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What is a Solar Sail ?

• It is a proposed form of spacecraft propulsion that uses large membrane

mirrors.

• The impact of the photons emitted by the Sun onto the surface of the sail

and its further reflection produce momentum.

• Solar Sails open a new wide range of possible mission that are not

accessible for a traditional spacecraft.
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Some Definitions

• The effectiveness of the sail is given by the dimensionless parameter β,

the lightness number.

• The sail orientation is given by the normal vector to the surface of the sail

(~n), parametrised by two angles, α and δ, where α ∈ [−π/2, π/2] and

δ ∈ [−π/2, π/2].

α

δ Sun-line

~n
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Equations of Motion (RTBPS)

• We consider that the sail is perfectly reflecting. So the force due to the sail

is in the normal direction to the surface of the sail ~n.

~Fsail = β
ms

r2ps

〈~rs, ~n〉
2~n.

• We consider the gravitational attraction of Sun and Earth: we use the

RTBP adding the radiation pressure to model the motion of the sail.

1 − µ

µ

~FS

~FSail
~FE

Sun

Earth

Y

X
t
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Equations of Motion (RTBPS)

The equations of motion are:

ẍ = 2ẏ + x− (1 − µ)
x− µ

r3ps

− µ
x+ 1 − µ

r3pe

+ β
1 − µ

r2ps

〈~rs, ~n〉
2nx,

ÿ = −2ẋ+ y −

(

1 − µ

r3ps

+
µ

r3pe

)

y + β
1 − µ

r2ps

〈~rs, ~n〉
2ny,

z̈ = −

(

1 − µ

r3ps

+
µ

r3pe

)

z + β
1 − µ

r2ps

〈~rs, ~n〉
2nz,

where,

nx = cos(φ(x, y) + α) cos(ψ(x, y, z) + δ),

ny = sin(φ(x, y, z) + α) cos(ψ(x, y, z) + δ),

nz = sin(ψ(x, y, z) + δ),

with φ(x, y) and ψ(x, y, z) defining the Sun - Sail direction in spherical

coordinates (~rs = ~rps/rps ).
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Equilibrium Points

• The RTBP has 5 equilibrium points (Li). For small β, these 5 points are

replaced by 5 continuous families of equilibria, parametrised by α and δ.

• For a fixed and small β, these families have two disconnected surfaces, S1

and S2. It can be seen that S1 is diffeomorphic to a sphere and S2 is

diffeomorphic to a torus around the Sun.

• All these families can be computed numerically by means of a continuation

method.
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Equilibrium Points
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Some Interesting Missions

• Observations of the Sun provide information of the geomagnetic storms, as

in the Geostorm Warning Mission.
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• Observations of the Earth’s poles, as in the Polar Observer.
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• A. Farrés and À. Jorba, “A dynamical System Approach for the Station Keeping of a Solar

Sail.”, Journal of Astronautical Science. ( to apear in 2008 )

WSIMS – p.10/36



From now on ...

We fix α = 0 and β = 0.051689.

Earth Sun
L1

L2 L3

SL1SL2
SL3

• Here, we have 3 families of equilibrium points on the {x, z} - plane

parametrised by the angle δ.

• The linear behaviour for all these equilibrium points is of the type

centre×centre×saddle.

• We want to study the families of periodic orbits that appear around these

equilibrium points for a fixed δ.

• For practical reasons we focus on the region around SL1.

WSIMS – p.11/36



Family of equilibrium points around SL1 for α = 0 and β = 0.051689
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Motion around the equilibrium points

• As we have said, the linear behaviour around the fixed point is

centre×centre×saddle.

• So up to first order the solutions around the fixed point are:

φ(t) = A0[cos(ω1t+ ψ1)~v1 + sin(ω1t+ ψ1)~u1]

+ B0[cos(ω2t+ ψ2)~v2 + sin(ω2t+ ψ2)~u2]

+ C0e
λt~vλ +D0e

−λt~v
−λ

Where,

◦ ±iω1 eigenvalues with ~v1 ± i~u1 as eigenvectors.

◦ ±iω2 eigenvalues with ~v2 ± i~u2 as eigenvectors.

◦ ±λ eigenvalues with ~vλ, ~v−λ as eigenvectors.
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Motion around the equilibrium points

• We take the linear approximation to compute an initial periodic orbit for

each family. We then use a continuation method to compute the rest of the

family.

◦ Planar family: A0 = γ and B0 = D0 = E0 = 0.

◦ Vertical family : B0 = γ and A0 = D0 = E0 = 0.

• We use a parallel shooting method to compute the periodic orbits.

• We have done this for different values of δ.
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Planar Family of Periodic Orbits

• We have computed the planar family for δ = 0. (i.e. sail perpendicular to

Sun).
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Continuation of the Planar Family

• We have computed the planar family for δ = 0.001.
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Continuation of the Planar Family
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Planar Family of Periodic Orbits

Periodic Orbits for δ = 0.
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Planar Family of Periodic Orbits

Familly for δ = 0
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Vertical Family of Periodic Orbits
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Reduction to the Centre Manifold

Using an appropriate linear transformation, the equations around the fixed

point can be written as,

ẋ = Ax + f(x, y), x ∈ R
4,

ẏ = By + g(x, y), y ∈ R
2,

where A is an elliptic matrix and B an hyperbolic one, and

f(0, 0) = g(0, 0) = 0 and Df(0, 0) = Dg(0, 0) = 0.

• We want to obtain y = v(x), with v(0) = 0, Dv(0) = 0, the local

expression of the centre manifold.

• The flow restricted to the invariant manifold is

ẋ = Ax + f(x, v(x)).
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Approximating the Centre Manifold

To find y = v(x) we substitute this expression on the differential equations.

So v(x) must satisfy,

Dv(x)Ax − Bv(x) = g(x, v(x)) − Dv(x)f(x, v(x)). (1)

We take,

v(x) =





∑

|k|≥2

v1,kx
k,

∑

|k|≥2

v2,kx
k



 , k ∈ (N ∪ {0})4,

its expansion as power series.

The left hand side is a linear operator w.r.t v(x) and the right hand side is
non-linear.
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Approximating the Centre Manifold

The left hand side of equation (1),

L(x) = Dv(x)Ax − Bv(x),

diagonalizes if A and B are diagonal.

In particular, if A = diag(iω1,−iω1, iω2,−iω2) and B = diag(λ,−λ)

then,

L(x) =











∑

|k|≥2

(iω1k1 − iω1k2 + iω2k3 − iω2k4 − λ)v1,kx
k

∑

|k|≥2

(iω1k1 − iω1k2 + iω2k3 − iω2k4 + λ)v2,kx
k











.
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Approximating the Centre Manifold

The right hand side of equation (1),

h(x) = g(x, v(x)) − Dv(x)f(x, v(x)),

can be expressed as,

h(x) =





∑

|k|≥2

h1,kx
k ,

∑

|k|≥2

h2,kx
k





T

,

where hi,k depend on vi,j in a known way (i = 1, 2).

• It can be seen that for a fixed degree |k| = n, the hi,k depend only on the

vi,j such that |j| < n.
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Approximating the Centre Manifold

Now we can solve equation (1) in an iterative way, equalising the left and the

right hand side degree by degree. We have to solve a diagonal system at each

degree.

Notice:

• It is important to have a fast way to find the hi,k to get up to high degrees.

• We do not recommend to expand f(x, y) y g(x, y), and then compose

with y = v(x). One should find other alternative ways, faster in terms of

computational time.

• The matrixes A and B don’t have to be diagonal, but then one must solve

a larger linear system at each degree.
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On the efficient computation of hi,j

We recall that the equations of motion for α = 0 are,

ẍ = 2ẏ + x− κs

x− µ

r3ps

− κe

x+ 1 − µ

r3pe

+ κsail

z(x− µ)

r3psr2
,

ÿ = −2ẋ+ y −

(

κs

r3ps

+
κe

r3pe

)

y + κsail

zy

r3psr2
,

z̈ = −

(

κs

r3ps

+
κe

r3pe

)

z − κsail

r2
r3ps

,

where κs = (1 − µ)(1 − β cos3 α), κe = µ, κsail = β(1 − µ) cos2 α sinα.

• To expand the equations of motion we use the Legendre polynomials.
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On the efficient computation of hi,j

For example:

• 1/rps can be expanded as,
∑

n≥0

cnTn(x, y, z),

where the Tn(x, y, z) are homogeneous polynomials of degree n that are

computed in a recurrent way.

Tn =
2n − 1

n
xTn−1 −

n − 1

n
(x2 + y2 + z2)Tn−2,

with T0 = 1, T1 = x.
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On the efficient computation of hi,j

• The functions f(x̄, ȳ) and g(x̄, ȳ) can be computed in a reccurrent way

as they are found after applying a linear transformation to the expansion of

the system.

• Composing these recurrences with v(x̄) we can compute the expansions

of f(x̄, v(x̄)) and g(x̄, v(x̄)) in a recurrent way and so for the hi,j .

For example:

T0 = 1, T1 = x(x̄, v(x̄)),

Tn =
2n− 1

n
x(x̄, v(x̄))Tn−1 −

n− 1

n

(

x(x̄, v(x̄))2 + y(x̄, v(x̄))2 + z(x̄, v(x̄))2
)

Tn−2.
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Validation Test

• Given an initial condition v0, we denote v1 and ṽ1 to the integration at time

t = 0.1 of v0 on the centre manifold and the complete system respectively.

• The error behaves as: |ṽ1 − v1| = chn+1, where h is the distance to the

origin of v0.

• If we consider the centre manifold up to degree 8:

h |ṽ1 − v1| n + 1

0.04 2.3643547906724647e − 15

0.08 1.2618898774811476e − 12 9.059923

0.16 6.9534006796827247e − 10 9.105988

0.32 3.9879163406855978e − 07 9.163700
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Results for δ = 0

We have computed the reduction of to the centre manifold around Sub-L1 up

to degree 32. (it takes 17min of CPU time)

• After this reduction we are in a four dimensional phase space

(x1, x2, x3, x4).

• We fix a Poincaré section x3 = 0 to reduce the system to a three

dimensional phase space.

• We have taken several initial conditions and computed their successive

images on the Poincaré section.
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Results for δ = 0
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Results for δ = 0
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Results for δ = 0 (for a fixed energy level)
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Results for δ = 0.05
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Results for δ = 0.05
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The End

Thank You !!!
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