.6, 3.9 and Proposition 3.7, these statements describe the properties of the
systems at the bifurcation parameter. In Section 4.2 there is the proof of Proposition 3.2 which
describes the properties of the systems after the bifurcation parameter. In Section 4.3 there are
the proofs of Proposition 3.5 and Theorem 3.8, they describe the properties of the systems before
the bifurcation parameter. In Section 4.4 there are the proofs of Theorems 3.10 and 3.11, which
show fractalization of the invariant curves under certain conditions. Finally, in Section 4.5 there

is the proof of Theorem 3.13 which describes the properties of the systems.



1.1 The dynamical systems

Let F: R x T' — R x T be a quasiperiodically forced map (z,0) = F(x, ) of the form

T = h(z) + bg(),
0 =60+w mod2m,

where b € R is a real parameter, w ¢ 27Q, and A: R — R and ¢g: T — R are continuous functions.
Let T® denote the set of functions from T to R. To such a system F, we associate the operator
F: TR — T® given by

F(p)(0) = h(p(0 —w)) + bg(0 — w).

Definition 1.1. We say that a function ¢ € T® is an invariant curve of a system of the form
Fif F(p) = . A curve ¢ € TR is a two-periodic curve of a system of the form F if F2(p) = ¢

and F(¢) # .

Throughout the work we study four systems of this kind F;: RxT! — Rx T, fori = 1,2,3,4. The
maps h; appearing in the systems F; are defined piecewise with linear and constant components.
We proceed to introduce the maps that will be the subject of our analysis in a more precise form.

e The map Fj is a quasiperiodically forced piecewise-linear version of a supercritical pitchfork
bifurcation. It is given by

T = hi(x) — bg(0),
=0+w mod 2,

with a > 0.

e The map F5 is a quasiperiodically forced piecewise-linear version of a subcritical pitchfork
bifurcation. It is given by

a(x +0) if x € (—o0,—0),
ho(z) = < 0 if 2 € [—6,4], (2)
a(x —¢) if z € (J,00),

T = hQ(‘T) + bg(9)7
=40

+w mod 2,

Syl

with a > 0 and § > 0.

e The map F3 is a quasiperiodically forced piecewise-linear version of a saddle-node bifurcation.
It is given by

z = hs(x) + bg(6), ar if x> —1,
v = ) ) ha(z) = ' 1 (3)
0 =0+w mod 2m, -1 ifx <-4,

with a > 0.

e The map F} is a quasiperiodically forced piecewise-linear version of a period-doubling bifur-
cation. It is given by

ar ifx >
a

T = hy(zx) — bg(0),
v = ha(w) — by (0) ha(z) = ' 1 (4)
0 =60+w mod 2, 1 ifr <o,

with a < 0.

Note that the invariant curves of the map F; are precisely the fixed points of the corresponding

operator F;. The function g is assumed to be a C**7(T) function, for some 7 > 0. Since our study



is heavily dependent on the parameter a, we separate the study of the quasiperiodically forced
maps in terms of this parameter. To show the existence of nonsmooth bifurcations in the four
piecewise-linear systems, we will use similar arguments to the ones in [JTZ24]. It is important to
note that for ¢ = 1,2,3 the map h; is monotone increasing and for + = 4 the map h4 is monotone
decreasing. Hence, the map h? is monotone increasing. We have introduced each dynamical system
with a parameter b which is any real number, but for the study of the system we will only consider
b > 0. Note that for the systems (1), (2) and (4) the change (b, z,Z) — (—b, —z, —) allows results
to be extended from b > 0 to b < 0. In the following sections we introduce the study of system (4),
which is the most different of the four families. The study of the other systems can be deduced
from similar arguments. For completeness, the statements of the results are written for the four
systems. In the proofs, we comment how to obtain the results for the rest of the systems. To be
more precise, the system (1) and (2) are related to the system in [JTZ24]. The system (3) is a

piecewise-linear approximation of the non-linear system

T = eXp((ILU) - bg<6)7
0=60+w mod 2,

with @ > 0 and b € R. The system (4) is a piecewise-linear approximation of the non-linear system

— exp(ax) — bg(0),

=1
=0+w mod 2r,

()

with @ > 0 and b € R. A preliminary analysis of these systems seems to indicate that their
dynamical behaviour is similar to the piecewise-linear ones. A more complete numerical study of
these non-linear systems is work in progress.

Figure 2 shows the structure of the invariant set for the system (5). For the plots we have chosen
w=7(v/5—1) and a = 3. For the periodic function we use g() = 1 4 cos(d). The green curves
are two-periodic and the red one is a repelling invariant curve of the system (5).

Figure 1 shows the structure of the invariant set for the system (4). For the plots we have chosen
w = 7(v/5— 1) and a = —3. For the periodic function we use again g(f) = 1+ cos(f). The green
curves are two-periodic curves of the map Fj, and the red curve is the repelling invariant curve.
In the bifurcation, we will prove that the two-periodic curves (green) and the invariant curve (red)
are different. Moreover, the intersection set of the curves has zero Lebesgue measure. Therefore,
numerical simulations cannot capture how the two-periodic curves densely fill the area between
them. In Section 3, we will prove that the curves densely fill the area and that there are no more

invariant or two-periodic curves than those shown in the figure 1, see Corollary 3.3.

2 The invariant curves of the systems

In this section, we study the non-uniform contraction (see Assumption 2.1) case for the systems
we have introduced previously. The arguments we use in the proofs follow the ideas from [JTZ24].
As we have mentioned before, in order to avoid unnecessary repetition, we give only the complete
proofs for the system (4) and we comment briefly on how the proofs for the other systems may
be carried out. Recall that, as we have mentioned in the introduction, we can reduce the study
to the case with b > 0. We start the section with an important assumption to which we will refer
throughout the following sections.

Assumption 2.1. For the systems (1), (2) and (3) we assume ¢ > 1 and for the (4) we assume
a<—1

Notice that this assumption guarantees that there is no uniform contraction on each of the systems.
From now on we need to work with the invariant curves, so we start by computing them for small

enough b > 0. Assume that, for i = 1, 3,4, we have an invariant curve p; of the system F; such
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that the image of y; is on the linear part of h;, then

pi(0 + w) = hi(pi(0)) — bg(6). (6)

Since we assume that the image of p; is on the linear part of h;, if g is a trigonometric polynomial,
then equation (6) has a solution p; which is a trigonometric polynomial. If g can be expressed as
a Fourier series, then the solution u; can be found using standard Fourier analysis. We explain
how to obtain the solution after the proof of Lemma 2.2. The curve p; is invariant as long as it
stays on the region where h; is linear. Since every piecewise-linear h; has two or three different
components, if b = 0, there exists one invariant or two-periodic curve for each component. When
b > 0 is sufficiently small, the curves defined below are invariant or two-periodic. For larger b, they
serve as a seed of an iteration procedure to find the invariant or two-periodic curves. We proceed

to define the curves in question depending on the parameters a and b:

e For (1), we consider the following curves

and p; the continuous solution of the functional equation
p1(0 4 w) = ap () — bg(6).

e For (2), we have two parts where the system is linear. Hence, we consider the following

curves

e For (3), we consider the following curves
P3(0) = =14 bg(0 — w).
and pg the continuous solution of the functional equation
p3(0 + w) = ap(0) + by(0).
e For (4), we consider the following curves
@a(0) =1 —bg(0 — w).
and p4 the continuous solution of the functional equation

146+ ) = ap(6) — bg(9). (7)

If b > 0 is small enough, these curves are invariant, for the systems (1), (2) and (3). In contrast,
for the system (4), the curve py is invariant but the curve ¢4 is not. What happens is that ¢, is

a two-periodic curve. In order to show that ¢, is two-periodic curve, we need to consider a fixed



curve for the map iterated two times. The two-iteration map of system (4) has the following form

= ha(ha(z) —bg(0)) — bg(6 + w), (8)
0

+ 2w  mod 27.

i K
Il

For small enough b > 0 and a < —1, we have that ¢4(0) > <. Then,
™1 0 Fy(p4(0),0) = ha(@a(0)) — bg(0) = apa(0) — by (0).
Hence, for small enough b > 0, we obtain that
10 F{($(0),0) = ha(ha((0)) — bg(0)) — bg(0 + w) = 1 — bg(0 + w) = 4(0 + 2w).

We know that the collision of invariant curves can lead to the noncontinuity (see [Kel96, JTZ24])
of some of the colliding curves. The following result give an expression for the distance between

two of the curves.
Lemma 2.2. For each system, with Assumption (2.1), we have the following:

For the system (1) we have

min (¢1(0) — p1(6)) = amin <21 — (0 — w)) ;

9eT 0eT a
. g 1 7-r
min (s (6) = 2(0)) = amin (u (6 —w) + ).

For the system (2) we have

min (p15(0) — p2(0)) = amin (us(6 — w) = 9),

0eT 6eT
min (2(0) — 2(0)) = amin (s (0 — ) +6) .

For the system (3) we have

0T 0eT a

i () — 2a(6) = argin (ual6 )+ 7).

For the system (4) we have

i (94(6) = a(6) = amin (5 =0~ )

0eT 0T

Proof. For the system (4). From the functional equation (7) and the explicit expression of ¢4 we
can see that

. 1
Pu) ~ a®) =1 = (8- 0) = (5~ (0~ ) ).
In the other systems, it can be used either the same argument with the corresponding functional

equation or the explicit expression of the curve to obtain the result. O

We now focus on solving equation (6) for the system (4). The reasoning for other systems follows
by similar arguments. If we consider that g is a trigonometric polynomial with the expression
9(0) = 32N gi(n) sin(nf) + ga(n) cos(nf), then we know that the solution 4 has the form g, (6) =



SN ansin(nf) + b, cos(nf). Therefore, equation (6) takes the form

] =

an sin(n(f + w)) + b, cos(n(f + w))

n=0
N N
=a Z a, sin(nf) + b, cos(nf) — b Z g1(n) sin(nf) + gz(n) cos(nh).
n=0 n=0

Recall the following trigonometric identities

sin(nf + nw) = sin(nf) cos(nw) + cos(nd) sin(nw),

cos(nf + nw) = cos(nh) cos(nw) — sin(nd) sin(nw).
Therefore, we obtain the following system of equations for the unknowns {a,, b, }._,

a, cos(nw) — by, sin(nw) = aa, — bgi(n),

ay, sin(nw) + by, cos(nw) = ab, — bga(n).

This system in matrix form is

cos(nw) —a  —sin(nw) an\ [ —bgi(n) (9)
sin(nw)  cos(nw) —a ) \b,)  \=bga(n) )"
The other systems give rise to similar linear systems for the coefficients {a,, b, }_,. The determi-

nant of the matrix in (9) is 1 — 2a cos(nw) + a® > (a — 1)2. Therefore, the solutions of the system
(9) are

‘—gl (n) —sin(nw) cos(nw) —a —gi(n)

—g2(n) cos(nw) —a sin(nw —g2(n -

P 0 | O A B il W,
1 — 2a cos(nw) + a? 1 — 2a cos(nw) + a?

In the following result, we make explicit the dependence of u; with respect to the parameters
(a,b,w).

Proposition 2.3. For each system, with Assumption (2.1), we have the following decomposition:
e For the system (1), if |ui(a,b,w,0)| < 5, then
N

pi(a,byw,0) =0b (Z an (@, w) sin(nd) + by (a,w) cos(n@)) =bu,(a,w,0).

n=0
e For the system (2),

- ifﬂQ(a7b7w70) > (57 then

_ 0 91(0)
/jl2(aab7w70) - bl*l’2<a7w79) o a—1 o ba 1
- ifﬂ?(avbawae) < _5; then
. . 0 g1(0)
,ug(a,b,w,ﬁ) _le’Q(a7w78)+a_1 ba—l

o [or the system (3), if ps(a,b,w,0) > _71, then

ps(a,b,w,0) = bus(a,w, ).



o [or the system (4), if pa(a,b,w,0) > %, then
pa(a,b,w,0) =bp,(a,w,).

In other words, this result shows that the curve u; can be decomposed as the multiplication of
b with another function p, independent of b (plus a constant in system (2)). Moreover, for the

system (4), the coefficients a,, and b,, are

cos(nw) —a —gi(n)
sin(nw)  —ga(n)

1 — 2a cos(nw) + a?

—gq1(n)  —sin(nw)
—go(n) cos(nw) —a -

in = 1 — 2a cos(nw) + a? e n =

Note that we extend the argument to any g € L?(T). Then, the relation in (9) shows the relation
between the Fourier coefficients of g and us. Now, as mentioned in the introduction, we assume
g € C*7 for some 7 > 0.

Theorem 2.4. Let a satisfy the condition in (2.1). For every system F; the repelling invariant
curve p; is C°.
Proof. Consider the case for the system (4). Denote by C(a,w,n) = 1/(1 — 2acos(nw) + a?),

c1(a,w,n) = cos(nw) — a and cz(a,w,n) = sin(nw). Since |a| > 1, then

1

|C(a,w,n)| < CESIER

Since g € C*™ with 7 > 0, then the Fourier coefficients of u satisfy that

jan| < 1C(a,w,n)|(le1(a,w,n)l|g1(n)] + lez(a,w,n)llg2(n)]) = O (1/]n]"*7)
[bal < [C(a,w, n)[(ez(a, w, n)lg1(n)] + |e1(a, w,n)lg2(n)] = O (1/|n]**7) .

Hence, the Fourier series representing p4 converges absolutely and uniformly. We can do similarly
with the other systems. For more details about the decay of Fourier coefficients see [Kat04,
SS03]. O

Remark 2.5. (i) Note that using the same Fourier estimates in Theorem 2.4 we obtain:

o If g is C*'" for a € N such that o > 0, then p; are C7 1.

e [f g is analytic, then p; are analytic.

(ii) For the systems (1) and (2), the distance between images of the curves in the same fibre is
positive. For the system (4), we are able to obtain an inequality.

e For the system (1) the distance between images of the same fibre 6 € T is
¢1(0) —n(0) = .

e For the system (2) we need to work a bit. If we look at the functional equation of
e and [, and we compute the relation of the Fourier coefficients, we can see that the
coefficients of o and fi only differ on n = 0. Therefore, with these computations we

can see that the distance between images of the same fibre 6 € T is

e For the system (4) we can obtain the following inequality,

Fa($a)(0) < @a(0).

The following Proposition shows that, if g is m-antisymmetric or positive, then we have additional
properties for the system (1).

10



Proposition 2.6. Let a > 1 and b > 0. For the system (1) we have the following:
1. If (0 4+ m) = —g(0) for all @ € T, then @1 and 31 approach uy at the same time as b grows.
2. If g(0) > 0 for all 0 € T, then 51 and py never intersect and @1 approach py as b grows.

Proof. 1. In this case —p1(0 +7) = =5 +bg(0 +m) = =5 — bg(0) = 71(0) and also that b, the
independent term should be zero. The last is because the system for by results in (1 —a)by =
—bg2(0) = 0 and we have by hypothesis that a > 1. Indeed, using the trigonometric identity
for the sum we can compute that the Fourier coefficients of g verify that

g1(n)sin(n(6 + m)) + ga(n) cos(n(d + m)) = — (g1(n) sin(nd) + g2(n) cos(nd)) ,
g1(n)(—1)"sin(nd) + go(n)(—1)" cos(nf) = — (g1(n) sin(nd) + g2(n) cos(nh)) .

So for n even we have g;1(n) = 0 = go(n). Therefore, considering the system for (a,,b,) we
get that for n even (a,,b,) = (0,0). Hence, again using the trigonometric identity for the

sum we have that

pr(0 4 7) = agesr sin((2k + 1)(0 + 7)) + bapsr cos((2k + 1)(0 + 7))

== agersin((2k + 1)0) + by cos((2k + 1)0) = —pu1(0).

k=1

Therefore, the statement is a consequence of Lemma (2.2),

min (91 () — p1(0)) = min (u (0 + ) = 5, (0 + 7)) (10)

2. Since g(#) > 0 for all # € T, then we have that the map applied to the a curve Z: T — R
such that —5 < Z(0) < 0 has image

F(2)(0) = ha(Z(0 — w)) = bg(0 —w) = aZ(0 — w) — bg(0 — w)
<Z0—w)—0bg(0 —w) < Z(0 —w).

Since all the iterates of { < 0} converge to 4; we obtain that the invariant curve u; is on
{z > 0} for any b > 0. Hence, by the expression of the invariant curve u; we get that ¢,
approach p; as b grows.

O

As a consequence of Proposition (2.3) and Lemma (2.2), we obtain that there exists a unique
value of the parameter b, denoted by b*(a), for which there exists a collision between some of the
invariant curves.

Corollary 2.7. Let a satisfy the condition in (2.1) and b < b*(a). For each system there ezists a
unique value b = b*(a) for which intersection of the graphs of the invariant curves is not empty.

o [or the system (1), if we denote by Oy a global maximum and 6, a global minimum of u,,
then b*(a) verifies that

b (a) max{ s (0] 12 (0a)]} = 5

Moreover, for b =b*(a) if max{|p, (@), |10,1(0r)|} = |1(Onr)|. Then, the curves o1 and py
intersect. If max{|py(0m)], |01 (Onr)|} = [101(00)], then the curves 4, and py intersect.

o [or the system (2), if we denote by 0,, a global minimum of pu, and 0y a global mazimum
of i, then b*(a) verifies that

91(0)
a—1

b*(a) max (‘ 11(0) —
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e For the system (3), if we denote by 0,, a global minimum of ps then b*(a) verifies that
b (a)aol0) = —

e [or the system (4), if we denote by 0, a global minimum of p,, then b*(a) verifies that

b (@) 4 (Bn) =

a

Proof. Consider the system (4). From Lemma (2.2), we obtain that

0eT 0T

i (24(6) — a(6) = i (5 = a0 - ).

Using the decomposition in Proposition 2.3 we obtain the expression for b*(a). The same argument
proves the expressions for the other systems. O

Remark 2.8. Note that Lemma 2.2 provides a sufficient condition to have a non-empty intersection
between the curves. In particular, when we have the symmetry condition, g(6 + m) = —g(0) for all
0 € T, we have non-empty intersection between three curves.

Now, using the maps F; and the curves ¢;, we introduce an iteration procedure which let us obtain

an invariant or two-periodic curve of the system.

Lemma 2.9. Let a satisfy Assumption (2.1). For each system we define two sequences of monotone

curves.

e For the system (1), we define the following functions po = @1 and N\g = po — 1, and for all
n > 0 we set

Ont1(0) == F1(on)(0) = hi(pn(0 — w)) — bg(0 — w),
Ani1(0) = hi (A (0 — w) + 11 (0 — w)) — ap (0 — w).
Then, we have that

1. Ay = @n — 1 for allm > 0.
2. If 0 <b<b*, then A, > 0 for alln > 0.

3. The sequence of functions {¢y,}n and {\,}, are decreasing.

e For the system (2), we define the following functions o = @2 and Ng = po — 2, and for all
n > 0 we set

Pni1(0) = Fo(0n)(0) = ha(pn(0 — w)) + bg (0 — w),
An41(0) = a(p2(0 — w) — 0) — ha(p2(0 — w) — An(6 — w)).
Then, we have that

1. Ny = pg — @, for allm > 0.
2. If 0 <b<b*(a), then \, > 0 for all n > 0.

3. The sequence of functions {¢n}n is monotone increasing and {A,}, is monotone de-

creasing.

o [or the system (3), we define the following functions po = ¢ and \g = pus — po, and for all
n > 0 we set

Ont1(0) = Fs(n)(0) = h(pn(0 —w)) + bg(6 — w),
Ant1(0) == apz(0 — w) — hy(pz(0 — w) — A\p(0 — w)).

Then, we have that

12



1. Ay = ps — @, for allm > 0.
2. If 0 < b < b*(a), then A\, > 0 for all n > 0.
3. The sequence of functions {¢n}n is monotone increasing and {\,}n is monotone de-

creasing.

e For the system (4), we define the following functions o = ¢ and Ao = po — pua, and for all
n > 0 we set

Pri1(0) 1= Fi(0n)(0) = ha(ha(0n (0 — 2w)) — bg(0 — 2w)) — bg(6 — w),
Ant1(0) = ha(ha(pa(0 — 2w) + X, (0 — 2w)) — bg(0 — 2w)) — aps(f — w).

Then, we have that
1. Ay = @n — pyg for alln > 0.

2. If 0 < b <b*(a), then \, > 0 for all n > 0.

3. The sequence of functions {¢n}, is monotone decreasing and {\,}, is monotone de-
creasing.

Proof. We prove the three statements for the system (4). The other ones follow with similar
arguments. In the case of the system (4), in order to prove the item (3) it is important to recall
that h4 is decreasing and hence hy o hy is increasing.

1. By definition we have that it is true for n = 0. So we proceed by induction, we assume that

An = Pn — [iq SO

Ans1(0) = ha(ha(pa(0 — 2w) 4+ A (0 — 2w)) — bg (0 — 2w)) — ajua (0 — w)
= hy(ha(pn(8 — 2w)) — bg(0 — 2w)) — p1a(0) — bg(6 — w)
= Pny1(0) — pa().

2. We know that for 0 < b < b*(a) the curves puy and ¢q do not intersect, and that {p,}, is
monotone decreasing and bounded by 4. Hence, as py is invariant A\, = ¢, — g > 0. If

b = b*(a), we have that they intersect only in one point, so by the same argument we have
that A\, > 0 for all n > 0.

3. We compute that for all § € T
©1(0) = ha(ha(po(0 — 2w)) — bg(0 — 2w)) — bg(0 —w) <1 —bg(# — w) = ¢o(0)

Assume by induction that ¢, < ¢, _1, since h, is a decreasing function, we get that for all
0T

ha(@n (0 — 2w)) = bg(0 — 2w) > ha(pn—1(0 — 2w)) — bg(6 — 2w).
Hence, for all # € T

Pn1(0) = haha(pn (0 = 2w)) = bg(6 — 2w)) = bg(6 — w)
< ha(ha(pn1(0 = 2w)) = bg(0 — 2w)) = bg(0 — w) = @n(0).

Since A, = ¢, — p14 we obtain that {\,}, is monotone decreasing.

]

To make more simple the notation, we will denote by {¢,}, all the sequences generated by the
map F;, for i = 1,2,3,4. This is because the sequence ¢, will play the same role for ¢+ = 1,2, 3,4.
We do the same simplification of notation with the sequence {\, },.

Since, for i = 1,2,3,4, either h; or h? is monotone increasing, the sequences {¢,}, and {\,},

converge pointwise to some curve ¢, and A respectively.

13



We used that a monotone bounded sequence of continuous curves has to converge pointwise to a
semicontinuous curve. For every piecewise-linear system, the final goal is to prove the noncontinuity
of ¢, at the parameter b = b*(a).

The following proposition will allow us to define an invariant compact set.

Proposition 2.10. Let a satisfy Assumption (2.1) and b < b*(a).
o [or the system (1), we define the set

AL ={(x,0) e RxT | 11(0) <z < p(0)}.
Then F1(Ay) C Ay
o [or the system (2), we define the set
AL ={(x,0) e Rx T | o) << puz(h)}.
Then Fy(Ay) C Ay
o [or the system (3), we define the set
AL ={(z,0) e RxT | go(0) << us0)}.
Then F3(A+) C A+.
o [or the system (4), we define the set
AL ={(x,0) e RxT| pa(0) <z < p(0)}.

Then F2(A,) C A,

Proof. First consider the case for the system (4). Assume (x,0) € A,. Since hy is decreasing we
have that

hy o pg(0) > hy(x) > hg o ol +w).
Hence, we have that
pa(0 +2w) <m0 Fi(x,0) = ha(ha(z) — bg(0)) — bg(0 + w) < 91(0 + 2w).

Therefore, since {¢,,}, is monotone decreasing we have that F7?(x,0) € A,. The case of the other

systems is proved using similar arguments. ]

Finally, we obtain a compact invariant set for the piecewise-linear systems.
Theorem 2.11. Let a satisfy Assumption (2.1) and b < b*(a).
e For the case i = 1,2, 3, the set defined by

A= m an(A-i-)7

n>0
18 a compact invariant set for the map F;.

e For the case 1 = 4, the set

Ay = ﬂ F{M(Ay)

n>0
is a compact invariant set for the map F} and the set
A4 = /NX4 UF4 (/NX4) .
18 a compact invariant set for the map Fy.

14



In order to study the upper semicontinuous curve ¢, we need to study the sequence {¢,},, or

equivalently, the sequence {\,},. A simple computation gives us the following expressions for
A, that will be useful later.

e For the system (1),

T—am(0 —w) i A0 —w)+p(d —w) > 5,
)‘n—i-l(@) = .
ar, (0 — w) if A\p(60 —w) + p1(0 —w) < o
e For the system (2),
a(pz(0 —w) —9) if pa(0 —w) — A (0 —w) <4,
)\n+1(9> = .
ar, (0 — w) if (0 —w) — Ap(6 —w) > 6.

e For the system (3),
)‘n—l—l(e) =

e For the system (4),

A (9) _ 1— CL/L4((9 - w) if a[;u4(0 - 2("}) + /\n(e - 2(41)] - bg(é? — 2&)) < %7
n+1 a’X\, (0 — 2w) if afps(0 — 2w) + A (0 — 2w)] — bg(0 — 2w) > L

For the system (4), we define the following sets

I, := {9 €T |alps(0 — 2w) + A (0 — 2w)] — bg(0 — 2w) <

Q|

b

afpa(0 — 2w) + N (0 — 2w)] — bg(0 — 2w) < afps(0 — 2w) + A\py1 (0 — 2w)] — bg(0 — 2w) <

Since {\,},, is decreasing, if 6 € I,,.; we have that

SHES

Hence, I,,11 C I,,. Therefore, the set I = ﬂnZO I,, is a compact set such that for all 6 €
Aso() =1 = apy(f — w).

For the other systems we can obtain a similar result.
Proposition 2.12. Let a satisfy Assumption (2.1) and b < b*(a).
e For the system (1), there ezists a set I C T such that for all 0 € I

Aoo(0) = g —ap1(0 — w).

e For the system (2), there exists a set I C T such that for all 6 € 1
Moo (0 — w) = a(pz(0 — w) —9).
o For the system (3), there ezists a set I C T such that for all 6 € I
Ao(0 —w) = aps(0 —w) + 1.
e For the system (4), there exists a set I C T such that for all 6 € 1
Aoo(0) =1 — apy(0 — w).
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3 Main results

The main objective of this work is to study the four piecewise-linear systems presented in Section
1.1, with Assumption 2.1. In this section, we state the main results that describe the bifurcations

of the four piecewise-linear systems. We recall that:

e For the systems (1), (2) and (3), voo(f) = lim, ¢, (0) is an invariant upper semicontinuous

curve and p; is an invariant continuous curve, for ¢ = 1,2, 3.

e For the system (4), oo (f) = lim, ¢, () is a two-periodic upper semicontinuous curve and jiy

1s an invariant continuous curve.

Our starting point is the formulation of two technical conditions. Both (A) and (B) are needed in
Section 4.1.

(A) The function g is analytic.

(B) For every 0y € Z,, = {0 € T | \g(#) = 0}, there exists an € > 0 and an even integer m > 0
such that, for all § € (6 — €, 0y + €), we have that A\g(0) = (0 — 6)"q(0), where g(6) > 0 for
all 0 € (80 — 6,00 + 5).

Remark 3.1. Note that the condition (A) implies the condition (B) by a classical factorization
Theorem of analytic functions [Con78, Corollary 3.9].

The study of the bifurcations of the four piecewise-linear systems can be synthesised in the following

four results. First, we consider the case 0 < b < b*(a).
Proposition 3.2. Let a satisfy Assumption (2.1) and 0 < b < b*(a).

e For the system (1) and (3), there exists a unique continuous attracting invariant curve Qs
such that 11;(0) < voo(0) < po(0) for all@ € T and i =1,3.

e For the system (2), there exists a unique continuous attracting invariant curve @, such that
©00(0) < poo(0) < p2(0) for all @ € T.

e For the system (4), there exists a unique continuous two-periodic curve g, such that p(f) <
Voo (0) < o(0) for all € T. Moreover, po is attracting as an invariant curve of FZ.

Corollary 3.3. Let a satisfy Assumption (2.1) and 0 < b < b*(a). Then,

e [or the system (1), there are two unique continuous attracting invariant curves and one

unique continuous repelling invariant curve.

o [or the system (2), there is a unique continuous attracting invariant curve and two unique

continuous repelling invariant curves.

o [or the system (3), there is a unique continuous attracting invariant curve and a unique

continuous repelling invariant curves.

o [or the system (4), are two unique continuous attracting two-periodic curves and one unique

continuous repelling invariant curve. Moreover, po is attracting as an invariant curve of
2
F4 .

Proof. In the system (4), by the definition of two-periodic curve, the curve F4(ps) is two-periodic
and is also attracting. This implies that there are no more two-periodic or invariant curves. Indeed,
if we consider a point (x,#) that does not belong to the repelling invariant curve, then its iterates
tend to one of the two-periodic curves. In the other cases, a similar argument shows that there

are only three or two invariant curves. O

Recall that A (0) = 0 is equivalent to ¢ (0) = p;(0) with ¢ = 1,2,3,4. The following statement
establishes some properties of the set of angles where ¢, intersects with u;, for i« = 1,2, 3, 4.
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Theorem 3.4. Let a satisfy Assumption (2.1) and b = b*(a). Then, for the systems (1), (2), (3)
and (4), the set

A={0eT| () =0}

18 residual and has zero Lebesque measure. Additionally, A contains a residual set R which is
positively and negatively invariant.

The following result shows that, after the parameter v*(a), there is a change in the number of

invariant curves on each system.

Proposition 3.5. Let a satisfy Assumption (2.1) and b > b*(a). Then,
o [or the systems (1), (2) and (4), there exists a unique continuous invariant curve.
e For the system (3), there exists no continuous invariant curve.

At b = b*(a), the closure of the attracting set contains a repelling set. In contrast, we are able to
prove that almost every orbit falls into the semicontinuous attracting curve in a finite number of
iterates. We denote by (z,,0,) the n-th iteration of a pair (zg,60p) € R x T. Let my: Rx T — T
be the projection map to the second component.

Theorem 3.6. Let a satisfy Assumption in (2.1) and b = b*(a). There exists a set Q C Rx T such
that mo(2) has full Lebesgque measure and, for any pair (xq,0y) € 2, there exists an ng = ng(xo, bp)
such that (x,,,0,,) belongs to the graph of the semicontinuous attracting curve. Moreover, we have
that:

e For each system (1), (3) and (4), there exists a set of full Lebesgue measure E C T such that
Q={(z,0) e Rx E| u;(0) < x} withi =1,3,4 and every orbit falls into the graph of Yoo

in a finite number of iterates.

e For the system (2), there exists a set of full Lebesgue measure E C T such that Q = {(z,0) €
R X E | ua(0) > x> po(0)} and every orbit falls into the graph of v in a finite number of
iterates.

Furthermore, for b = b*(a), we are able to compute the Lyapunov exponent of the attracting

invariant and two-periodic curves.

Proposition 3.7. Let a satisfy Assumption in (2.1) and b = b*(a). Then the Lyapunov exponent

of Yoo 1S —00.
We can prove that, before and after the parameter b = b*(a), the curves are piecewise-differentiable.

Theorem 3.8. Let a satisfy Assumption in (2.1). Assume that 0 < b < b*(a) or b > b*(a). Then

the curve Qo is piecewise CT with T > 0.

It is natural to ask whether, for b = b*(a), the closure of the attracting invariant or two-periodic
curve is dense in the region between itself and the repelling one. Recall the definition of the sets

A; fori=1,...,4, in Theorem 2.11. The next result answers positively to this question.
Theorem 3.9. Let a satisfy Assumption (2.1) and b = b*(a).

o Fori=1,2,3, the set A; has positive Lebesque measure, it can not contain any non-empty

open set and the closure of the semicontinuous invariant curve is equal to A;.

o Fori =4, the set Ay has positive Lebesque measure, it can not contain any non-empty open

set and the union of the closure of the two-periodic curves poo and Fi(poso) is equal to Ay.

Numerical computations of these systems suggest that, as b — b*(a), the attracting invariant
curves exhibit fractalization, see Section 4.4 for a precise definition. We write L(p) for the lowest
Lipschitz constant of a Lipschitz curve o, as detailed in Section 4.4. If we take a positive g, then

the fractalization of the invariant or two-periodic curves can be proved.
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Theorem 3.10. Let a satisfy Assumption (2.1). If g(6) > 0 for all 0 € T, then, for the systems
(1), (2), (3) and (4), the family of curves {vuo(b)}s fractalize as b — b*(a), i.e.,

lim sup L(ps(b)]7) = +00,
b—b*(a)

for every interval I C T.

Under certain assumptions, the following result characterises when an invariant curve of a quasiperi-

odically forced map is noncontinuous.
Theorem 3.11. Consider a quasiperiodically forced map defined by

T = h(x) — bg(0),
=0+w mod 2m,

where g: T — R is continuous, h: R — R is continuous and monotone increasing and w & 21Q.
Assume that there exists a continuous curve fo: T — R such that:

o Fither foo(0) < fo(0) or fo(0) > fo(0) for all € T.

o The sequence defined by the fized point map of the system

fn(0) :==ho fr1(0 —w) —bg(0 —w)
has a pointwise limit fu.

Define the following sequence of curves:

£400) = ini £i(6),
f1(0) := sup f(6).

k<m

Then fo is invariant and fu is continuous if and only if either {f+ Y, or {f) Y is uniformly
convergent. In particular,

o If foo < fo, then fu is continuous if and only if {f+ }. is uniformly convergent.
o If foo > fo, then fu is continuous if and only if {f1 }. is uniformly convergent.
As a consequence, we obtain the following result for our piecewise-linear systems.

Corollary 3.12. Let a satisfy Assumption (2.1) and b = b*(a). Then, for the systems (1), (2),
(3) and (4), the sequence {p,}, is not uniformly convergent and satisfies that for every interval
I1cT

lim sup L(py|r) = +o0.

Finally, we can prove that these systems have only an attractor when |a| < 1.

Theorem 3.13. Let |a| <1 and b € R. Then F; has a unique Lipschitz invariant curve for each
ie{1,2,3,4}.

4 Proofs of the main results and additional statements

Each pu; plays a very similar role on the proofs for each system. Therefore, unless there is a possible
confusion, we will denote by p any of the invariant curves ;.
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4.1 A noncontinuous attractor

In this section, we assume that b = b*(a). The main objective in this section is to prove that the
curve @, is not continuous. This is done by proving that the set of angles where A\, is zero is a
residual set of zero measure. For all the systems, we need to control the absolute extreme points
of the invariant curve p. From Lemma 2.2, the set Z,, = {6 € T | A\o(#) = 0} is a subset of the
set of absolute extreme points of ;. We state two conditions ((A) and (B)) that grant that Z,, is
a finite set of points.

e Assuming (A), we have that )\ is analytic, see Remark 2.5(i). Then the zero set Z, has no
accumulation points. Since for every 6 € T we have that A\o(f) > A (0) > 0, every zero has
a finite even order. Hence, since T is compact, the set Z), is equal to a finite set of points.

e Assuming (B), we have that Z,, has no accumulation points. Hence, as T is compact, the

set Z), is equal to a finite set of points.

In any of these two cases, Z,, has zero measure. Therefore, for all n the functions logo),, are
integrable. The integrability of log o\, is the key to obtain the non-continuity of the semicontinuous

function .. We give two interesting examples for the system (1):

1. We require condition (B). Given a finite sequence {6,}"_, C T. Let p; be in C*(T) such
that p,(0,) = 1 for n = 0,..., N, and that p,(0) < 1if § # 6,, for n = 0,..., N. With
this 1 we have a finite set of points such that for a value of the parameter b we have that
p1(0n) = 5= forn =0,..., N.

2. Given an ¢ > 0 small enough and an interior point 6, € T, consider the open interval
I. = (09,00 + ¢) of T of length . Let p; be in C*°(T) such that p,(0) = 1 for any angle
0 € I, and p,(f) < 1 for any angle § € T \ I.. With this u; we have an open set of points
such that for a value of the parameter b we will have that 1,(0) = 5 for any angle 6 € I..

Note that these examples can be reproduced in the other systems changing minor details of the
functions. Observe that, in the example 1 with b = b*(a), we have that Z,, has zero measure. In
the example 2, with b = b*(a), Z,, has measure ¢. In this case, for € I., we have that \y(f) = 0.
Hence, for 6 € I., we have that A () = 0. Using the invariance and the compactness of T, we
obtain that ¢ (#) = p(0) for all 6 € T.

This situation can be even more extreme. For example, assume that p,(f) = 1 for a residual
set of small positive measure [y, and for the rest of angles p,(6) < 1. Therefore, for a value of
the parameter b, the curves ¢, and u; coincide on Iy. The set Iy can be constructed from the
complementary of a fat Cantor set.

From this reasoning, to ensure that logo), is integrable, we need to guarantee that one of the
conditions (A) or (B) is satisfied. For simplicity of the argument, we assume that Ay has a unique
zero. After the following lemma, we will see that indeed having more than one zero of A\g does not
affect the argument.

Lemma 4.1. Let a satisfy Assumption (2.1) and b = b*(a). The curve X\, has a finite set of of
zeros. Concretely, let 6y be the only zero of N\g. Then we have the following:

e For the systems (1), (2) and (3), A\, has exactly n + 1 zeros 0,00 + w, ..., 0y + nw.
o [or the system (4), A\, has exactly n + 1 zeros 0y, 00 + 2w, . .., 0y + 2nw.

Proof. Consider the system (4). Given n > 1, we see that

Ff(n_l) (,u(@o — 2710.)), 90 — 27100) - ([1/(00 - 2&)), 90 - 2("})’
ij‘”(@o(@o — 2nw), by — 2nw) = (pn-1(00 — 2w), o — 2w).

Since pu(0y — w) =+ and p(0) — 2w) < pn_1(0p — 2w),

ha(on-1(00 — 2w)) — bg(0) < ha(p(0o — 2w)) — bg(0) = pu(bp — w) <

SHES
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Therefore, we obtain that
F2 (00 — 2w), 00 — 2w) = F2(0n_1(0p — 2w), 0y — 2w).

As a consequence, we obtain that A, (0y) = ¢, (00) — p(6g) = 0. If 0 is a zero of \,, from (11) we
have that

1—ap(@+w) if au(d) —bg(h) <

)‘n—i-l(@ + 2&)) = 9 )
a*\,(0) if ap(0) — bg(0) >

Q= Q=

Since ap(0) — bg(0) = p(0 +w) > I, A1 (0 + 2w) = a®A,,(0). Then 0 + 2w is a zero of A, If we
consider the case where # is the minimum of u, then 6 = 6y — w so

1 —au(0) if ap(d —w) —bg(0 —w) <

)‘n+1(9+w) = .
X (0 —w) if ap(d —w) —bg(6 — w) >

Q= Q|

Since ap(0 —w) —bg(0 —w) = p(0) =1, N1 (0 +w) =1 —ap(d) = 0.
The uniqueness follows from induction. For n = 0 this is true, so we assume that \,;; has an

extra zero #;. From (11) there are two cases,
1. 1 —ap( +w) =0. We have that u(6) —w) = 1 so 6 = by + 2w.

2. a*\,(0) = 0. In this case \, has an extra zero, but this is contradictory with the induction
hypothesis which is that )\, has no extra zero.

A similar argument is valid for the systems (1), (2) and (3). For these systems you have to consider

the one-iteration map instead of the two-iteration map. O

We obtained that Z = {# € T | \,(0) = 0 for any n > 0} has zero measure. We will use this
to ensure the integrability of logo),. The finite union of zero measure sets is of zero measure.
Therefore, having more than one zero of g does not affect the integrability of log o\,,, for all n > 0.
Recall that b = b*(a) and 6 is the unique angle such that A\o(p) = 0. When )\, is small, the curve
v, is near the invariant curve u. Therefore, we have that

e For the systems (1), (2) and (3), the sequence {\,}, verifies that A,1(0 +w) = a\,(0).
e For the system (4), the sequence {\,}, verifies that A, 1(0 + w) = a*\,(0).
This justifies the following definition.

Definition 4.1. Let a satisfy Assumption (2.1). We define the following sequence of functions
{¢n}n-

e For the systems (1), (2) and (3) the sequence is defined by

An 1(9+w) .
bn@) = 4 w@ (O £0
a if \,(0) = 0.

)

e For the system (4) the sequence is defined by

Ant1(0+2w .
()= d R EM0) #

0
’ (12)
a? if \,(0) = 0

We have to study how the functions 1), behave. First, we show this sequence is bounded and
monotone.

Lemma 4.2. Let a satisfy Assumption (2.1). Then we have that 0 < 1, 1(0) < 1,(0), for all
n > 1 and for all § € T. Moreover,
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e [or the systems (1), (2) and (3), we have that 1, (0) < a, for alln > 0 and for all 0 € T.
e For system (4), we have that 1, (0) < a?, for alln > 0 and for all 6 € T.

Proof. In case of system (4), we use the expression (11) in equation (12) to obtain

1—ap(6+w) if a — 1
¢n<9) _ An(0) f [N(Q) + /\n(g)] b9<9) < p (1?))
a? if alu(0) + A, (0)] — bg(0) > 1.

V

So by the expression (13), if a[u(f) + A\, (0)] — bg(f) < L, then aX,(0) < L — u(6 + w). Hence,

_ )\0(9 + 2w) )\0(9 + QW) 2)\0((9 + 20.}) 2

Un(0) () < T I0+w) “ Ao(6 + 2w)

Since {\,}, is decreasing we have only three cases:

L a[pu(0) + Ay1 ()] — bg(0) > alu(0) + An(6)] — bg(#) > L. In this case, we have that

1/Jn+1 (6> CL2,
Vn(0) = a®.

2. alp(0) + Aus1(0)] — bg(0) > £ > alu(0) + Xy (0)] — bg(#). In this case, we have that

’an_;,_l (9) = a'z'

¢n+1(9) = %,
Vn(0) = AO()i‘("@?‘”)

Since {\, },, is decreasing, we get ¥, (0) < ¥,,41(0).

Therefore, 0 < 1,(0) < ¥,1(0) < a?, for all n > 0 and for all € T. A similar argument can be
done to obtain the result for the other systems. O]

We proceed in proving the pointwise convergence of the sequence {1, }, and the integrability of

its pointwise limit.

Lemma 4.3. Let a satisfy Assumption (2.1). Then we have that the sequence {{y}, converges
pointwise to an integrable function . Furthermore,

/Tlog(zﬂ(e))dG <0.

Proof. By the previous Lemma 4.2, in order to show that log(1,,) are integrable, we only need to
show that log(t) is integrable. For every system, we can determine the expression of 1, in terms
of \g. Therefore, vy is well defined, continuous and it only has one zero of even multiplicity in

= 0p. In the general case, (A) or (B) imply that we can only have a finite number of zeros with
even multiplicity. Consequently, log(1)g) is integrable. Moreover, in case of system (4), since {\, },,

is decreasing, we have that

(14)
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for a set of 0 of total measure (those which A, (6) # 0). Hence, for these values of § we have that

log(¥n(0)) < log(An(6 + 2w)) — log(An(0))-

Since A, is an integrable function (its zeros are of even multiplicity),

[ 1080600 < [ 108(0,(0 +20)) — [ 108(30,(0)) =0

T

Applying the Dominated Convergence Theorem we obtain that

[ 10(0(®) =tim [ 105, (0)) < 0.

The result for the systems (1), (2) and (3) can be deduced from replacing A, (6 + 2w) for A, (6 +w)
in equation (14) and repeating the same argument. ]

It is convenient to recall the sequences defined for each system in Lemma 2.9. We are ready to
prove Theorem 3.4.

Proof of Theorem 3.J. Consider the system (4). Since 0y € A, 0y + kw € A for all k € N. Since the

angle o= is irrational, A is dense in T. Since p,, is upper semicontinuous, by the semicontinuity
Lemma (see [vRS82, Theorem 11.4]), the set of continuity Ry C T of ¢ is a residual set. We
can show that actually Ry = A. First assume that 6, € Ry. Since A is dense, we can consider a
sequence {0,}, C A such that 6, — 0,. Since 0, € Ry, we have that ¢o.(0,) = @oo(fs). Since
o is continuous, we have that u(6,) — w(6.). Therefore, as the sequence {6,}, is in A, we have
that ¢ (0,) = 1(0,). Hence, po(0y) = p1(0.). Then we have the inclusion Ry C A. In the other
direction, assume that 6, € A. We need to prove that for any sequence {6,}, C A such that
0, — 0. we have that ©o.(6,) = ¥oo(fs). Consider the following inequality given by the upper

semicontinuity of p.:

pu(05) = liminf y4(6,,) = lim inf oo (6,) < Hmsup Yoo (0n) < oo (6s) = p(0s).
Hence, we have proved that A C Ry. We conclude that A = Ry. Let j € Z. We can repeat the
argument for A, (6 + jw). Hence, we have the residual set R; of points of continuity. It is clear
that R; = {0 — jw | 0 € Ro}. Therefore, the residual set R = (), R; is positively and negatively
invariant. In order to show that A has zero measure, first we prove that

A~ {0 —w} C {8 € T | ¥(0) = a®}.

If we take a § € AN {f) —w}, then v (0) = p(6) > L. Hence, there exists an ng such that, for all
n > ng, we have that u(6) + A, (0) = ¢,(0) > L. This implies that, for all n > ng, we have that
Ap1(0 + w) = a?\,(0). Hence, 1,(0) = a® for all n > ng. Assume that A has positive measure.
By ergodicity, A has total measure. This implies that the set of § € T such that () = a® has
total measure. Since a? > 1, we obtain

/T log(1(8))d8 = log(a?) > 0.

This is contradictory with Lemma 4.3. Hence, A has zero measure. The proof for the systems
(1), (2) and (3) is obtained from replacing % for the corresponding value where the definition of h;

changes. Additionally, it is needed to replace a? by a. O

The derivative of the function h; is well defined except in a point xy (for the system (4) the
derivative of hy is not well defined at zg = ). We define h}(z¢) = a. We can proceed to compute

the Lyapunov exponent of the semicontinuous invariant or two-periodic curve.
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Proof of Proposition 3.7. Consider the system (4). First we show that the set

B= {0 €T | aps(f) —bg(f) < é}

has positive measure. If we assume that B has zero measure, then the Fourier coefficients of
Aoo = Poo — M are
1 —ikw 1 —ikw

A@)e " dlf = — A(@)e " db.

AR —
21 Jr 2 Jr B

Since a(p(8) + Aoo(8)) — bg(0) = apus(0) — bg(8) > L for § € T\ B, A(0 +w) = a?As(f). Hence,
we have that AP« = ¢2\*) Since a® > 1, we obtain that A(*¥) = 0 for all k. Therefore, A = 0
for almost every #. This is contradictory with the second statement of Theorem 3.4. Note that, if
we let T = f(x,0), then g—:c(:c,ﬁ) = hl,(ha(x) — bg(0))R, (). Recall that .. (0) > u(0) > L for all
0 €T, 50 5L(pe(0),0) = h,(ape () — bg(0)) i, (0o0 ().

Hence, the Lyapunov exponent is

A= % /Tlog (%(%0(9),9)) d

9 0
_ % - log (a—i(sooo(e)ﬁ)) df + %/Blog (8_fo(%o<9)’9)) “

= % log(a®)m(T \ B) + %(—oo)m(B) = —00.

The proof for the systems (1), (2) and (3) is obtained, with minor modifications, from replacing £
for the corresponding value where the definition of h; changes. Additionally, it is needed to replace
a® by a. O]

Observe that, from the invariant equation, we deduce that the closure of the attracting set A;
contains a repelling invariant curve for each system ¢ = 1,2, 3,4. We proceed in proving Theorem
3.6 where the attracting character of the curve ¢, is described.

Proof of Theorem 3.6. Consider the system (4). Take an arbitrary point (x,6y) € R x T such
that u(6y) < xo. Then we have that p(6a,) < x9,. Let T,: T — T denote the irrational rotation
T.,(0) = 6 +w. Recall that the sets A and B are defined by

A={0€T|ub) =0},
1

B= {9 €T |aps(f) —bg(0) < a}
Then we define the set C' as

C=J 1.

neN

Since the Lebesgue measure is invariant and ergodic by the irrational rotation T5,,, we use [Wal00,
Theorem 1.5] to obtain that C' has total measure. We have several cases:
1. Case ps(bp) < z for 6y € C.
Since 0y € C, there exists an ng such that 6,, € B. Therefore, % > APoo(Ong) — bg(On,) >
A%, — bg(0n,) and thus @oo(Opg+1) = Tpgs1-
2. Case u(by) < To < poo(by) for 6y € A°.

Since A is a set of zero measure, A€ is a set of full measure. Assume z, > % for all n. Then
Ton — p(02,) = a®(zg — (). Since a < —1, T9, — p(f2,) is unbounded. This implies
that xg, is unbounded, which is impossible. Hence, there exists an ny such that z,, < %
Therefore, there exists a 6, € T such that z,,11 = ©o(0x) > Poo(bs).
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We define the set £ = C N A° which is also of full measure. Hence, we finally define the set
Q={(x,0) e Rx E | u(f) < x}. The proof for the rest of the systems follows a similar argument.
The main differences are that the set B changes depending on each system:

e For the system (1), B= {0 € T | pso(6) > = }.
e For the system (2), B={0 € T | poo(0) < 6}.
e For the system (3), B={0 € T | pso(f) < —1}.
[

Remark 4.4. Note that, for all (6y,zo) € {(0,2) | u(f) <z < voo(0)}, there exists an ng such that
(0o, Ty ) belongs to the graph of the semicontinuous curve. This implies that, between the curves,
the semicontinuous curve attracts all the points for each fiber.

We now prove that the graph of the semicontinuous invariant curve is dense in the compact
invariant set A;, see Theorem 2.11. The curve @, is a measurable function by the semicontinuity.

Then, we can apply Fubini’s Theorem to the indicator function of the set A,. We can compute

that
‘POO(G)
meas(A4)://XA4(9,x)da:d9:// d$d9:/x\oo(9)d9.
T JR T J u(6) T

Since we have proved, in Theorem 3.4, that the set {# € T | A(f) > 0} has total measure, we
have that meas(A;) > 0. We can do a similar argument for the rest of systems. Therefore, we
obtain that, for ¢« = 1,2, 3, 4, the invariant set A; has positive Lebesgue measure. Recall that, given
a set A C X from a metric space X, the distance from a point x € X to the set A is defined by
d(z,A) = infae s d(z,a). It is known that d(z, A) = 0 if and only if z € A. We are ready to prove
Theorem 3.9.

Proof of Theorem 3.9. Consider the system (4). In the case that p(f) = @(0), for all 6 € T,
then A\ (f) = 0, for all § € T. This is impossible since A (6) > 0 almost everywhere. Hence,
there exists zg = (6., z.) € Ay such that u(6,) < . < po(6y). We define @ = {(z,0) € T x R |
Yoo(0) =2} and M = {(0,2) € T x R | 2 = pu(0)}. Assume, by contradiction, that d(z, ) > 0.
Let § = min{d(zp, M), d(z,P)} > 0 and Bs(z) be an open ball of radius ¢ centred at z,. If
21 = (01,21) € Bs(20), then pu(61) < 21 < po(f1). Otherwise u(f;) = 1 = @oo(f1), which is
contrary to the definition of §. Since b = b*(a), we have that {# € T | u(f) = po(f)} is dense
in T. Hence, we can consider a sequence {6,}, — 0, such that p(6,) = ¢ (6,), for every n > 0.
Therefore, there is an N > 0 such that d(fy,60.) < 0 and pu(fn) = @e(fn). Let zy be such that
zn = (On,x.). We can compute that

d(zn, 20) = d(On, 0) < 0.

Now we have that u(0y) = @oo(On). Then p(0y) = 2. = poo(fn). The last equality is a contra-
diction with the fact that, for all z; = (61,71) € Bs(2), we have u(6;) < r1 < ¢oo(01). Hence,
we have that d(zp, ®) = 0. Therefore, z; is in the closure of ®. The proof of the rest of systems

follows from similar arguments. O

Remark 4.5. Notice that, in the proof of Theorem 3.9, we only use that {6 € T | A(f) = 0} is
dense and that there exists a 0* € T such that A (0*) > 0. In [Kel96], we have similar hypothesis.
In the work, {6 € T | ¢(0) = 0} is dense and {0 € T | ¢(0) > 0} has full Lebesgue measure, see
[Kel96, Theorem 1(3)]. Therefore, the curve ¢ is dense in {(0,z) | 0 <z < ¢(0)}.

4.2 Before the nonsmooth bifurcation

We assume that 0 < b < b*(a) and a satisfies Assumption (2.1). For 0 < b < b*(a), we are able
to prove the continuity of the curves and we determine the number of continuous invariant or

two-periodic curves each system has.
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Proof of Proposition 3.2. Consider the system (4). We define d, as

d, = min (1 - u(@)) <0,

0eT \ a

Since 0 < b < b*(a), dy is positive. We define the curves po(0) = p(6) + dp. By Lemma 2.2, we
have that (6) > po(f) > 1 for all 6 € T. For all n > 0, we define

prr1(0) = ha(ha(pn(0 — 2w)) — bg(0 — 2w)) — bg(0 — w).
Since po(0) > < and ad, > 0, we have that

p1(0)

ha(a(po(0 — 2w)) — bg(f — 2w)) — bg(0 — w)
ha(ap(0 — 2w) + ad, — bg(0 — 2w)) — bg(0 — w)
ha(p(0 — w) + ady) — bg(0 — w)

ap(0 — w) + a*dy — bg(f — w)

w(0) + a*dy = po(0) + (a* — 1)ds.

By induction assume p,(0) > p,+1(0). Hence,
ha(pn(0 — 2w)) = bg(6 — 2w) < ha(pni1(6 — 2w)) — bg(6 — 2w).

Then we have that

prr1(0) = ha(a(pn(0 — 2w)) — bg(0 — 2w)) — byg(6 — w)
2 ha(a(pni1(0 — 2w)) = bg(# — 2w)) — bg(0 — w) = py(0).

The sequence {p,} is decreasing and p,(0) > ¢,(0), for all § € T. Since {p,} is decreasing
and bounded, it is convergent to a lower semicontinuous curve p,.. To conclude with the proof,
we show that p. = . Let 6y € T. By induction, we can see that if p;(6y + iw)) > £, for
i=2(n—-1),...,2,0, then

pan (0o + nw) = p(6y + 2nw) + a*"d,.
Since a®"d, < 0 is unbounded, there exists an ny such that
[LnO_H(Qo + (no + 1)0)) =1- bg(@) = (,00(90 + (TL() + 1)w).

Hence, by the continuity of the functions u,, there exists an open interval Iy C T where, for all
0 € Iy, we have

Pro+1(0o + (1m0 + L)w) = @o(bo + (9 + L)w).

Therefore, we conclude that p. = ¢@s. For the rest of the systems, the proof use similar arguments.
We use the distance between the first curve of the first sequence, in Lemma 2.9, to define some
curve near the curve that comes from the invariant equation. Then, we use the unboundedness of
a particular orbit to show that some iteration of the curve is equal to the first element of the first
sequence (for each system) in Lemma 2.9. [

Remark 4.6. Let a satisfy Assumption (2.1) and 0 < b < b*(a). The following arguments show
there are no more continuous invariant curves.

e For the system (1), any other invariant curve p should be equal to ¢; or 4; in an open

interval. The image of p cannot be completely contained in [, 7-].

e For the system (2), any other invariant curve p should be equal to ¢, in an open interval.
The image of p cannot be completely contained in (—oo, —4§) or in (d, 00).

25



e For the system (3), any other invariant curve p should be equal to ¢3 in an open interval.
The image of p cannot be completely contained in (—é, 00).

e For the system (4), any other invariant curve p should be equal to ¢4 in an open interval.
The image of p cannot be completely contained in (%, 00).

By the argument in the proof of Proposition 3.2, if 0 < b < b*(a), we have two sequences of
continuous functions converging to our semicontinuous curve ... One from below and the other

one from above. This implies that ¢, is a continuous curve for each system.

4.3 After the nonsmooth bifurcation

First we assume that b > b*(a) and a satisfies (2.1). We prove the regularity of the curves and we
determine the number of continuous invariant curves has each system. We proceed similarly to in
Section 4.2.

Proof of Proposition 3.5. Consider the system (4). Let 6y € T be the minimum of ¢y — . Thus,
by Lemma 2.2,

¢o(0o) — 11(6) = a (% — (6o — w)) < 0.

Let § = 2 — pu(fp — w). We define py(6) = p(6) + 6. By definition, p(6) > 1 for all § € T. We
define the following sequence, for n > 0,

Pr41(0) := ha(ha(pn(0 = 2w)) = bg(0 — 2w)) — bg (6 — w).

We want to show that there is an interval Iy where p,,(0) = ¢o(0), for all § € Iy and for some n. If
we have that () —w) +ad < X, then we can compute that py(6y) = ©o(6). Hence, by continuity,
there is an interval that contains 6, for which p;(0) = o(#). Otherwise, we have that

p1(6o)

ala(po(0 — 2)) — bg(B — 2)) — bg(d — )

— Daap(B — 20) + a8 — b(6y — 2)) — by (60 — w)
ha(p(bo — w) + ad) = bg (6o — w)

= ap(fy — ) + a0 — bg(fy — w)

1(6o) +

Assume by induction that p,(6y) = u(6o) + a®"6 and that p(fy — w) + a® 1§ > L. Then,

ha(a(pn (b0 — 2w)) = bg(Bo — 2w)) — bg(6o — w)

ha(ap(fy — 2w) + a® 16 — bg(y — 2w)) — bg(By — w)

ha(i(80 — w) + a®16) — bg(by — w)

ap(fy — w) + a®" 25 — bg (6 — w)

1(0o) + a*" s, (15)

Pn+1 (60)

Since a < —1 and § > 0, we have that the term a>*t1)§ > 0 is unbounded. Therefore, there exists
an n such that p(fy —w)+a® 8§ < L. Thus, p,41(0) = ¢o(6) in some interval Iy. Hence, there is a
unique continuous invariant curve. For the systems (1) and (2), the argument is very similar to the
one showed here. For the system (3), a very similar argument shows that we have two sequences
of continuous curves, one monotonically increasing and the other monotonically decreasing that
converge to the same invariant curve, let’s say p. The image of p cannot be entirely contained in
{ > —1}. Otherwise, as it is invariant, p = p. Define § = u(fy — w) + + and po(6) = p(0) + 6.
Hence, using a similar argument as in (15), it can be proved that p, (6, + nw) — u(0, + nw) = a™9.
Therefore, there is no other continuous invariant curve above u, because the distance between p,
and g is unbounded. O
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Moreover, once we know that for 0 < b < b*(a) and b > b*(a) the curve p, is continuous, we can

prove even more regularity of this curve.

Proposition 4.7. Let a satisfy Assumption (2.1) and 0 < b < b*(a). If v is continuous, then
Voo 18 piecewise CT with T > 0.

Proof. Consider the system (4). The proof is very similar to the proof of Theorem 3.6, but taking
advantage that now ., is continuous. Recall that the set

1
B = {9 €T |ap(f) —bg(h) < 5}
has positive measure. As in Theorem 3.6,

c=|Jr (B

n>0

is a set of total Lebesgue measure. Let 6y € C, and consider (6y, po(6p)) € T x R. Then there
exists an ng > 0 such that 6y + now € B. Therefore, we have that

1
. > aPoo(bo + now) — bg(fy + now) > apn, (0o + now) — bg(By + new). (16)

Hence, we have that oo (60 + (1o 4+ 1)w) = ©ngs1 (6o + (no + 1)w) = Fo" " (00) 6y + 3(ng + 1w).
Since ., is continuous, we have that there exists an open interval I; containing 6, such that
equation (16) is verified, for all € Iy. Hence, ¢ (0 + (ng + 1)w) = @na41(0 + (ng + 1)w) for all
0 € Iy. Therefore, if we iterate, we obtain that ¢u. (6 4+ (no +m)w) = Pngrm (0 + (ng +m)w) for all
0 € Iy. Now, since T is compact, there exists mg > 0 such that T C U"° (Iy + mw). Moreover,
for all m =0, ..., mg, we have that @ (f) = @nyrm(0) for all € Iy + mw.

With similar arguments, we can prove the result for the other systems. As in the proof of Theorem
3.6, the main changes come from the definition of the set B. m

As a consequence of Proposition 4.7, we get that the curve ¢, is piecewise as regular as g, which

proves Theorem 3.8.

4.4 The fractalization mechanism

In this section, we prove that if a satisfies (2.1), then the attracting invariant or two-periodic curve
fractalizes, when b approaches b*(a) from below. For the system (4), the two-periodic curve @, is
precisely the curve whose fractalization we intend to establish. First, we give a proper definition of
the fractalization mechanism in our setting. We follow the idea given in [JT08], where the authors
remark that the Hausdorff dimension does not detect that a smooth curve is becoming ”fractal”.
This is owing to the fact that, as long as the invariant object is a curve, it takes the value 1. In the
paper mentioned, they use that, for b — b*(a), the C° norm of the curve keeps bounded while the
C'! norm of the curve is unbounded. In our case, we cannot compute the derivative because h; is
not C'. We extend the definition of the fractalization process in terms of the Lipschitz constants
of the invariant curves. We denote by Lip(T,R) the Banach space of Lipschitz functions from T
to R endowed with the norm ||| := ||*||cc + L(-), where L : Lip(T,R) — R is the operator that
associates a Lipschitz function f to its smallest Lipschitz constant L(f). See [CsMN19] for further
information about the Banach space of Lipschitz functions.

Definition 4.2. Let f, be an invariant curve of the systems (1), (2), (3), (4). We say that a
family of invariant curves { f }, parametrized by b is fractalizing for a parameter b* if the Lipschitz
constants associated to each curve of the family {f|;}, becomes unbounded as b — b*, for any

interval [ C T, while the family of curves {f;}, remains bounded, i.e., if

L
lim sup Bl _ 4.
b | foll oo
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In certain cases, when the perturbation function ¢ is positive, we can prove that the family of

invariant curves is monotone with respect the parameter b.

Proposition 4.8. Let a satisfy Assumption (2.1). If g(0) > 0 for all 8 € T, then for 0 < by <
by < b*(a) we have the following situation:

e For the systems (1) and (4), we have that ¢ (b1,0) < puo(bo, 8) for all 6 € T.
e For the systems (2) and (3), we have that ¢ (b, 0) < poo(b1,8) for all 6 € T.

Proof. Consider the system (4). We have that the corresponding sequence of functions, {¢,(bo, 0)}n
and {p, (b1, 0)},, converge each to an invariant curve. For n = 0, we have

©o(bo,0) =1 — bog(0 — w),
(po(bl,@) =1- blg(ﬁ — CL)).

For n > 0, we have that

©n(bo,0) = ha(ha(pn-1(bo, 0 — 2w)) — bog (0 — 2w)) — bog (6 — w),
©n(b1,0) = ha(ha(n-1(b1,0 — w)) — bi1g(0 — 2w)) — big(d — w).

Since by < by and ¢(#) > 0 for all § € T, we have that py(b1,0) < wo(bo, ). Therefore, using that
F, preserves order, we have that ¢, (b1, 0) < ¢, (b, 0), for all n > 0 and for all § € T. Taking the
limit over n in both sides of the last inequality, we obtain that ¢ (b1, 0) < v (bo, 0), for all 6 € T.
For the systems (1), (2) and (3), the proof is similar to the one given. O

In our case, the curves are always bounded. Hence, in order to prove that the family {p. ()}, of
invariant curves fractalize as b — b*(a), it is enough to show that the Lipschitz constants of the
family of invariant curves becomes unbounded, while b approaches to b*(a). If we impose g to be

positive, we are able to show the fractalization phenomenon.

Proof of Theorem 3.10. Consider the system (4). For 0 < b < b*(a), since g(d) > 0 for all § € T,
by Proposition 4.8, the family {¢o(b)}s is monotone. Therefore, since {p ()}, is monotone and
bounded, for each 6§ € T

lim o(b,6)

b—b*(a)

exists. For every 0 € T and 0 < b < b*(a) we have

©0(b,0) > @oo(b,0) > 1im (b, 0) > oo (b*(a),0) > 1u(0).

b—b*(a)

For every 6 € T and 0 < b < b*(a) we know that
Voo (0,0 + w) = hy 0 (b, 0) — bg(0).

Hence, taking b — b*(a) we get that

lm @uo(b, 0+ w) = hy ( lim (b, 0)) —b"(a)g(0).

b—b*(a) b—b*(a)

But the only invariant curve in between ¢q(b*(a)) and ¢ (b*(a)) is ¢s(b*(a)). Therefore, we
conclude that

Hm (b, 0) = voo(b*(a),0).

b—b*(a)

Assume by contradiction that

lim sup L(ps(b)]7) < +00.

b—b*
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Since w is irrational and T is compact, we have that any 6§ € T can be obtained from a value in [
by adding a bounded multiple of w. Therefore, there exist K; and K, depending on w,a,b and [
such that L(p(,0)) < K1L(ps(b,0)|1) + Ko. This implies that

L :=limsup L(ps (b)) < +00.
b—b*
Then, for 0 < b < b*(a), the family {¢ (b, )} is uniformly bounded and has a uniformly Lipschitz
constant L. By the Arcela-Ascoli, Theorem we have that the family {¢ (b, #)}, has a subsequence
that converges uniformly to a Lipschitz function with Lipschitz constant L. Therefore, the curve
Yoo (b*(a),0) is a Lipschitz function with Lipschitz constant L. In contradiction with the result
that shows that ¢ (b*(a),f) is a noncontinuous curve (Theorem 3.4). O

A consequence of Arcela-Ascoli Theorem is that a sequence of Lipschitz curves that converge
pointwise to a noncontinuous curve cannot have a uniform Lipschitz constant. Moreover, assume we
have a family of Lipschitz curves {n,},, defined over T that converge pointwise to a noncontinuous

invariant curve 7. Then for any interval I C T,
liminf L(n,|;) = +o0.

Note that, for fixed b = b*(a), this is the case for the monotone sequence of functions defined in
Lemma 2.9. Therefore, we have this concluding result that characterizes our nonsmooth invariant

curve.

Proof of Theorem 3.11. If f,(0) := ho f,_1(0 —w) — bg(f — w) has pointwise limit, then take the
limit in both sides to get that f.(0) := ho foo(0 —w) — bg(f# — w). Assume that fo, < fo, the case
foo > fo follows by similar arguments for { f },,. Since each f, is continuous, f}(0) = infr<,, fr(0)
is continuous and f.o(0) < fF(0) < f.(0), for all m > 0 and for all § € T. Since f, converges
pointwise to f., f} converges pointwise to f.. For all # € T and all m > 0, we have that

Foo(0) < f1(0) < f4(0). Hence, the sequence {f+1,, is monotone. By Dini’s Theorem, we have
that f is continuous if and only if {f}},, is uniformly convergent. O

Proof of Corollary 3.12. Since T is compact and {,, }, is monotone, Dini’s Theorem implies that
©oo is noncontinuous if and only if {¢, }, converges uniformly. O

Remark 4.9. Moreover, under the same hypothesis of Theorem 3.11, if additionally we require that
g, h and fy are all Lipschitz continuous, then from the Arcela-Ascoli Theorem we obtain that:

e If {f+1},, has uniform Lipschitz constant, then the convergence of { f },, is uniform and f.
is Lipschitz continuous.

e If {1 },, has uniform Lipschitz constant, then the convergence of {f] },, is uniform and f.
is Lipschitz continuous.

Proof. The invariance of f., follows from the same argument in the proof of Theorem 3.11. Assume
that f., < fo, the case fo > fo follow by similar arguments for {f!},,. For n > 0, we have that
{fn}n is a sequence of Lipschitz functions. Note that, for all # € T, we have that fé (0) = fo(9)
and

Fir1 (0) + fin(8) + | frma (8) = fn(6)

i (8) = inf{ f7,_1(0), fm(6)} = 2

Therefore, by induction we get that {f+},, is a sequence of Lipschitz curves. If {f+},, or {f!}..
have a uniformly Lipschitz constant, then by Arcela-Ascoli Theorem f, is a Lipschitz curve. [

4.5 Uniform contraction case

In this section, we consider that |a| < 1. In this case, the piecewise-linear quasiperiodically forced
dynamical system has a uniform contraction. Therefore, we can prove that we have a unique

Lipschitz invariant curve.
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Recall the definition of the seminorm

L(f) = sup{|f(z) = fW)|/|z —y| [ z,y € T,z # y}.

Recall that an invariant curve of Fj is a fixed point of the map F;. In the four piecewise-linear
systems, the map JF; is a Lipschitz map with Lipschitz constant |a|. Actually,

[ Fi(e)(0) = Fi()(0)] < lallp(0 — w) — (0 — w)|.

Therefore, we obtain that

1Fi(e) = Fa()ll = [IFi(e) = Fil)lloo + L(Filp) — Fi(¥))
< lallle = ¢lloe + lalLlp = ) = lallle = |-

As a consequence of the Banach fixed point Theorem, we obtain Theorem 3.13.

5 Conclusions

We conclude the paper with a summary of the main results and a discussion of possible extensions
and open problems. We proved the existence of nonsmooth bifurcations in four piecewise-linear
quasiperiodically forced maps. For the bifurcation parameters, we established that the closure of
the attracting invariant set is a region of two-dimensional Lebesgue positive measure. Additionally,
we demonstrated that an invariant (or two-periodic) curve undergoes a fractalization phenomenon
as the parameters approach the curve of bifurcation. Finally, under suitable assumptions, we
characterized the noncontinuity of the attracting curve in terms of the uniform convergence of a
sequence of continuous curves.

We have extended the results of [JTZ24]. In particular, our second result concerning the closure
of the attracting invariant set provides a positive answer to a question in [Kel96]. Both the
present work and [JTZ24] contribute to clarify the mechanisms that lead to the creation of strange
nonchaotic attractors in piecewise-linear quasiperiodically forced maps.

Regarding future work and the open problems, we mention two natural extensions. First, to
study higher-dimensional examples for which similar results can be obtained. Second, it would
be of interest to adapt these techniques to smooth models, in order to find more mechanisms for

detecting nonsmooth bifurcations.

Acknowledgements

This work has been supported by the Spanish grant PID2021-125535NB-100 funded by MICIU/AEI,
Spain/10.13039/501100011033 and by ERDF /EU, Spain. R.M.V. and J.C.T. also acknowledge the
Catalan, Spain grant 2021-SGR-01072.

With profound sadness and respect, this publication is dedicated to the memory of our collaborator,
friend, and esteemed Prof. Angel Jorba. He was part of the early development of this work. His
passing, prior to its completion, represents a deeply felt absence. We honour his legacy and his
significant contributions.

This version of the article has been accepted for publication, after peer review (when applicable) but
is not the Version of Record and does not reflect post-acceptance improvements, or any corrections.
The Version of Record is available online at: https://doi.org/10.1007/s12346-025-01438-0.

ORCID

Rafael Martinez-Vergara ORCID: 0009-0006-8350-589X.
Joan Carles Tatjer ORCID: 0000-0001-8309-3940.

30


https://orcid.org/0009-0006-8350-589X
https://orcid.org/0000-0001-8309-3940

References

[ACO9]

[Bje09]

[ConT§|

[CsMN19]

[DnNnO23]

[DnNnO24]

[DnNnO25]

[Fuh16]

[J09]

[JMnAT18]

[JT08]

[JTNnOO07]

[JTZ24]

[Kat04]

[Kel96]

[NnOOS]

5503]

Lluis Alseda and Sara Costa. On the definition of strange nonchaotic attractor. Fund.
Math., 206:23-39, 2009.

Kristian Bjerklov. SNA’s in the quasi-periodic quadratic family. Comm. Math. Phys.,
286(1):137-161, 20009.

John B. Conway. Functions of one complex variable, volume 11 of Graduate Texts in
Mathematics. Springer-Verlag, New York-Berlin, second edition, 1978.

Stefan Cobza s, Radu Miculescu, and Adriana Nicolae. Lipschitz functions, volume
2241 of Lecture Notes in Mathematics. Springer, Cham, 2019.

Jestis Duenas, Carmen Nunez, and Rafael Obaya. Bifurcation theory of attractors
and minimal sets in d-concave nonautonomous scalar ordinary differential equations.
J. Differential Equations, 361:138—-182, 2023.

Jesus Duenas, Carmen Nunez, and Rafael Obaya. Generalized pitchfork bifurcations
in D-concave nonautonomous scalar ordinary differential equations. J. Dynam. Dif-
ferential Equations, 36(4):3125-3157, 2024.

Jesus Duenas, Carmen Nunez, and Rafael Obaya. Saddle-node bifurcations for concave
in measure and d-concave in measure skewproduct flows with applications to popula-
tion dynamics and circuits. Commun. Nonlinear Sci. Numer. Simul., 142:Paper No.
108577, 24, 2025.

Gabriel Fuhrmann. Non-smooth saddle-node bifurcations I: existence of an SNA.
Ergodic Theory Dynam. Systems, 36(4):1130-1155, 2016.

Tobias H. Jager. The creation of strange non-chaotic attractors in non-smooth saddle-
node bifurcations. Mem. Amer. Math. Soc., 201(945):vi+106, 2009.

Angel Jorba, Francisco Javier Munoz Almaraz, and Joan Carles Tatjer. On non-
smooth pitchfork bifurcations in invertible quasi-periodically forced 1-D maps. J.
Difference Equ. Appl., 24(4):588-608, 2018.

Angel Jorba and Joan Carles Tatjer. A mechanism for the fractalization of invariant

curves in quasi-periodically forced 1-d maps. Discrete and Continuous Dynamical
Systems-B, 10(2&3):537-567, 2008.

Angel Jorba, Joan Carles Tatjer, Carmen Nunez, and Rafael Obaya. Old and new
results on strange nonchaotic attractors. Internat. J. Bifur. Chaos Appl. Sci. Engryg.,
17(11):3895-3928, 2007.

Angel Jorba, Joan Carles Tatjer, and Yuan Zhang. Nonsmooth pitchfork bifurcations
in a quasi-periodically forced piecewise-linear map. International Journal of Bifurca-
tion and Chaos, page 2450084, 2024.

Yitzhak Katznelson. An introduction to harmonic analysis. Cambridge Mathematical
Library. Cambridge University Press, Cambridge, third edition, 2004.

Gerhard Keller. A note on strange nonchaotic attractors. Fund. Math., 151(2):139—
148, 1996.

Carmen Nunez and Rafael Obaya. A non-autonomous bifurcation theory for determin-
istic scalar differential equations. Discrete Contin. Dyn. Syst. Ser. B, 9(3-4):701-730,
2008.

Elias M. Stein and Rami Shakarchi. Fourier analysis, volume 1 of Princeton Lectures

in Analysis. Princeton University Press, Princeton, NJ, 2003. An introduction.

31



[VRS82] A. C. M. van Rooij and W. H. Schikhof. A second course on real functions. Cambridge
University Press, Cambridge-New York, 1982.

[Wal00] Peter Walters. An introduction to ergodic theory, volume 79. Springer Science &
Business Media, 2000.

32



	Introduction
	The dynamical systems

	The invariant curves of the systems
	Main results
	Proofs of the main results and additional statements
	A noncontinuous attractor
	Before the nonsmooth bifurcation
	After the nonsmooth bifurcation
	The fractalization mechanism
	Uniform contraction case

	Conclusions

