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Abstract

We study nonsmooth bifurcations of four types of families of one-dimensional quasiperi-

odically forced maps of the form Fi(x, θ) = (fi(x, θ), θ + ω) for i = 1, . . . , 4, where x is real,

θ ∈ T is an angle, ω is an irrational frequency, and fi(x, θ) is a real piecewise linear map with

respect to x. The first two types of families fi have a symmetry with respect to x, and the

other two could be viewed as quasiperiodically forced piecewise-linear versions of saddle-node

and period-doubling bifurcations. The four types of families depend on two real parameters,

a ∈ R and b ∈ R. Under certain assumptions for a, we prove the existence of a continuous

map b∗(a) where for b = b∗(a) there exists a nonsmooth bifurcation for these types of systems.

In particular we prove that for b = b∗(a) we have a strange nonchaotic attractor. It is worth

to mention that the four families are piecewise-linear versions of smooth families which seem

to have nonsmooth bifurcations. Moreover, as far as we know, we give the first example of a

family with a nonsmooth period-doubling bifurcation.

Keywords: Strange nonchaotic attractor; Nonsmooth bifurcation; Period-doubling bifurca-

tion; Quasi-periodic forcing; Piecewise-linear.
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1 Introduction

In this paper, we investigate the dynamics of four families of piecewise-linear quasiperiodically

forced maps. For these families, we want to study a certain type of (nonsmooth) bifurcations

involving invariant and two-periodic curves. These bifurcations are related to the existence of

Strange Nonchaotic Attractors (SNA). A two-periodic curve is a curve which is invariant under

the second iterate of the system, see Definition 1.1 for a formal definition. For the cases we

consider, we say that a bifurcation is nonsmooth whenever, at the bifurcation parameter, some of

the invariant or two-periodic curves involved in the bifurcation fail to be continuous. We prove

that the families we study exhibit nonsmooth bifurcations.

The motivation to study these four maps is due to the previous study in [JTZ24]. In this work,

the authors study the following quasiperiodically forced map, for a > 0, b ∈ R and ω ̸∈ 2πQ,

x̄ = ha(x)− b sin(θ),

θ̄ = θ + ω mod 2π,
ha(x) =


−π

2
if x ∈ (−∞,− π

2a
),

ax if x ∈ [− π
2a
, π
2a
],

π
2

if x ∈ ( π
2a
,∞).

They prove the existence of a value of a parameter b = b∗(a) where a nonsmooth pitchfork bi-

furcation occurs. This system is a piecewise-linear approximation of the smooth system studied

in [JMnAT18] and [J0̈9]. The present study generalizes and extends the results of [JTZ24] by

identifying further models for which similar statements hold and establishing additional properties

of the systems. We will consider four quasiperiodically forced maps of the formx̄ = h(x) + bg(θ),

θ̄ = θ + ω mod 2π,

where b ∈ R is a real parameter, ω ̸∈ 2πQ, h : R → R is a piecewise-linear continuous function and

g : T → R is a sufficiently smooth function. The piecewise-linear functions we will present have

constant and linear parts. The linear part depend on a parameter a ∈ R which will encode the

expanding behaviour of the system. The nonsmooth bifurcations will arise when |a| > 1. For the

four systems we consider, we show the existence of a curve of bifurcation b∗(a) in the parameter

plane where a nonsmooth bifurcation occurs. The curve of bifurcation can be expressed in terms of

the absolute maximum or minimum of one of the invariant curves. Once we consider a particular

g, we are able to explicitly determine the parameter values at which a nonsmooth bifurcation and

an associated fractalization phenomenon occurs. Concretely, we show the existence of piecewise-

linear versions of nonsmooth saddle-node, nonsmooth pitchfork, and nonsmooth period-doubling

bifurcations. We want to make emphasis on the fact that, as far as we know, this is the first

example of a family of quasiperiodically forced maps where it can be proved that there exists

a nonsmooth period-doubling bifurcation. We avoid the case a = 1 because, in this case, the

linear part of the piecewise-linear systems becomes the identity map. In the non-linear case this

behaviour is not generic.

We now summarize the key contributions and main results of the present study. As we will justify

later, it is enough to study the bifurcation for b > 0. We start with the case |a| > 1.

• For 0 < b < b∗(a), we establish the quantity of invariant or two periodic curves the sys-

tems have and we prove that the invariant or two periodic curves are piecewise of the same

regularity as g.

• For b = b∗(a), we show that the systems undergo nonsmooth bifurcations. Usually, in

computer simulations, the existence of a nonsmooth bifurcation is perceived through a frac-

talization phenomenon of the invariant curves of the system, when b tends to b∗(a). See, for

example, [JTNnO07] and the references therein. For more details we refer to Section 4.4,

where we define the fractalization of invariant curves. Unfortunately, this is not a charac-

terization of the existence of a nonsmooth bifurcation (see Remark 2.4.3 and examples 2.4.4

- 2.4.5 in [CsMN19]). Nevertheless, under suitable hypotheses, we are able to prove that a
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fractalization phenomenon is a necessary condition for the existence of a nonsmooth bifur-

cation, see Theorem 3.10. In contrast, the computer simulations of the four piecewise-linear

systems and the smooth counterparts barely show this fractalization phenomenon (compare

Figures 1 and 2). This could be due to the fact that when two invariant or one invariant

and one two-periodic curves collide, the set of angles corresponding to their intersection is

residual but has zero measure, see Theorem 3.4. The corresponding noncontinuous attracting

invariant curve, which appears for this bifurcation, is called a Strange Nonchaotic Attractor:

it is not the union of finitely many smooth manifolds and it has a zero Lyapunov exponent

(due to the irrational rotation) and a negative Lyapunov exponent. In the case of having a

noncontinuous two-periodic invariant curve, we say that the SNA is the union of the curve

and its image. For an in-depth discussion of the different definitions of SNA, see [AC09].

Additionally, if we fix b = b∗(a), we can construct a sequence of continuous curves {φn}n
which converge pointwise to the attracting curve. The graphs of {φn}n begin to exhibit

wrinkling as n→ ∞. A curve is said to wrinkle when it exhibits progressively finer foldings,

see Corollary 3.12 for a more precise description of this behaviour. In Remark 3 of Keller’s

paper, the author raises the question of whether, when two invariant curves collide, the graph

of one curve densely fills the region delimited by the two curves. Concerning this question,

in Proposition 3.9 we prove that, at b = b∗(a), our systems have an attracting invariant or

two-periodic noncontinuous curve that is dense in a region with positive two-dimensional

Lebesgue measure. Moreover, in Remark 4.5 we comment that the proof of Proposition

3.9 also applies to Keller’s systems. As a final conclusion to the study of these systems, in

Theorem 3.11, we give a criteria for a nonsmooth bifurcation in terms of the convergence of

a particular sequence of curves.

• For b > b∗(a), we prove that some of invariant or two periodic curves that exist for 0 < b ≤
b∗(a) disappear and the remaining curves are piecewise of the same regularity as g.

For the case |a| < 1, using the Banach Fixed Point Theorem we prove the existence of a unique

Lipschitz invariant curve, for all b ∈ R.
Similar results have been proved for other classes of maps [Kel96, Bje09, JTZ24, Fuh16]. In

the case of continuous dynamical systems, [DnNnO23, NnO08, DnNnO25, DnNnO24] provide

rigorous proofs of the existence of nonsmooth bifurcations of some families of nonautonomous

scalar differential equations.

To finish with the introduction, we give a brief outline of the contents in the following sections.

Below in Section 1.1, we introduced the quasiperiodically forced systems. In Section 2, we present

the invariant curves of the systems and some basic properties concerning these curves. In Section 3,

we state the main results of the work: we describe the bifurcation of the systems, we give conditions

for which we can prove the nonsmoothness of the bifurcation, we describe the attracting behaviour

of the attracting set for the parameters of bifurcation, we show the closure of an attracting curve

is a set with positive two-dimensional Lebesgue measure for the parameters of bifurcation and,

finally, we describe the fractalization process in these systems and we give a characterization of

the noncontinuity of the attracting curve in terms of the uniform convergence of a sequence of

continuous curves. In Section 4, we provide the detailed proofs for the system (4), with some

comments for the other systems, and some other supplementary results about the systems and

the invariant curves. In Sections 3, 4.1, 4.2, 4.3, 4.4 we study the nonuniformly contractive case

(when we can have an SNA) and in Section 4.5 we consider the uniformly contracting case (when

we have a unique attracting invariant curve). Concretely, in Section 4.1 there are the proofs

of Theorems 3.4, 3.6, 3.9 and Proposition 3.7, these statements describe the properties of the

systems at the bifurcation parameter. In Section 4.2 there is the proof of Proposition 3.2 which

describes the properties of the systems after the bifurcation parameter. In Section 4.3 there are

the proofs of Proposition 3.5 and Theorem 3.8, they describe the properties of the systems before

the bifurcation parameter. In Section 4.4 there are the proofs of Theorems 3.10 and 3.11, which

show fractalization of the invariant curves under certain conditions. Finally, in Section 4.5 there

is the proof of Theorem 3.13 which describes the properties of the systems.
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1.1 The dynamical systems

Let F : R× T1 → R× T1 be a quasiperiodically forced map (x̄, θ̄) = F (x, θ) of the formx̄ = h(x) + bg(θ),

θ̄ = θ + ω mod 2π,

where b ∈ R is a real parameter, ω ̸∈ 2πQ, and h : R → R and g : T → R are continuous functions.

Let TR denote the set of functions from T to R. To such a system F , we associate the operator

F : TR → TR given by

F(φ)(θ) = h(φ(θ − ω)) + bg(θ − ω).

Definition 1.1. We say that a function φ ∈ TR is an invariant curve of a system of the form

F if F(φ) = φ. A curve φ ∈ TR is a two-periodic curve of a system of the form F if F2(φ) = φ

and F(φ) ̸= φ.

Throughout the work we study four systems of this kind Fi : R×T1 → R×T1, for i = 1, 2, 3, 4. The

maps hi appearing in the systems Fi are defined piecewise with linear and constant components.

We proceed to introduce the maps that will be the subject of our analysis in a more precise form.

• The map F1 is a quasiperiodically forced piecewise-linear version of a supercritical pitchfork

bifurcation. It is given by

x̄ = h1(x)− bg(θ),

θ̄ = θ + ω mod 2π,
h1(x) =


−π

2
if x ∈ (−∞,− π

2a
),

ax if x ∈ [− π
2a
, π
2a
],

π
2

if x ∈ ( π
2a
,∞),

(1)

with a > 0.

• The map F2 is a quasiperiodically forced piecewise-linear version of a subcritical pitchfork

bifurcation. It is given by

x̄ = h2(x) + bg(θ),

θ̄ = θ + ω mod 2π,
h2(x) =


a(x+ δ) if x ∈ (−∞,−δ),
0 if x ∈ [−δ, δ],
a(x− δ) if x ∈ (δ,∞),

(2)

with a > 0 and δ > 0.

• The map F3 is a quasiperiodically forced piecewise-linear version of a saddle-node bifurcation.

It is given by x̄ = h3(x) + bg(θ),

θ̄ = θ + ω mod 2π,
h3(x) =

ax if x > − 1
a
,

−1 if x ≤ − 1
a
,

(3)

with a > 0.

• The map F4 is a quasiperiodically forced piecewise-linear version of a period-doubling bifur-

cation. It is given byx̄ = h4(x)− bg(θ),

θ̄ = θ + ω mod 2π,
h4(x) =

ax if x > 1
a
,

1 if x ≤ 1
a
,

(4)

with a < 0.

Note that the invariant curves of the map Fi are precisely the fixed points of the corresponding

operator Fi. The function g is assumed to be a C1+τ (T) function, for some τ > 0. Since our study
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is heavily dependent on the parameter a, we separate the study of the quasiperiodically forced

maps in terms of this parameter. To show the existence of nonsmooth bifurcations in the four

piecewise-linear systems, we will use similar arguments to the ones in [JTZ24]. It is important to

note that for i = 1, 2, 3 the map hi is monotone increasing and for i = 4 the map h4 is monotone

decreasing. Hence, the map h24 is monotone increasing. We have introduced each dynamical system

with a parameter b which is any real number, but for the study of the system we will only consider

b > 0. Note that for the systems (1), (2) and (4) the change (b, x, x̄) → (−b,−x,−x̄) allows results
to be extended from b > 0 to b < 0. In the following sections we introduce the study of system (4),

which is the most different of the four families. The study of the other systems can be deduced

from similar arguments. For completeness, the statements of the results are written for the four

systems. In the proofs, we comment how to obtain the results for the rest of the systems. To be

more precise, the system (1) and (2) are related to the system in [JTZ24]. The system (3) is a

piecewise-linear approximation of the non-linear systemx̄ = exp(ax)− bg(θ),

θ̄ = θ + ω mod 2π,

with a > 0 and b ∈ R. The system (4) is a piecewise-linear approximation of the non-linear systemx̄ = 1− exp(ax)− bg(θ),

θ̄ = θ + ω mod 2π,
(5)

with a > 0 and b ∈ R. A preliminary analysis of these systems seems to indicate that their

dynamical behaviour is similar to the piecewise-linear ones. A more complete numerical study of

these non-linear systems is work in progress.

Figure 2 shows the structure of the invariant set for the system (5). For the plots we have chosen

ω = π(
√
5 − 1) and a = 3. For the periodic function we use g(θ) = 1 + cos(θ). The green curves

are two-periodic and the red one is a repelling invariant curve of the system (5).

Figure 1 shows the structure of the invariant set for the system (4). For the plots we have chosen

ω = π(
√
5− 1) and a = −3. For the periodic function we use again g(θ) = 1 + cos(θ). The green

curves are two-periodic curves of the map F4, and the red curve is the repelling invariant curve.

In the bifurcation, we will prove that the two-periodic curves (green) and the invariant curve (red)

are different. Moreover, the intersection set of the curves has zero Lebesgue measure. Therefore,

numerical simulations cannot capture how the two-periodic curves densely fill the area between

them. In Section 3, we will prove that the curves densely fill the area and that there are no more

invariant or two-periodic curves than those shown in the figure 1, see Corollary 3.3.

2 The invariant curves of the systems

In this section, we study the non-uniform contraction (see Assumption 2.1) case for the systems

we have introduced previously. The arguments we use in the proofs follow the ideas from [JTZ24].

As we have mentioned before, in order to avoid unnecessary repetition, we give only the complete

proofs for the system (4) and we comment briefly on how the proofs for the other systems may

be carried out. Recall that, as we have mentioned in the introduction, we can reduce the study

to the case with b > 0. We start the section with an important assumption to which we will refer

throughout the following sections.

Assumption 2.1. For the systems (1), (2) and (3) we assume a > 1 and for the (4) we assume

a < −1.

Notice that this assumption guarantees that there is no uniform contraction on each of the systems.

From now on we need to work with the invariant curves, so we start by computing them for small

enough b > 0. Assume that, for i = 1, 3, 4, we have an invariant curve µi of the system Fi such
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Figure 1: Two-periodic attracting (green) and repelling (red) curves of (4) for fixed a = −3 and
different values of b.

Figure 2: Attracting (green) and repelling (red) curves of the non-linear system (5) for fixed a = 3
and different values of b.
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that the image of µi is on the linear part of hi, then

µi(θ + ω) = hi(µi(θ))− bg(θ). (6)

Since we assume that the image of µi is on the linear part of hi, if g is a trigonometric polynomial,

then equation (6) has a solution µi which is a trigonometric polynomial. If g can be expressed as

a Fourier series, then the solution µi can be found using standard Fourier analysis. We explain

how to obtain the solution after the proof of Lemma 2.2. The curve µi is invariant as long as it

stays on the region where hi is linear. Since every piecewise-linear hi has two or three different

components, if b = 0, there exists one invariant or two-periodic curve for each component. When

b > 0 is sufficiently small, the curves defined below are invariant or two-periodic. For larger b, they

serve as a seed of an iteration procedure to find the invariant or two-periodic curves. We proceed

to define the curves in question depending on the parameters a and b:

• For (1), we consider the following curves

φ̃1(θ) =
π

2
− bg(θ − ω),

γ̃1(θ) = −π
2
− bg(θ − ω),

and µ1 the continuous solution of the functional equation

µ1(θ + ω) = aµ1(θ)− bg(θ).

• For (2), we have two parts where the system is linear. Hence, we consider the following

curves

φ̃2(θ) = bg(θ − ω),

and µ2 and µ̂2 the continuous solutions of the functional equations

µ2(θ) = a(µ2(θ − ω)− δ) + bg(θ − ω),

µ̂2(θ) = a(µ̂2(θ − ω) + δ) + bg(θ − ω).

• For (3), we consider the following curves

φ̃3(θ) = −1 + bg(θ − ω).

and µ3 the continuous solution of the functional equation

µ3(θ + ω) = aµ(θ) + bg(θ).

• For (4), we consider the following curves

φ̃4(θ) = 1− bg(θ − ω).

and µ4 the continuous solution of the functional equation

µ4(θ + ω) = aµ(θ)− bg(θ). (7)

If b > 0 is small enough, these curves are invariant, for the systems (1), (2) and (3). In contrast,

for the system (4), the curve µ4 is invariant but the curve φ̃4 is not. What happens is that φ̃4 is

a two-periodic curve. In order to show that φ̃4 is two-periodic curve, we need to consider a fixed
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curve for the map iterated two times. The two-iteration map of system (4) has the following form¯̄x = ha(ha(x)− bg(θ))− bg(θ + ω),

¯̄θ = θ + 2ω mod 2π.
(8)

For small enough b > 0 and a < −1, we have that φ̃4(θ) >
1
a
. Then,

π1 ◦ F4(φ̃4(θ), θ) = h4(φ̃4(θ))− bg(θ) = aφ̃4(θ)− bg(θ).

Hence, for small enough b > 0, we obtain that

π1 ◦ F 2
4 (φ̃(θ), θ) = ha(ha(φ̃(θ))− bg(θ))− bg(θ + ω) = 1− bg(θ + ω) = φ̃(θ + 2ω).

We know that the collision of invariant curves can lead to the noncontinuity (see [Kel96, JTZ24])

of some of the colliding curves. The following result give an expression for the distance between

two of the curves.

Lemma 2.2. For each system, with Assumption (2.1), we have the following:

• For the system (1) we have

min
θ∈T

(φ̃1(θ)− µ1(θ)) = amin
θ∈T

( π
2a

− µ1(θ − ω)
)
,

min
θ∈T

(µ1(θ)− γ̃1(θ)) = amin
θ∈T

(
µ1(θ − ω) +

π

2a

)
.

• For the system (2) we have

min
θ∈T

(µ2(θ)− φ̃2(θ)) = amin
θ∈T

(µ2(θ − ω)− δ) ,

min
θ∈T

(µ̂2(θ)− φ̃2(θ)) = amin
θ∈T

(µ̂2(θ − ω) + δ) .

• For the system (3) we have

min
θ∈T

(µ3(θ)− φ̃3(θ)) = amin
θ∈T

(
µ3(θ − ω) +

1

a

)
.

• For the system (4) we have

min
θ∈T

(φ̃4(θ)− µ4(θ)) = amin
θ∈T

(
1

a
− µ4(θ − ω)

)
.

Proof. For the system (4). From the functional equation (7) and the explicit expression of φ̃4 we

can see that

φ̃4(θ)− µ4(θ) = 1− aµ4(θ − ω) = a

(
1

a
− µ4(θ − ω)

)
.

In the other systems, it can be used either the same argument with the corresponding functional

equation or the explicit expression of the curve to obtain the result.

We now focus on solving equation (6) for the system (4). The reasoning for other systems follows

by similar arguments. If we consider that g is a trigonometric polynomial with the expression

g(θ) =
∑N

n=0 g1(n) sin(nθ)+g2(n) cos(nθ), then we know that the solution µ4 has the form µ4(θ) =
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∑N
n=0 an sin(nθ) + bn cos(nθ). Therefore, equation (6) takes the form

N∑
n=0

an sin(n(θ + ω)) + bn cos(n(θ + ω))

= a
N∑

n=0

an sin(nθ) + bn cos(nθ)− b
N∑

n=0

g1(n) sin(nθ) + g2(n) cos(nθ).

Recall the following trigonometric identities

sin(nθ + nω) = sin(nθ) cos(nω) + cos(nθ) sin(nω),

cos(nθ + nω) = cos(nθ) cos(nω)− sin(nθ) sin(nω).

Therefore, we obtain the following system of equations for the unknowns {an, bn}Nn=0an cos(nω)− bn sin(nω) = aan − bg1(n),

an sin(nω) + bn cos(nω) = abn − bg2(n).

This system in matrix form is(
cos(nω)− a − sin(nω)

sin(nω) cos(nω)− a

)(
an
bn

)
=

(
−bg1(n)
−bg2(n)

)
. (9)

The other systems give rise to similar linear systems for the coefficients {an, bn}Nn=0. The determi-

nant of the matrix in (9) is 1− 2a cos(nω) + a2 > (a− 1)2. Therefore, the solutions of the system

(9) are

an = b

∣∣∣∣∣−g1(n) − sin(nω)

−g2(n) cos(nω)− a

∣∣∣∣∣
1− 2a cos(nω) + a2

= bãn and bn = b

∣∣∣∣∣cos(nω)− a −g1(n)
sin(nω) −g2(n)

∣∣∣∣∣
1− 2a cos(nω) + a2

= bb̃n.

In the following result, we make explicit the dependence of µi with respect to the parameters

(a, b, ω).

Proposition 2.3. For each system, with Assumption (2.1), we have the following decomposition:

• For the system (1), if |µ1(a, b, ω, θ)| ≤ π
2a
, then

µ1(a, b, ω, θ) = b

(
N∑

n=0

ãn(a, ω) sin(nθ) + b̃n(a, ω) cos(nθ)

)
= bµ1(a, ω, θ).

• For the system (2),

– if µ2(a, b, ω, θ) ≥ δ, then

µ2(a, b, ω, θ) = bµ2(a, ω, θ)−
δ

a− 1
− b

g1(0)

a− 1
.

– if µ̂2(a, b, ω, θ) ≤ −δ, then

µ̂2(a, b, ω, θ) = bµ̂2(a, ω, θ) +
δ

a− 1
− b

g1(0)

a− 1
.

• For the system (3), if µ3(a, b, ω, θ) ≥ −1
a
, then

µ3(a, b, ω, θ) = bµ3(a, ω, θ).
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• For the system (4), if µ4(a, b, ω, θ) ≥ 1
a
, then

µ4(a, b, ω, θ) = bµ4(a, ω, θ).

In other words, this result shows that the curve µi can be decomposed as the multiplication of

b with another function µi independent of b (plus a constant in system (2)). Moreover, for the

system (4), the coefficients ãn and b̃n are

ãn =

∣∣∣∣∣−g1(n) − sin(nω)

−g2(n) cos(nω)− a

∣∣∣∣∣
1− 2a cos(nω) + a2

and b̃n =

∣∣∣∣∣cos(nω)− a −g1(n)
sin(nω) −g2(n)

∣∣∣∣∣
1− 2a cos(nω) + a2

.

Note that we extend the argument to any g ∈ L2(T). Then, the relation in (9) shows the relation

between the Fourier coefficients of g and µ4. Now, as mentioned in the introduction, we assume

g ∈ C1+τ for some τ > 0.

Theorem 2.4. Let a satisfy the condition in (2.1). For every system Fi the repelling invariant

curve µi is C
0.

Proof. Consider the case for the system (4). Denote by C(a, ω, n) = 1/(1 − 2a cos(nω) + a2),

c1(a, ω, n) = cos(nω)− a and c2(a, ω, n) = sin(nω). Since |a| > 1, then

|C(a, ω, n)| < 1

(a− 1)2
.

Since g ∈ C1+τ with τ > 0, then the Fourier coefficients of µ satisfy that

|ãn| ≤ |C(a, ω, n)|(|c1(a, ω, n)||g1(n)|+ |c2(a, ω, n)||g2(n)|) = O
(
1/|n|1+τ

)
,

|b̃n| ≤ |C(a, ω, n)|(|c2(a, ω, n)||g1(n)|+ |c1(a, ω, n)||g2(n)| = O
(
1/|n|1+τ

)
.

Hence, the Fourier series representing µ4 converges absolutely and uniformly. We can do similarly

with the other systems. For more details about the decay of Fourier coefficients see [Kat04,

SS03].

Remark 2.5. (i) Note that using the same Fourier estimates in Theorem 2.4 we obtain:

• If g is Cα+τ for α ∈ N such that α > 0, then µi are C
α−1.

• If g is analytic, then µi are analytic.

(ii) For the systems (1) and (2), the distance between images of the curves in the same fibre is

positive. For the system (4), we are able to obtain an inequality.

• For the system (1) the distance between images of the same fibre θ ∈ T is

φ̃1(θ)− γ̃1(θ) = π.

• For the system (2) we need to work a bit. If we look at the functional equation of

µ2 and µ̂, and we compute the relation of the Fourier coefficients, we can see that the

coefficients of µ2 and µ̂ only differ on n = 0. Therefore, with these computations we

can see that the distance between images of the same fibre θ ∈ T is

µ2(θ)− µ̂2(θ) =
2δa

(a− 1)
.

• For the system (4) we can obtain the following inequality,

F4(φ̃4)(θ) ≤ φ̃4(θ).

The following Proposition shows that, if g is π-antisymmetric or positive, then we have additional

properties for the system (1).
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Proposition 2.6. Let a > 1 and b > 0. For the system (1) we have the following:

1. If g(θ + π) = −g(θ) for all θ ∈ T, then φ̃1 and γ̃1 approach µ1 at the same time as b grows.

2. If g(θ) ≥ 0 for all θ ∈ T, then γ̃1 and µ1 never intersect and φ̃1 approach µ1 as b grows.

Proof. 1. In this case −φ̃1(θ + π) = −π
2
+ bg(θ + π) = −π

2
− bg(θ) = γ̃1(θ) and also that b0 the

independent term should be zero. The last is because the system for b0 results in (1−a)b0 =

−bg2(0) = 0 and we have by hypothesis that a > 1. Indeed, using the trigonometric identity

for the sum we can compute that the Fourier coefficients of g verify that

g1(n) sin(n(θ + π)) + g2(n) cos(n(θ + π)) = − (g1(n) sin(nθ) + g2(n) cos(nθ)) ,

g1(n)(−1)n sin(nθ) + g2(n)(−1)n cos(nθ) = − (g1(n) sin(nθ) + g2(n) cos(nθ)) .

So for n even we have g1(n) = 0 = g2(n). Therefore, considering the system for (an, bn) we

get that for n even (an, bn) = (0, 0). Hence, again using the trigonometric identity for the

sum we have that

µ1(θ + π) =
∞∑
k=1

a2k+1 sin((2k + 1)(θ + π)) + b2k+1 cos((2k + 1)(θ + π))

= −
∞∑
k=1

a2k+1 sin((2k + 1)θ) + b2k+1 cos((2k + 1)θ) = −µ1(θ).

Therefore, the statement is a consequence of Lemma (2.2),

min
θ∈T

(φ̃1(θ)− µ1(θ)) = min
θ∈T

(µ1(θ + π)− γ̃1(θ + π)) . (10)

2. Since g(θ) ≥ 0 for all θ ∈ T, then we have that the map applied to the a curve Z : T → R
such that −π

2
< Z(θ) < 0 has image

F(Z)(θ) = ha(Z(θ − ω))− bg(θ − ω) = aZ(θ − ω)− bg(θ − ω)

< Z(θ − ω)− bg(θ − ω) ≤ Z(θ − ω).

Since all the iterates of {x < 0} converge to γ̃1 we obtain that the invariant curve µ1 is on

{x ≥ 0} for any b > 0. Hence, by the expression of the invariant curve µ1 we get that φ̃1

approach µ1 as b grows.

As a consequence of Proposition (2.3) and Lemma (2.2), we obtain that there exists a unique

value of the parameter b, denoted by b∗(a), for which there exists a collision between some of the

invariant curves.

Corollary 2.7. Let a satisfy the condition in (2.1) and b ≤ b∗(a). For each system there exists a

unique value b = b∗(a) for which intersection of the graphs of the invariant curves is not empty.

• For the system (1), if we denote by θM a global maximum and θm a global minimum of µ1,

then b∗(a) verifies that

b∗(a)max{|µ1(θm)|, |µ1(θM)|} =
π

2a
.

Moreover, for b = b∗(a) if max{|µ1(θm)|, |µ1(θM)|} = |µ1(θM)|. Then, the curves φ̃1 and µ1

intersect. If max{|µ1(θm)|, |µ1(θM)|} = |µ1(θm)|, then the curves γ̃1 and µ1 intersect.

• For the system (2), if we denote by θm a global minimum of µ2 and θM a global maximum

of µ̂2, then b
∗(a) verifies that

b∗(a)max

(∣∣∣∣µ2(θm)−
g1(0)

a− 1

∣∣∣∣, ∣∣∣∣µ̂2(θm)−
g1(0)

a− 1

∣∣∣∣) =
aδ

a− 1

11



• For the system (3), if we denote by θm a global minimum of µ3 then b∗(a) verifies that

b∗(a)µ3(θm) = −1

a
.

• For the system (4), if we denote by θm a global minimum of µ4, then b
∗(a) verifies that

b∗(a)µ4(θm) =
1

a
.

Proof. Consider the system (4). From Lemma (2.2), we obtain that

min
θ∈T

(φ̃4(θ)− µ4(θ)) = amin
θ∈T

(
1

a
− µ4(θ − ω)

)
.

Using the decomposition in Proposition 2.3 we obtain the expression for b∗(a). The same argument

proves the expressions for the other systems.

Remark 2.8. Note that Lemma 2.2 provides a sufficient condition to have a non-empty intersection

between the curves. In particular, when we have the symmetry condition, g(θ+π) = −g(θ) for all
θ ∈ T, we have non-empty intersection between three curves.

Now, using the maps Fi and the curves φ̃i, we introduce an iteration procedure which let us obtain

an invariant or two-periodic curve of the system.

Lemma 2.9. Let a satisfy Assumption (2.1). For each system we define two sequences of monotone

curves.

• For the system (1), we define the following functions φ0 = φ̃1 and λ0 = φ0 − µ1, and for all

n ≥ 0 we set

φn+1(θ) := F1(φn)(θ) = h1(φn(θ − ω))− bg(θ − ω),

λn+1(θ) := h1(λn(θ − ω) + µ1(θ − ω))− aµ1(θ − ω).

Then, we have that

1. λn = φn − µ1 for all n ≥ 0.

2. If 0 < b ≤ b∗, then λn ≥ 0 for all n ≥ 0.

3. The sequence of functions {φn}n and {λn}n are decreasing.

• For the system (2), we define the following functions φ0 = φ̃2 and λ0 = φ0 − µ2, and for all

n ≥ 0 we set

φn+1(θ) := F2(φn)(θ) = h2(φn(θ − ω)) + bg(θ − ω),

λn+1(θ) := a(µ2(θ − ω)− δ)− h2(µ2(θ − ω)− λn(θ − ω)).

Then, we have that

1. λn = µ2 − φn for all n ≥ 0.

2. If 0 ≤ b ≤ b∗(a), then λn ≥ 0 for all n ≥ 0.

3. The sequence of functions {φn}n is monotone increasing and {λn}n is monotone de-

creasing.

• For the system (3), we define the following functions φ0 = φ̃ and λ0 = µ3 − φ0, and for all

n ≥ 0 we set

φn+1(θ) := F3(φn)(θ) = h3(φn(θ − ω)) + bg(θ − ω),

λn+1(θ) := aµ3(θ − ω)− h3(µ3(θ − ω)− λn(θ − ω)).

Then, we have that

12



1. λn = µ3 − φn for all n ≥ 0.

2. If 0 ≤ b ≤ b∗(a), then λn ≥ 0 for all n ≥ 0.

3. The sequence of functions {φn}n is monotone increasing and {λn}n is monotone de-

creasing.

• For the system (4), we define the following functions φ0 = φ̃ and λ0 = φ0 − µ4, and for all

n ≥ 0 we set

φn+1(θ) := F2
4 (φn)(θ) = h4(h4(φn(θ − 2ω))− bg(θ − 2ω))− bg(θ − ω),

λn+1(θ) := h4(h4(µ4(θ − 2ω) + λn(θ − 2ω))− bg(θ − 2ω))− aµ4(θ − ω).

Then, we have that

1. λn = φn − µ4 for all n ≥ 0.

2. If 0 ≤ b ≤ b∗(a), then λn ≥ 0 for all n ≥ 0.

3. The sequence of functions {φn}n is monotone decreasing and {λn}n is monotone de-

creasing.

Proof. We prove the three statements for the system (4). The other ones follow with similar

arguments. In the case of the system (4), in order to prove the item (3) it is important to recall

that h4 is decreasing and hence h4 ◦ h4 is increasing.

1. By definition we have that it is true for n = 0. So we proceed by induction, we assume that

λn = φn − µ4 so

λn+1(θ) = h4(h4(µ4(θ − 2ω) + λn(θ − 2ω))− bg(θ − 2ω))− aµ4(θ − ω)

= h4(h4(φn(θ − 2ω))− bg(θ − 2ω))− µ4(θ)− bg(θ − ω)

= φn+1(θ)− µ4(θ).

2. We know that for 0 ≤ b ≤ b∗(a) the curves µ4 and φ0 do not intersect, and that {φn}n is

monotone decreasing and bounded by µ4. Hence, as µ4 is invariant λn = φn − µ4 ≥ 0. If

b = b∗(a), we have that they intersect only in one point, so by the same argument we have

that λn ≥ 0 for all n ≥ 0.

3. We compute that for all θ ∈ T

φ1(θ) = h4(h4(φ0(θ − 2ω))− bg(θ − 2ω))− bg(θ − ω) ≤ 1− bg(θ − ω) = φ0(θ)

Assume by induction that φn ≤ φn−1, since ha is a decreasing function, we get that for all

θ ∈ T

h4(φn(θ − 2ω))− bg(θ − 2ω) ≥ h4(φn−1(θ − 2ω))− bg(θ − 2ω).

Hence, for all θ ∈ T

φn+1(θ) = h4h4(φn(θ − 2ω))− bg(θ − 2ω))− bg(θ − ω)

≤ h4(h4(φn−1(θ − 2ω))− bg(θ − 2ω))− bg(θ − ω) = φn(θ).

Since λn = φn − µ4 we obtain that {λn}n is monotone decreasing.

To make more simple the notation, we will denote by {φn}n all the sequences generated by the

map Fi, for i = 1, 2, 3, 4. This is because the sequence φn will play the same role for i = 1, 2, 3, 4.

We do the same simplification of notation with the sequence {λn}n.
Since, for i = 1, 2, 3, 4, either hi or h

2
i is monotone increasing, the sequences {φn}n and {λn}n

converge pointwise to some curve φ∞ and λ∞ respectively.
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We used that a monotone bounded sequence of continuous curves has to converge pointwise to a

semicontinuous curve. For every piecewise-linear system, the final goal is to prove the noncontinuity

of φ∞, at the parameter b = b∗(a).

The following proposition will allow us to define an invariant compact set.

Proposition 2.10. Let a satisfy Assumption (2.1) and b ≤ b∗(a).

• For the system (1), we define the set

A+ := {(x, θ) ∈ R× T | µ1(θ) ≤ x ≤ φ0(θ)}.

Then F1(A+) ⊂ A+.

• For the system (2), we define the set

A+ := {(x, θ) ∈ R× T | φ0(θ) ≤ x ≤ µ2(θ)}.

Then F2(A+) ⊂ A+.

• For the system (3), we define the set

A+ := {(x, θ) ∈ R× T | φ0(θ) ≤ x ≤ µ3(θ)}.

Then F3(A+) ⊂ A+.

• For the system (4), we define the set

A+ := {(x, θ) ∈ R× T | µ4(θ) ≤ x ≤ φ0(θ)}.

Then F 2
4 (A+) ⊂ A+.

Proof. First consider the case for the system (4). Assume (x, θ) ∈ A+. Since h4 is decreasing we

have that

h4 ◦ µ4(θ) ≥ h4(x) ≥ h4 ◦ φ0(θ + ω).

Hence, we have that

µ4(θ + 2ω) ≤ π1 ◦ F 2
4 (x, θ) = h4(h4(x)− bg(θ))− bg(θ + ω) ≤ φ1(θ + 2ω).

Therefore, since {φn}n is monotone decreasing we have that F 2
4 (x, θ) ∈ A+. The case of the other

systems is proved using similar arguments.

Finally, we obtain a compact invariant set for the piecewise-linear systems.

Theorem 2.11. Let a satisfy Assumption (2.1) and b ≤ b∗(a).

• For the case i = 1, 2, 3, the set defined by

Λi :=
⋂
n≥0

F n
i (A+),

is a compact invariant set for the map Fi.

• For the case i = 4, the set

Λ̃4 :=
⋂
n≥0

F 2n
4 (A+)

is a compact invariant set for the map F 2
4 and the set

Λ4 := Λ̃4

⋃
F4

(
Λ̃4

)
.

is a compact invariant set for the map F4.
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In order to study the upper semicontinuous curve φ∞, we need to study the sequence {φn}n, or
equivalently, the sequence {λn}n. A simple computation gives us the following expressions for the

λn that will be useful later.

• For the system (1),

λn+1(θ) =

π
2
− aµ1(θ − ω) if λn(θ − ω) + µ1(θ − ω) ≥ π

2a
,

aλn(θ − ω) if λn(θ − ω) + µ1(θ − ω) ≤ π
2a
.

• For the system (2),

λn+1(θ) =

a(µ2(θ − ω)− δ) if µ2(θ − ω)− λn(θ − ω) ≤ δ,

aλn(θ − ω) if µ2(θ − ω)− λn(θ − ω) > δ.

• For the system (3),

λn+1(θ) =

aµ3(θ − ω) + 1 if µ3(θ − ω)− λn(θ − ω) ≤ − 1
a
,

aλn(θ − ω) if µ3(θ − ω)− λn(θ − ω) ≥ − 1
a
.

• For the system (4),

λn+1(θ) =

1− aµ4(θ − ω) if a[µ4(θ − 2ω) + λn(θ − 2ω)]− bg(θ − 2ω) ≤ 1
a
,

a2λn(θ − 2ω) if a[µ4(θ − 2ω) + λn(θ − 2ω)]− bg(θ − 2ω) > 1
a
.

(11)

For the system (4), we define the following sets

In :=

{
θ ∈ T | a[µ4(θ − 2ω) + λn(θ − 2ω)]− bg(θ − 2ω) ≤ 1

a

}
.

Since {λn}n is decreasing, if θ ∈ In+1 we have that

a[µ4(θ − 2ω) + λn(θ − 2ω)]− bg(θ − 2ω) ≤ a[µ4(θ − 2ω) + λn+1(θ − 2ω)]− bg(θ − 2ω) ≤ 1

a
.

Hence, In+1 ⊂ In. Therefore, the set I =
⋂

n≥0 In is a compact set such that for all θ ∈ I

λ∞(θ) = 1− aµ4(θ − ω).

For the other systems we can obtain a similar result.

Proposition 2.12. Let a satisfy Assumption (2.1) and b ≤ b∗(a).

• For the system (1), there exists a set I ⊂ T such that for all θ ∈ I

λ∞(θ) =
π

2
− aµ1(θ − ω).

• For the system (2), there exists a set I ⊂ T such that for all θ ∈ I

λ∞(θ − ω) = a(µ2(θ − ω)− δ).

• For the system (3), there exists a set I ⊂ T such that for all θ ∈ I

λ∞(θ − ω) = aµ3(θ − ω) + 1.

• For the system (4), there exists a set I ⊂ T such that for all θ ∈ I

λ∞(θ) = 1− aµ4(θ − ω).
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3 Main results

The main objective of this work is to study the four piecewise-linear systems presented in Section

1.1, with Assumption 2.1. In this section, we state the main results that describe the bifurcations

of the four piecewise-linear systems. We recall that:

• For the systems (1), (2) and (3), φ∞(θ) = limn φn(θ) is an invariant upper semicontinuous

curve and µi is an invariant continuous curve, for i = 1, 2, 3.

• For the system (4), φ∞(θ) = limn φn(θ) is a two-periodic upper semicontinuous curve and µ4

is an invariant continuous curve.

Our starting point is the formulation of two technical conditions. Both (A) and (B) are needed in

Section 4.1.

(A) The function g is analytic.

(B) For every θ0 ∈ Zλ0 = {θ ∈ T | λ0(θ) = 0}, there exists an ε > 0 and an even integer m > 0

such that, for all θ ∈ (θ0 − ε, θ0 + ε), we have that λ0(θ) = (θ− θ0)
mq(θ), where q(θ) > 0 for

all θ ∈ (θ0 − ε, θ0 + ε).

Remark 3.1. Note that the condition (A) implies the condition (B) by a classical factorization

Theorem of analytic functions [Con78, Corollary 3.9].

The study of the bifurcations of the four piecewise-linear systems can be synthesised in the following

four results. First, we consider the case 0 < b < b∗(a).

Proposition 3.2. Let a satisfy Assumption (2.1) and 0 < b < b∗(a).

• For the system (1) and (3), there exists a unique continuous attracting invariant curve φ∞

such that µi(θ) < φ∞(θ) ≤ φ0(θ) for all θ ∈ T and i = 1, 3.

• For the system (2), there exists a unique continuous attracting invariant curve φ∞ such that

φ0(θ) ≤ φ∞(θ) < µ2(θ) for all θ ∈ T.

• For the system (4), there exists a unique continuous two-periodic curve φ∞ such that µ(θ) <

φ∞(θ) ≤ φ0(θ) for all θ ∈ T. Moreover, φ∞ is attracting as an invariant curve of F 2
4 .

Corollary 3.3. Let a satisfy Assumption (2.1) and 0 < b < b∗(a). Then,

• For the system (1), there are two unique continuous attracting invariant curves and one

unique continuous repelling invariant curve.

• For the system (2), there is a unique continuous attracting invariant curve and two unique

continuous repelling invariant curves.

• For the system (3), there is a unique continuous attracting invariant curve and a unique

continuous repelling invariant curves.

• For the system (4), are two unique continuous attracting two-periodic curves and one unique

continuous repelling invariant curve. Moreover, φ∞ is attracting as an invariant curve of

F 2
4 .

Proof. In the system (4), by the definition of two-periodic curve, the curve F4(φ∞) is two-periodic

and is also attracting. This implies that there are no more two-periodic or invariant curves. Indeed,

if we consider a point (x, θ) that does not belong to the repelling invariant curve, then its iterates

tend to one of the two-periodic curves. In the other cases, a similar argument shows that there

are only three or two invariant curves.

Recall that λ∞(θ) = 0 is equivalent to φ∞(θ) = µi(θ) with i = 1, 2, 3, 4. The following statement

establishes some properties of the set of angles where φ∞ intersects with µi, for i = 1, 2, 3, 4.
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Theorem 3.4. Let a satisfy Assumption (2.1) and b = b∗(a). Then, for the systems (1), (2), (3)

and (4), the set

A = {θ ∈ T | λ∞(θ) = 0}

is residual and has zero Lebesgue measure. Additionally, A contains a residual set R which is

positively and negatively invariant.

The following result shows that, after the parameter b∗(a), there is a change in the number of

invariant curves on each system.

Proposition 3.5. Let a satisfy Assumption (2.1) and b > b∗(a). Then,

• For the systems (1), (2) and (4), there exists a unique continuous invariant curve.

• For the system (3), there exists no continuous invariant curve.

At b = b∗(a), the closure of the attracting set contains a repelling set. In contrast, we are able to

prove that almost every orbit falls into the semicontinuous attracting curve in a finite number of

iterates. We denote by (xn, θn) the n-th iteration of a pair (x0, θ0) ∈ R × T. Let π2 : R × T → T
be the projection map to the second component.

Theorem 3.6. Let a satisfy Assumption in (2.1) and b = b∗(a). There exists a set Ω ⊂ R×T such

that π2(Ω) has full Lebesgue measure and, for any pair (x0, θ0) ∈ Ω, there exists an n0 = n0(x0, θ0)

such that (xn0 , θn0) belongs to the graph of the semicontinuous attracting curve. Moreover, we have

that:

• For each system (1), (3) and (4), there exists a set of full Lebesgue measure E ⊂ T such that

Ω = {(x, θ) ∈ R × E | µi(θ) < x} with i = 1, 3, 4 and every orbit falls into the graph of φ∞

in a finite number of iterates.

• For the system (2), there exists a set of full Lebesgue measure E ⊂ T such that Ω = {(x, θ) ∈
R×E | µ2(θ) > x > φ∞(θ)} and every orbit falls into the graph of φ∞ in a finite number of

iterates.

Furthermore, for b = b∗(a), we are able to compute the Lyapunov exponent of the attracting

invariant and two-periodic curves.

Proposition 3.7. Let a satisfy Assumption in (2.1) and b = b∗(a). Then the Lyapunov exponent

of φ∞ is −∞.

We can prove that, before and after the parameter b = b∗(a), the curves are piecewise-differentiable.

Theorem 3.8. Let a satisfy Assumption in (2.1). Assume that 0 < b < b∗(a) or b > b∗(a). Then

the curve φ∞ is piecewise C1+τ with τ > 0.

It is natural to ask whether, for b = b∗(a), the closure of the attracting invariant or two-periodic

curve is dense in the region between itself and the repelling one. Recall the definition of the sets

Λi for i = 1, . . . , 4, in Theorem 2.11. The next result answers positively to this question.

Theorem 3.9. Let a satisfy Assumption (2.1) and b = b∗(a).

• For i = 1, 2, 3, the set Λi has positive Lebesgue measure, it can not contain any non-empty

open set and the closure of the semicontinuous invariant curve is equal to Λi.

• For i = 4, the set Λ4 has positive Lebesgue measure, it can not contain any non-empty open

set and the union of the closure of the two-periodic curves φ∞ and F4(φ∞) is equal to Λ4.

Numerical computations of these systems suggest that, as b → b∗(a), the attracting invariant

curves exhibit fractalization, see Section 4.4 for a precise definition. We write L(φ) for the lowest

Lipschitz constant of a Lipschitz curve φ, as detailed in Section 4.4. If we take a positive g, then

the fractalization of the invariant or two-periodic curves can be proved.
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Theorem 3.10. Let a satisfy Assumption (2.1). If g(θ) ≥ 0 for all θ ∈ T, then, for the systems

(1), (2), (3) and (4), the family of curves {φ∞(b)}b fractalize as b→ b∗(a), i.e.,

lim sup
b→b∗(a)

L(φ∞(b)|I) = +∞,

for every interval I ⊂ T.

Under certain assumptions, the following result characterises when an invariant curve of a quasiperi-

odically forced map is noncontinuous.

Theorem 3.11. Consider a quasiperiodically forced map defined byx̄ = h(x)− bg(θ),

θ̄ = θ + ω mod 2π,

where g : T → R is continuous, h : R → R is continuous and monotone increasing and ω ̸∈ 2πQ.

Assume that there exists a continuous curve f0 : T → R such that:

• Either f∞(θ) ≤ f0(θ) or f∞(θ) ≥ f0(θ) for all θ ∈ T.

• The sequence defined by the fixed point map of the system

fn(θ) := h ◦ fn−1(θ − ω)− bg(θ − ω)

has a pointwise limit f∞.

Define the following sequence of curves:

f ↓
m(θ) := inf

k≤m
fk(θ),

f ↑
m(θ) := sup

k≤m
fk(θ).

Then f∞ is invariant and f∞ is continuous if and only if either {f ↓
m}m or {f ↑

m}m is uniformly

convergent. In particular,

• If f∞ ≤ f0, then f∞ is continuous if and only if {f ↓
m}m is uniformly convergent.

• If f∞ ≥ f0, then f∞ is continuous if and only if {f ↑
m}m is uniformly convergent.

As a consequence, we obtain the following result for our piecewise-linear systems.

Corollary 3.12. Let a satisfy Assumption (2.1) and b = b∗(a). Then, for the systems (1), (2),

(3) and (4), the sequence {φn}n is not uniformly convergent and satisfies that for every interval

I ⊂ T

lim sup
n

L(φn|I) = +∞.

Finally, we can prove that these systems have only an attractor when |a| < 1.

Theorem 3.13. Let |a| < 1 and b ∈ R. Then Fi has a unique Lipschitz invariant curve for each

i ∈ {1, 2, 3, 4}.

4 Proofs of the main results and additional statements

Each µi plays a very similar role on the proofs for each system. Therefore, unless there is a possible

confusion, we will denote by µ any of the invariant curves µi.
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4.1 A noncontinuous attractor

In this section, we assume that b = b∗(a). The main objective in this section is to prove that the

curve φ∞ is not continuous. This is done by proving that the set of angles where λ∞ is zero is a

residual set of zero measure. For all the systems, we need to control the absolute extreme points

of the invariant curve µ. From Lemma 2.2, the set Zλ0 = {θ ∈ T | λ0(θ) = 0} is a subset of the

set of absolute extreme points of µ. We state two conditions ((A) and (B)) that grant that Zλ0 is

a finite set of points.

• Assuming (A), we have that λ0 is analytic, see Remark 2.5(i). Then the zero set Zλ0 has no

accumulation points. Since for every θ ∈ T we have that λ0(θ) ≥ λ∞(θ) ≥ 0, every zero has

a finite even order. Hence, since T is compact, the set Zλ0 is equal to a finite set of points.

• Assuming (B), we have that Zλ0 has no accumulation points. Hence, as T is compact, the

set Zλ0 is equal to a finite set of points.

In any of these two cases, Zλ0 has zero measure. Therefore, for all n the functions log ◦λn are

integrable. The integrability of log ◦λn is the key to obtain the non-continuity of the semicontinuous

function φ∞. We give two interesting examples for the system (1):

1. We require condition (B). Given a finite sequence {θn}Nn=0 ⊂ T. Let µ1 be in C∞(T) such

that µ1(θn) = 1 for n = 0, . . . , N , and that µ1(θ) < 1 if θ ̸= θn for n = 0, . . . , N . With

this µ1 we have a finite set of points such that for a value of the parameter b we have that

µ1(θn) =
π
2a

for n = 0, . . . , N .

2. Given an ε > 0 small enough and an interior point θ0 ∈ T, consider the open interval

Iε = (θ0, θ0 + ε) of T of length ε. Let µ1 be in C∞(T) such that µ1(θ) = 1 for any angle

θ ∈ Iε, and µ1(θ) < 1 for any angle θ ∈ T ∖ Iε. With this µ1 we have an open set of points

such that for a value of the parameter b we will have that µ1(θ) =
π
2a

for any angle θ ∈ Iε.

Note that these examples can be reproduced in the other systems changing minor details of the

functions. Observe that, in the example 1 with b = b∗(a), we have that Zλ0 has zero measure. In

the example 2, with b = b∗(a), Zλ0 has measure ε. In this case, for θ ∈ Iε, we have that λ0(θ) = 0.

Hence, for θ ∈ Iε, we have that λ∞(θ) = 0. Using the invariance and the compactness of T, we
obtain that φ∞(θ) = µ(θ) for all θ ∈ T.
This situation can be even more extreme. For example, assume that µ1(θ) = 1 for a residual

set of small positive measure I0, and for the rest of angles µ1(θ) < 1. Therefore, for a value of

the parameter b, the curves φ∞ and µ1 coincide on I0. The set I0 can be constructed from the

complementary of a fat Cantor set.

From this reasoning, to ensure that log ◦λn is integrable, we need to guarantee that one of the

conditions (A) or (B) is satisfied. For simplicity of the argument, we assume that λ0 has a unique

zero. After the following lemma, we will see that indeed having more than one zero of λ0 does not

affect the argument.

Lemma 4.1. Let a satisfy Assumption (2.1) and b = b∗(a). The curve λn has a finite set of of

zeros. Concretely, let θ0 be the only zero of λ0. Then we have the following:

• For the systems (1), (2) and (3), λn has exactly n+ 1 zeros θ0, θ0 + ω, . . . , θ0 + nω.

• For the system (4), λn has exactly n+ 1 zeros θ0, θ0 + 2ω, . . . , θ0 + 2nω.

Proof. Consider the system (4). Given n ≥ 1, we see that

F
2(n−1)
4 (µ(θ0 − 2nω), θ0 − 2nω) = (µ(θ0 − 2ω), θ0 − 2ω),

F
2(n−1)
4 (φ0(θ0 − 2nω), θ0 − 2nω) = (φn−1(θ0 − 2ω), θ0 − 2ω).

Since µ(θ0 − ω) = 1
a
and µ(θ0 − 2ω) ≤ φn−1(θ0 − 2ω),

h4(φn−1(θ0 − 2ω))− bg(θ) ≤ h4(µ(θ0 − 2ω))− bg(θ) = µ(θ0 − ω) ≤ 1

a
.
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Therefore, we obtain that

F 2
4 (µ(θ0 − 2ω), θ0 − 2ω) = F 2

4 (φn−1(θ0 − 2ω), θ0 − 2ω).

As a consequence, we obtain that λn(θ0) = φn(θ0) − µ(θ0) = 0. If θ is a zero of λn, from (11) we

have that

λn+1(θ + 2ω) =

1− aµ(θ + ω) if aµ(θ)− bg(θ) ≤ 1
a
,

a2λn(θ) if aµ(θ)− bg(θ) > 1
a
.

Since aµ(θ)− bg(θ) = µ(θ+ ω) ≥ 1
a
, λn+1(θ+ 2ω) = a2λn(θ). Then θ+ 2ω is a zero of λn+1. If we

consider the case where θ is the minimum of µ, then θ = θ0 − ω so

λn+1(θ + ω) =

1− aµ(θ) if aµ(θ − ω)− bg(θ − ω) ≤ 1
a
,

a2λn(θ − ω) if aµ(θ − ω)− bg(θ − ω) > 1
a
.

Since aµ(θ − ω)− bg(θ − ω) = µ(θ) = 1
a
, λn+1(θ + ω) = 1− aµ(θ) = 0.

The uniqueness follows from induction. For n = 0 this is true, so we assume that λn+1 has an

extra zero θ1. From (11) there are two cases,

1. 1− aµ(θ + ω) = 0. We have that µ(θ1 − ω) = 1
a
so θ1 = θ0 + 2ω.

2. a2λn(θ) = 0. In this case λn has an extra zero, but this is contradictory with the induction

hypothesis which is that λn has no extra zero.

A similar argument is valid for the systems (1), (2) and (3). For these systems you have to consider

the one-iteration map instead of the two-iteration map.

We obtained that Z = {θ ∈ T | λn(θ) = 0 for any n ≥ 0} has zero measure. We will use this

to ensure the integrability of log ◦λn. The finite union of zero measure sets is of zero measure.

Therefore, having more than one zero of λ0 does not affect the integrability of log ◦λn, for all n ≥ 0.

Recall that b = b∗(a) and θ0 is the unique angle such that λ0(θ0) = 0. When λn is small, the curve

φn is near the invariant curve µ. Therefore, we have that

• For the systems (1), (2) and (3), the sequence {λn}n verifies that λn+1(θ + ω) = aλn(θ).

• For the system (4), the sequence {λn}n verifies that λn+1(θ + ω) = a2λn(θ).

This justifies the following definition.

Definition 4.1. Let a satisfy Assumption (2.1). We define the following sequence of functions

{ψn}n.

• For the systems (1), (2) and (3) the sequence is defined by

ψn(θ) :=


λn+1(θ+ω)

λn(θ)
if λn(θ) ̸= 0,

a if λn(θ) = 0.

• For the system (4) the sequence is defined by

ψn(θ) :=


λn+1(θ+2ω)

λn(θ)
if λn(θ) ̸= 0,

a2 if λn(θ) = 0.
(12)

We have to study how the functions ψn behave. First, we show this sequence is bounded and

monotone.

Lemma 4.2. Let a satisfy Assumption (2.1). Then we have that 0 ≤ ψn−1(θ) ≤ ψn(θ), for all

n ≥ 1 and for all θ ∈ T. Moreover,
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• For the systems (1), (2) and (3), we have that ψn(θ) ≤ a, for all n ≥ 0 and for all θ ∈ T.

• For system (4), we have that ψn(θ) ≤ a2, for all n ≥ 0 and for all θ ∈ T.

Proof. In case of system (4), we use the expression (11) in equation (12) to obtain

ψn(θ) =


1−aµ(θ+ω)

λn(θ)
if a[µ(θ) + λn(θ)]− bg(θ) ≤ 1

a
,

a2 if a[µ(θ) + λn(θ)]− bg(θ) > 1
a
.

(13)

So by the expression (13), if a[µ(θ) + λn(θ)]− bg(θ) ≤ 1
a
, then aλn(θ) ≤ 1

a
− µ(θ + ω). Hence,

ψn(θ) =
λ0(θ + 2ω)

λn(θ)
≤ λ0(θ + 2ω)

1
a2

− 1
a
µ(θ + ω)

= a2
λ0(θ + 2ω)

λ0(θ + 2ω)
= a2.

Since {λn}n is decreasing we have only three cases:

1. a[µ(θ) + λn+1(θ)]− bg(θ) ≥ a[µ(θ) + λn(θ)]− bg(θ) > 1
a
. In this case, we have that

ψn+1(θ) = a2,

ψn(θ) = a2.

Hence, ψn(θ) ≤ ψn+1(θ).

2. a[µ(θ) + λn+1(θ)]− bg(θ) > 1
a
≥ a[µ(θ) + λn(θ)]− bg(θ). In this case, we have that

ψn+1(θ) = a2.

Hence, ψn(θ) ≤ ψn+1(θ).

3. 1
a
≥ a[µ(θ) + λn+1(θ)]− bg(θ) ≥ a[µ(θ) + λn(θ)]− bg(θ). In this case, we have that

ψn+1(θ) =
λ0(θ + 2ω)

λn+1(θ)
,

ψn(θ) =
λ0(θ + 2ω)

λn(θ)
.

Since {λn}n is decreasing, we get ψn(θ) ≤ ψn+1(θ).

Therefore, 0 ≤ ψn(θ) ≤ ψn+1(θ) ≤ a2, for all n ≥ 0 and for all θ ∈ T. A similar argument can be

done to obtain the result for the other systems.

We proceed in proving the pointwise convergence of the sequence {ψn}n and the integrability of

its pointwise limit.

Lemma 4.3. Let a satisfy Assumption (2.1). Then we have that the sequence {ψn}n converges

pointwise to an integrable function ψ. Furthermore,∫
T
log(ψ(θ))dθ ≤ 0.

Proof. By the previous Lemma 4.2, in order to show that log(ψn) are integrable, we only need to

show that log(ψ0) is integrable. For every system, we can determine the expression of ψ0 in terms

of λ0. Therefore, ψ0 is well defined, continuous and it only has one zero of even multiplicity in

θ = θ0. In the general case, (A) or (B) imply that we can only have a finite number of zeros with

even multiplicity. Consequently, log(ψ0) is integrable. Moreover, in case of system (4), since {λn}n
is decreasing, we have that

ψn(θ) ≤
λn(θ + 2ω)

λn(θ)
, (14)
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for a set of θ of total measure (those which λn(θ) ̸= 0). Hence, for these values of θ we have that

log(ψn(θ)) ≤ log(λn(θ + 2ω))− log(λn(θ)).

Since λn is an integrable function (its zeros are of even multiplicity),∫
T
log(ψn(θ)) ≤

∫
T
log(λn(θ + 2ω))−

∫
T
log(λn(θ)) = 0.

Applying the Dominated Convergence Theorem we obtain that∫
T
log(ψ(θ)) = lim

n

∫
T
log(ψn(θ)) ≤ 0.

The result for the systems (1), (2) and (3) can be deduced from replacing λn(θ+2ω) for λn(θ+ω)

in equation (14) and repeating the same argument.

It is convenient to recall the sequences defined for each system in Lemma 2.9. We are ready to

prove Theorem 3.4.

Proof of Theorem 3.4. Consider the system (4). Since θ0 ∈ A, θ0+kω ∈ A for all k ∈ N. Since the
angle ω

2π
is irrational, A is dense in T. Since φ∞ is upper semicontinuous, by the semicontinuity

Lemma (see [vRS82, Theorem 11.4]), the set of continuity R0 ⊂ T of φ∞ is a residual set. We

can show that actually R0 = A. First assume that θ∗ ∈ R0. Since A is dense, we can consider a

sequence {θn}n ⊂ A such that θn → θ∗. Since θ∗ ∈ R0, we have that φ∞(θn) → φ∞(θ∗). Since

µ is continuous, we have that µ(θn) → µ(θ∗). Therefore, as the sequence {θn}n is in A, we have

that φ∞(θn) = µ(θn). Hence, φ∞(θ∗) = µ(θ∗). Then we have the inclusion R0 ⊂ A. In the other

direction, assume that θ∗ ∈ A. We need to prove that for any sequence {θn}n ⊂ A such that

θn → θ∗ we have that φ∞(θn) → φ∞(θ∗). Consider the following inequality given by the upper

semicontinuity of φ∞:

µ(θ∗) = lim inf
n

µ(θn) = lim inf
n

φ∞(θn) ≤ lim sup
n

φ∞(θn) ≤ φ∞(θ∗) = µ(θ∗).

Hence, we have proved that A ⊂ R0. We conclude that A = R0. Let j ∈ Z. We can repeat the

argument for λn(θ + jω). Hence, we have the residual set Rj of points of continuity. It is clear

that Rj = {θ − jω | θ ∈ R0}. Therefore, the residual set R =
⋂

j∈ZRj is positively and negatively

invariant. In order to show that A has zero measure, first we prove that

A∖ {θ0 − ω} ⊂ {θ0 ∈ T | ψ(θ) = a2}.

If we take a θ ∈ A∖ {θ0 −ω}, then φ∞(θ) = µ(θ) > 1
a
. Hence, there exists an n0 such that, for all

n ≥ n0, we have that µ(θ) + λn(θ) = φn(θ) >
1
a
. This implies that, for all n ≥ n0, we have that

λn+1(θ + ω) = a2λn(θ). Hence, ψn(θ) = a2 for all n ≥ n0. Assume that A has positive measure.

By ergodicity, A has total measure. This implies that the set of θ ∈ T such that ψ(θ) = a2 has

total measure. Since a2 > 1, we obtain∫
T
log(ψ(θ))dθ = log(a2) > 0.

This is contradictory with Lemma 4.3. Hence, A has zero measure. The proof for the systems

(1), (2) and (3) is obtained from replacing 1
a
for the corresponding value where the definition of hi

changes. Additionally, it is needed to replace a2 by a.

The derivative of the function hi is well defined except in a point x0 (for the system (4) the

derivative of h4 is not well defined at x0 =
1
a
). We define h′i(x0) = a. We can proceed to compute

the Lyapunov exponent of the semicontinuous invariant or two-periodic curve.
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Proof of Proposition 3.7. Consider the system (4). First we show that the set

B =

{
θ ∈ T | aφ∞(θ)− bg(θ) <

1

a

}
has positive measure. If we assume that B has zero measure, then the Fourier coefficients of

λ∞ = φ∞ − µ are

λ(k) =
1

2π

∫
T
λ(θ)e−ikωdθ =

1

2π

∫
T∖B

λ(θ)e−ikωdθ.

Since a(µ(θ) + λ∞(θ))− bg(θ) = aφ∞(θ)− bg(θ) ≥ 1
a
for θ ∈ T∖B, λ∞(θ+ ω) = a2λ∞(θ). Hence,

we have that λ(k)eikω = a2λ(k). Since a2 > 1, we obtain that λ(k) = 0 for all k. Therefore, λ = 0

for almost every θ. This is contradictory with the second statement of Theorem 3.4. Note that, if

we let ¯̄x = f(x, θ), then ∂f
∂x
(x, θ) = h′a(ha(x) − bg(θ))h′a(x). Recall that φ∞(θ) ≥ µ(θ) ≥ 1

a
for all

θ ∈ T, so ∂f
∂x
(φ∞(θ), θ) = h′a(aφ∞(θ)− bg(θ))h′a(φ∞(θ)).

Hence, the Lyapunov exponent is

Λ =
1

2π

∫
T
log

(
∂f

∂x
(φ∞(θ), θ)

)
dθ

=
1

2π

∫
T∖B

log

(
∂f

∂x
(φ∞(θ), θ)

)
dθ +

1

2π

∫
B

log

(
∂f

∂x
(φ∞(θ), θ)

)
dθ

=
1

2π
log(a2)m(T ∖B) +

1

2π
(−∞)m(B) = −∞.

The proof for the systems (1), (2) and (3) is obtained, with minor modifications, from replacing 1
a

for the corresponding value where the definition of hi changes. Additionally, it is needed to replace

a2 by a.

Observe that, from the invariant equation, we deduce that the closure of the attracting set Λi

contains a repelling invariant curve for each system i = 1, 2, 3, 4. We proceed in proving Theorem

3.6 where the attracting character of the curve φ∞ is described.

Proof of Theorem 3.6. Consider the system (4). Take an arbitrary point (x0, θ0) ∈ R × T such

that µ(θ0) < x0. Then we have that µ(θ2n) < x2n. Let Tω : T → T denote the irrational rotation

Tω(θ) = θ + ω. Recall that the sets A and B are defined by

A = {θ ∈ T | µ(θ) = φ∞(θ)},

B =

{
θ ∈ T | aφ∞(θ)− bg(θ) <

1

a

}
.

Then we define the set C as

C =
⋃
n∈N

T−n
2ω (B).

Since the Lebesgue measure is invariant and ergodic by the irrational rotation T2ω, we use [Wal00,

Theorem 1.5] to obtain that C has total measure. We have several cases:

1. Case φ∞(θ0) < x0 for θ0 ∈ C.

Since θ0 ∈ C, there exists an n0 such that θn0 ∈ B. Therefore, 1
a
> aφ∞(θn0) − bg(θn0) >

axn0 − bg(θn0) and thus φ∞(θn0+1) = xn0+1.

2. Case µ(θ0) < x0 < φ∞(θ0) for θ0 ∈ Ac.

Since A is a set of zero measure, Ac is a set of full measure. Assume xn >
1
a
for all n. Then

x2n − µ(θ2n) = a2n(x0 − µ(θ0)). Since a < −1, x2n − µ(θ2n) is unbounded. This implies

that x2n is unbounded, which is impossible. Hence, there exists an n0 such that xn0 ≤ 1
a
.

Therefore, there exists a θ∗ ∈ T such that xn0+1 = φ0(θ∗) > φ∞(θ∗).
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We define the set E = C ∩ Ac which is also of full measure. Hence, we finally define the set

Ω = {(x, θ) ∈ R×E | µ(θ) < x}. The proof for the rest of the systems follows a similar argument.

The main differences are that the set B changes depending on each system:

• For the system (1), B =
{
θ ∈ T | φ∞(θ) > π

2a

}
.

• For the system (2), B = {θ ∈ T | φ∞(θ) < δ}.

• For the system (3), B =
{
θ ∈ T | φ∞(θ) < − 1

a

}
.

Remark 4.4. Note that, for all (θ0, x0) ∈ {(θ, x) | µ(θ) ≤ x ≤ φ∞(θ)}, there exists an n0 such that

(θn0 , xn0) belongs to the graph of the semicontinuous curve. This implies that, between the curves,

the semicontinuous curve attracts all the points for each fiber.

We now prove that the graph of the semicontinuous invariant curve is dense in the compact

invariant set Λi, see Theorem 2.11. The curve φ∞ is a measurable function by the semicontinuity.

Then, we can apply Fubini’s Theorem to the indicator function of the set Λ̃4. We can compute

that

meas(Λ4) =

∫
T

∫
R
χΛ4(θ, x)dxdθ =

∫
T

∫ φ∞(θ)

µ(θ)

dxdθ =

∫
T
λ∞(θ)dθ.

Since we have proved, in Theorem 3.4, that the set {θ ∈ T | λ∞(θ) > 0} has total measure, we

have that meas(Λ4) > 0. We can do a similar argument for the rest of systems. Therefore, we

obtain that, for i = 1, 2, 3, 4, the invariant set Λi has positive Lebesgue measure. Recall that, given

a set A ⊂ X from a metric space X, the distance from a point x ∈ X to the set A is defined by

d(x,A) = infa∈A d(x, a). It is known that d(x,A) = 0 if and only if x ∈ Ā. We are ready to prove

Theorem 3.9.

Proof of Theorem 3.9. Consider the system (4). In the case that µ(θ) = φ∞(θ), for all θ ∈ T,
then λ∞(θ) = 0, for all θ ∈ T. This is impossible since λ∞(θ) > 0 almost everywhere. Hence,

there exists z0 = (θ∗, x∗) ∈ Λ4 such that µ(θ∗) < x∗ < φ∞(θ∗). We define Φ = {(x, θ) ∈ T × R |
φ∞(θ) = x} and M = {(θ, x) ∈ T × R | x = µ(θ)}. Assume, by contradiction, that d(z0,Φ) > 0.

Let δ = min{d(z0,M), d(z0,Φ)} > 0 and Bδ(z0) be an open ball of radius δ centred at z0. If

z1 = (θ1, x1) ∈ Bδ(z0), then µ(θ1) < x1 < φ∞(θ1). Otherwise µ(θ1) = x1 = φ∞(θ1), which is

contrary to the definition of δ. Since b = b∗(a), we have that {θ ∈ T | µ(θ) = φ∞(θ)} is dense

in T. Hence, we can consider a sequence {θn}n → θ∗ such that µ(θn) = φ∞(θn), for every n ≥ 0.

Therefore, there is an N > 0 such that d(θN , θ∗) < δ and µ(θN) = φ∞(θN). Let zN be such that

zN = (θN , x∗). We can compute that

d(zn, z0) = d(θN , θ∗) < δ.

Now we have that µ(θN) = φ∞(θN). Then µ(θN) = x∗ = φ∞(θN). The last equality is a contra-

diction with the fact that, for all z1 = (θ1, x1) ∈ Bδ(z0), we have µ(θ1) < x1 < φ∞(θ1). Hence,

we have that d(z0,Φ) = 0. Therefore, z0 is in the closure of Φ. The proof of the rest of systems

follows from similar arguments.

Remark 4.5. Notice that, in the proof of Theorem 3.9, we only use that {θ ∈ T | λ∞(θ) = 0} is

dense and that there exists a θ∗ ∈ T such that λ∞(θ∗) > 0. In [Kel96], we have similar hypothesis.

In the work, {θ ∈ T | ϕ(θ) = 0} is dense and {θ ∈ T | ϕ(θ) > 0} has full Lebesgue measure, see

[Kel96, Theorem 1(3)]. Therefore, the curve ϕ is dense in {(θ, x) | 0 ≤ x ≤ ϕ(θ)}.

4.2 Before the nonsmooth bifurcation

We assume that 0 < b < b∗(a) and a satisfies Assumption (2.1). For 0 < b < b∗(a), we are able

to prove the continuity of the curves and we determine the number of continuous invariant or

two-periodic curves each system has.
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Proof of Proposition 3.2. Consider the system (4). We define db as

db = min
θ∈T

(
1

a
− µ(θ)

)
< 0.

Since 0 < b < b∗(a), db is positive. We define the curves ρ0(θ) = µ(θ) + db. By Lemma 2.2, we

have that µ(θ) > ρ0(θ) ≥ 1
a
for all θ ∈ T. For all n ≥ 0, we define

ρn+1(θ) := ha(ha(ρn(θ − 2ω))− bg(θ − 2ω))− bg(θ − ω).

Since ρ0(θ) ≥ 1
a
and adb > 0, we have that

ρ1(θ) = ha(a(ρ0(θ − 2ω))− bg(θ − 2ω))− bg(θ − ω)

= ha(aµ(θ − 2ω) + adb − bg(θ − 2ω))− bg(θ − ω)

= ha(µ(θ − ω) + adb)− bg(θ − ω)

= aµ(θ − ω) + a2db − bg(θ − ω)

= µ(θ) + a2db = ρ0(θ) + (a2 − 1)db.

By induction assume ρn(θ) ≥ ρn+1(θ). Hence,

ha(ρn(θ − 2ω))− bg(θ − 2ω) ≤ ha(ρn+1(θ − 2ω))− bg(θ − 2ω).

Then we have that

ρn+1(θ) = ha(a(ρn(θ − 2ω))− bg(θ − 2ω))− bg(θ − ω)

≥ ha(a(ρn+1(θ − 2ω))− bg(θ − 2ω))− bg(θ − ω) = ρn(θ).

The sequence {ρn} is decreasing and ρn(θ) ≥ φn(θ), for all θ ∈ T. Since {ρn} is decreasing

and bounded, it is convergent to a lower semicontinuous curve ρ∞. To conclude with the proof,

we show that ρ∞ = φ∞. Let θ0 ∈ T. By induction, we can see that if ρi(θ0 + iω)) > 1
a
, for

i = 2(n− 1), . . . , 2, 0, then

ρ2n(θ0 + nω) = µ(θ0 + 2nω) + a2ndb.

Since a2ndb < 0 is unbounded, there exists an n0 such that

µn0+1(θ0 + (n0 + 1)ω) = 1− bg(θ) = φ0(θ0 + (n0 + 1)ω).

Hence, by the continuity of the functions µn, there exists an open interval I0 ⊂ T where, for all

θ ∈ I0, we have

ρn0+1(θ0 + (n0 + 1)ω) = φ0(θ0 + (n0 + 1)ω).

Therefore, we conclude that µ∞ = φ∞. For the rest of the systems, the proof use similar arguments.

We use the distance between the first curve of the first sequence, in Lemma 2.9, to define some

curve near the curve that comes from the invariant equation. Then, we use the unboundedness of

a particular orbit to show that some iteration of the curve is equal to the first element of the first

sequence (for each system) in Lemma 2.9.

Remark 4.6. Let a satisfy Assumption (2.1) and 0 < b < b∗(a). The following arguments show

there are no more continuous invariant curves.

• For the system (1), any other invariant curve ρ should be equal to φ̃1 or γ̃1 in an open

interval. The image of ρ cannot be completely contained in [− π
2a
, π
2a
].

• For the system (2), any other invariant curve ρ should be equal to φ̃2 in an open interval.

The image of ρ cannot be completely contained in (−∞,−δ) or in (δ,∞).
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• For the system (3), any other invariant curve ρ should be equal to φ̃3 in an open interval.

The image of ρ cannot be completely contained in (− 1
a
,∞).

• For the system (4), any other invariant curve ρ should be equal to φ̃4 in an open interval.

The image of ρ cannot be completely contained in ( 1
a
,∞).

By the argument in the proof of Proposition 3.2, if 0 < b < b∗(a), we have two sequences of

continuous functions converging to our semicontinuous curve φ∞. One from below and the other

one from above. This implies that φ∞ is a continuous curve for each system.

4.3 After the nonsmooth bifurcation

First we assume that b > b∗(a) and a satisfies (2.1). We prove the regularity of the curves and we

determine the number of continuous invariant curves has each system. We proceed similarly to in

Section 4.2.

Proof of Proposition 3.5. Consider the system (4). Let θ0 ∈ T be the minimum of φ0 − µ. Thus,

by Lemma 2.2,

φ0(θ0)− µ(θ0) = a

(
1

a
− µ(θ0 − ω)

)
< 0.

Let δ = 1
a
− µ(θ0 − ω). We define ρ0(θ) = µ(θ) + δ. By definition, ρ0(θ) ≥ 1

a
for all θ ∈ T. We

define the following sequence, for n ≥ 0,

ρn+1(θ) := ha(ha(ρn(θ − 2ω))− bg(θ − 2ω))− bg(θ − ω).

We want to show that there is an interval I0 where ρn(θ) = φ0(θ), for all θ ∈ I0 and for some n. If

we have that µ(θ0−ω)+aδ < 1
a
, then we can compute that ρ1(θ0) = φ0(θ0). Hence, by continuity,

there is an interval that contains θ0 for which ρ1(θ) = φ0(θ). Otherwise, we have that

ρ1(θ0) = ha(a(ρ0(θ0 − 2ω))− bg(θ0 − 2ω))− bg(θ0 − ω)

= ha(aµ(θ0 − 2ω) + aδ − bg(θ0 − 2ω))− bg(θ0 − ω)

= ha(µ(θ0 − ω) + aδ)− bg(θ0 − ω)

= aµ(θ0 − ω) + a2δ − bg(θ0 − ω)

= µ(θ0) + a2δ.

Assume by induction that ρn(θ0) = µ(θ0) + a2nδ and that µ(θ0 − ω) + a2n+1δ ≥ 1
a
. Then,

ρn+1(θ0) = ha(a(ρn(θ0 − 2ω))− bg(θ0 − 2ω))− bg(θ0 − ω)

= ha(aµ(θ0 − 2ω) + a2n+1δ − bg(θ0 − 2ω))− bg(θ0 − ω)

= ha(µ(θ0 − ω) + a2n+1δ)− bg(θ0 − ω)

= aµ(θ0 − ω) + a2n+2δ − bg(θ0 − ω)

= µ(θ0) + a2(n+1)δ. (15)

Since a < −1 and δ > 0, we have that the term a2(n+1)δ > 0 is unbounded. Therefore, there exists

an n such that µ(θ0−ω)+a2n+1δ < 1
a
. Thus, ρn+1(θ) = φ0(θ) in some interval I0. Hence, there is a

unique continuous invariant curve. For the systems (1) and (2), the argument is very similar to the

one showed here. For the system (3), a very similar argument shows that we have two sequences

of continuous curves, one monotonically increasing and the other monotonically decreasing that

converge to the same invariant curve, let’s say ρ. The image of ρ cannot be entirely contained in

{x > − 1
a
}. Otherwise, as it is invariant, ρ = µ. Define δ = µ(θ0 − ω) + 1

a
and ρ0(θ) = µ(θ) + δ.

Hence, using a similar argument as in (15), it can be proved that ρn(θo + nω)− µ(θo + nω) = anδ.

Therefore, there is no other continuous invariant curve above µ, because the distance between ρn
and µ is unbounded.
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Moreover, once we know that for 0 < b < b∗(a) and b > b∗(a) the curve φ∞ is continuous, we can

prove even more regularity of this curve.

Proposition 4.7. Let a satisfy Assumption (2.1) and 0 < b < b∗(a). If φ∞ is continuous, then

φ∞ is piecewise C1+τ with τ > 0.

Proof. Consider the system (4). The proof is very similar to the proof of Theorem 3.6, but taking

advantage that now φ∞ is continuous. Recall that the set

B =

{
θ ∈ T | aφ∞(θ)− bg(θ) <

1

a

}
has positive measure. As in Theorem 3.6,

C =
⋃
n≥0

T−n(B)

is a set of total Lebesgue measure. Let θ0 ∈ C, and consider (θ0, φ0(θ0)) ∈ T × R. Then there

exists an n0 > 0 such that θ0 + n0ω ∈ B. Therefore, we have that

1

a
> aφ∞(θ0 + n0ω)− bg(θ0 + n0ω) ≥ aφn0(θ0 + n0ω)− bg(θ0 + n0ω). (16)

Hence, we have that φ∞(θ0 + (n0 + 1)ω) = φn0+1(θ0 + (n0 + 1)ω) = F2(n0+1)
4 (φ0)(θ0 + 3(n0 + 1)ω).

Since φ∞ is continuous, we have that there exists an open interval I0 containing θ0 such that

equation (16) is verified, for all θ ∈ I0. Hence, φ∞(θ + (n0 + 1)ω) = φn0+1(θ + (n0 + 1)ω) for all

θ ∈ I0. Therefore, if we iterate, we obtain that φ∞(θ+ (n0 +m)ω) = φn0+m(θ+ (n0 +m)ω) for all

θ ∈ I0. Now, since T is compact, there exists m0 > 0 such that T ⊂ ∪m0
m=0(I0 +mω). Moreover,

for all m = 0, . . . ,m0, we have that φ∞(θ) = φn0+m(θ) for all θ ∈ I0 +mω.

With similar arguments, we can prove the result for the other systems. As in the proof of Theorem

3.6, the main changes come from the definition of the set B.

As a consequence of Proposition 4.7, we get that the curve φ∞ is piecewise as regular as g, which

proves Theorem 3.8.

4.4 The fractalization mechanism

In this section, we prove that if a satisfies (2.1), then the attracting invariant or two-periodic curve

fractalizes, when b approaches b∗(a) from below. For the system (4), the two-periodic curve φ∞ is

precisely the curve whose fractalization we intend to establish. First, we give a proper definition of

the fractalization mechanism in our setting. We follow the idea given in [JT08], where the authors

remark that the Hausdorff dimension does not detect that a smooth curve is becoming ”fractal”.

This is owing to the fact that, as long as the invariant object is a curve, it takes the value 1. In the

paper mentioned, they use that, for b→ b∗(a), the C0 norm of the curve keeps bounded while the

C1 norm of the curve is unbounded. In our case, we cannot compute the derivative because hi is

not C1. We extend the definition of the fractalization process in terms of the Lipschitz constants

of the invariant curves. We denote by Lip(T,R) the Banach space of Lipschitz functions from T
to R endowed with the norm ∥·∥L := ∥·∥∞ + L(·), where L : Lip(T,R) → R is the operator that

associates a Lipschitz function f to its smallest Lipschitz constant L(f). See [CsMN19] for further

information about the Banach space of Lipschitz functions.

Definition 4.2. Let fb be an invariant curve of the systems (1), (2), (3), (4). We say that a

family of invariant curves {fb}b parametrized by b is fractalizing for a parameter b∗ if the Lipschitz

constants associated to each curve of the family {fb|I}b becomes unbounded as b → b∗, for any

interval I ⊂ T, while the family of curves {fb}b remains bounded, i.e., if

lim sup
b→b∗

Lfb|I
∥fb∥∞

= +∞.
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In certain cases, when the perturbation function g is positive, we can prove that the family of

invariant curves is monotone with respect the parameter b.

Proposition 4.8. Let a satisfy Assumption (2.1). If g(θ) ≥ 0 for all θ ∈ T, then for 0 < b0 ≤
b1 ≤ b∗(a) we have the following situation:

• For the systems (1) and (4), we have that φ∞(b1, θ) ≤ φ∞(b0, θ) for all θ ∈ T.

• For the systems (2) and (3), we have that φ∞(b0, θ) ≤ φ∞(b1, θ) for all θ ∈ T.

Proof. Consider the system (4). We have that the corresponding sequence of functions, {φn(b0, θ)}n
and {φn(b1, θ)}n, converge each to an invariant curve. For n = 0, we have

φ0(b0, θ) = 1− b0g(θ − ω),

φ0(b1, θ) = 1− b1g(θ − ω).

For n > 0, we have that

φn(b0, θ) = h4(h4(φn−1(b0, θ − 2ω))− b0g(θ − 2ω))− b0g(θ − ω),

φn(b1, θ) = h4(h4(φn−1(b1, θ − ω))− b1g(θ − 2ω))− b1g(θ − ω).

Since b0 < b1 and g(θ) ≥ 0 for all θ ∈ T, we have that φ0(b1, θ) ≤ φ0(b0, θ). Therefore, using that

F4 preserves order, we have that φn(b1, θ) ≤ φn(b0, θ), for all n ≥ 0 and for all θ ∈ T. Taking the

limit over n in both sides of the last inequality, we obtain that φ∞(b1, θ) ≤ φ∞(b0, θ), for all θ ∈ T.
For the systems (1), (2) and (3), the proof is similar to the one given.

In our case, the curves are always bounded. Hence, in order to prove that the family {φ∞(b)}b of
invariant curves fractalize as b → b∗(a), it is enough to show that the Lipschitz constants of the

family of invariant curves becomes unbounded, while b approaches to b∗(a). If we impose g to be

positive, we are able to show the fractalization phenomenon.

Proof of Theorem 3.10. Consider the system (4). For 0 < b < b∗(a), since g(θ) ≥ 0 for all θ ∈ T,
by Proposition 4.8, the family {φ∞(b)}b is monotone. Therefore, since {φ∞(b)}b is monotone and

bounded, for each θ ∈ T

lim
b→b∗(a)

φ∞(b, θ)

exists. For every θ ∈ T and 0 < b < b∗(a) we have

φ0(b, θ) ≥ φ∞(b, θ) ≥ lim
b→b∗(a)

φ∞(b, θ) ≥ φ∞(b∗(a), θ) ≥ µ(θ).

For every θ ∈ T and 0 < b < b∗(a) we know that

φ∞(b, θ + ω) = h4 ◦ φ∞(b, θ)− bg(θ).

Hence, taking b→ b∗(a) we get that

lim
b→b∗(a)

φ∞(b, θ + ω) = h4

(
lim

b→b∗(a)
φ∞(b, θ)

)
− b∗(a)g(θ).

But the only invariant curve in between φ0(b
∗(a)) and φ∞(b∗(a)) is φ∞(b∗(a)). Therefore, we

conclude that

lim
b→b∗(a)

φ∞(b, θ) = φ∞(b∗(a), θ).

Assume by contradiction that

lim sup
b→b∗

L(φ∞(b)|I) < +∞.
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Since ω is irrational and T is compact, we have that any θ ∈ T can be obtained from a value in I

by adding a bounded multiple of ω. Therefore, there exist K1 and K2 depending on ω, a, b and I

such that L(φ∞(b, θ)) ≤ K1L(φ∞(b, θ)|I) +K2. This implies that

L := lim sup
b→b∗

L(φ∞(b)) < +∞.

Then, for 0 < b ≤ b∗(a), the family {φ∞(b, θ)}b is uniformly bounded and has a uniformly Lipschitz

constant L. By the Arcelà-Ascoli, Theorem we have that the family {φ∞(b, θ)}b has a subsequence

that converges uniformly to a Lipschitz function with Lipschitz constant L. Therefore, the curve

φ∞(b∗(a), θ) is a Lipschitz function with Lipschitz constant L. In contradiction with the result

that shows that φ∞(b∗(a), θ) is a noncontinuous curve (Theorem 3.4).

A consequence of Arcelà-Ascoli Theorem is that a sequence of Lipschitz curves that converge

pointwise to a noncontinuous curve cannot have a uniform Lipschitz constant. Moreover, assume we

have a family of Lipschitz curves {ηn}n defined over T that converge pointwise to a noncontinuous

invariant curve η∞. Then for any interval I ⊂ T,

lim inf
n

L(ηn|I) = +∞.

Note that, for fixed b = b∗(a), this is the case for the monotone sequence of functions defined in

Lemma 2.9. Therefore, we have this concluding result that characterizes our nonsmooth invariant

curve.

Proof of Theorem 3.11. If fn(θ) := h ◦ fn−1(θ − ω)− bg(θ − ω) has pointwise limit, then take the

limit in both sides to get that f∞(θ) := h ◦ f∞(θ− ω)− bg(θ− ω). Assume that f∞ ≤ f0, the case

f∞ ≥ f0 follows by similar arguments for {f ↑
m}m. Since each fn is continuous, f ↓

m(θ) = infk≤m fk(θ)

is continuous and f∞(θ) ≤ f ↓
m(θ) ≤ fm(θ), for all m ≥ 0 and for all θ ∈ T. Since fn converges

pointwise to f∞, f ↓
m converges pointwise to f∞. For all θ ∈ T and all m ≥ 0, we have that

f∞(θ) ≤ f ↓
m+1(θ) ≤ f ↓

m(θ). Hence, the sequence {f ↓
m}m is monotone. By Dini’s Theorem, we have

that f∞ is continuous if and only if {f ↓
m}m is uniformly convergent.

Proof of Corollary 3.12. Since T is compact and {φn}n is monotone, Dini’s Theorem implies that

φ∞ is noncontinuous if and only if {φn}n converges uniformly.

Remark 4.9. Moreover, under the same hypothesis of Theorem 3.11, if additionally we require that

g, h and f0 are all Lipschitz continuous, then from the Arcelà-Ascoli Theorem we obtain that:

• If {f ↓
m}m has uniform Lipschitz constant, then the convergence of {f ↓

m}m is uniform and f∞
is Lipschitz continuous.

• If {f ↑
m}m has uniform Lipschitz constant, then the convergence of {f ↑

m}m is uniform and f∞
is Lipschitz continuous.

Proof. The invariance of f∞ follows from the same argument in the proof of Theorem 3.11. Assume

that f∞ ≤ f0, the case f∞ ≥ f0 follow by similar arguments for {f ↑
m}m. For n ≥ 0, we have that

{fn}n is a sequence of Lipschitz functions. Note that, for all θ ∈ T, we have that f ↓
0 (θ) = f0(θ)

and

f ↓
m(θ) = inf{f ↓

m−1(θ), fm(θ)} =
f ↓
m−1(θ) + fm(θ) +

∣∣∣f ↓
m−1(θ)− fm(θ)

∣∣∣
2

.

Therefore, by induction we get that {f ↓
m}m is a sequence of Lipschitz curves. If {f ↓

m}m or {f ↑
m}m

have a uniformly Lipschitz constant, then by Arcelà-Ascoli Theorem f∞ is a Lipschitz curve.

4.5 Uniform contraction case

In this section, we consider that |a| < 1. In this case, the piecewise-linear quasiperiodically forced

dynamical system has a uniform contraction. Therefore, we can prove that we have a unique

Lipschitz invariant curve.
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Recall the definition of the seminorm

L(f) = sup{|f(x)− f(y)|/|x− y| | x, y ∈ T, x ̸= y}.

Recall that an invariant curve of Fi is a fixed point of the map Fi. In the four piecewise-linear

systems, the map Fi is a Lipschitz map with Lipschitz constant |a|. Actually,

|Fi(φ)(θ)−Fi(ψ)(θ)| ≤ |a||φ(θ − ω)− ψ(θ − ω)|.

Therefore, we obtain that

∥Fi(φ)−Fi(ψ)∥L = ∥Fi(φ)−Fi(ψ)∥∞ + L(Fi(φ)−Fi(ψ))

≤ |a|∥φ− ψ∥∞ + |a|L(φ− ψ) = |a|∥φ− ψ∥L.

As a consequence of the Banach fixed point Theorem, we obtain Theorem 3.13.

5 Conclusions

We conclude the paper with a summary of the main results and a discussion of possible extensions

and open problems. We proved the existence of nonsmooth bifurcations in four piecewise-linear

quasiperiodically forced maps. For the bifurcation parameters, we established that the closure of

the attracting invariant set is a region of two-dimensional Lebesgue positive measure. Additionally,

we demonstrated that an invariant (or two-periodic) curve undergoes a fractalization phenomenon

as the parameters approach the curve of bifurcation. Finally, under suitable assumptions, we

characterized the noncontinuity of the attracting curve in terms of the uniform convergence of a

sequence of continuous curves.

We have extended the results of [JTZ24]. In particular, our second result concerning the closure

of the attracting invariant set provides a positive answer to a question in [Kel96]. Both the

present work and [JTZ24] contribute to clarify the mechanisms that lead to the creation of strange

nonchaotic attractors in piecewise-linear quasiperiodically forced maps.

Regarding future work and the open problems, we mention two natural extensions. First, to

study higher-dimensional examples for which similar results can be obtained. Second, it would

be of interest to adapt these techniques to smooth models, in order to find more mechanisms for

detecting nonsmooth bifurcations.
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[Bje09] Kristian Bjerklöv. SNA’s in the quasi-periodic quadratic family. Comm. Math. Phys.,

286(1):137–161, 2009.

[Con78] John B. Conway. Functions of one complex variable, volume 11 of Graduate Texts in

Mathematics. Springer-Verlag, New York-Berlin, second edition, 1978.

[CsMN19] ¸Stefan Cobza¸s, Radu Miculescu, and Adriana Nicolae. Lipschitz functions, volume

2241 of Lecture Notes in Mathematics. Springer, Cham, 2019.
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