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Summary

Localized solitary waves exist in the water wave problem in the capillary-gravity regime
(λ ∼ 1cm.) both for one- and two-dimensional free-surfaces in fluids of any depth.
This contrasts with gravity only waves where solitary waves exist only for a one
dimensional free-surface and only in the shallow water regime.

Why do we care about these waves?

The initial generation of waves by wind is predominantly in the capillary-gravity
regime.

Gravity capillary waves are the main scatterers in microwave radar remote
sensing.

What is a good reduced model for these waves?

What are the dynamics of these waves (stability, collisions, etc...)?
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Linear Water Waves

Inviscid, Irrotational
Density = ρ

0

Inviscid, Irrotational
Density = ρ

1

z = η(x,t)
Surface tension = τ

z = −H

x

z

ηtt +
|k|sinh(|k|H)(g(ρ1 − ρ0) + τ |k|2)

ρ1cosh(|k|H) + ρ0sinh(|k|H)
η = 0, (1)

Here k is the Fourier dual variable to x. The wavelength L = 2π/|k|. There are 2
dimensionless parameters λ = ρ0/ρ1 and B = τ/gρ1H2. Renaming kH as k, the
frequency of a wave is

Ω2(k) =
|k|sinh(|k|)(1 − λ + B|k|2)

cosh(|k|) + λsinh(|k|)
. (2)
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Deep Water Formulation

Consider an inviscid, irrotational flow of a fluid of infinite depth with a free-surface.
Nondimensionalizing the problem with the surface tension coefficient and gravity we have:

Φzz + ∆Φ = 0, −∞ < z < η(x, t), (3)

ηt + ∇Φ · ∇η = w, z = η(x, t), (4)

Φt +
1

2
(∇Φ)2 +

1

2
Φ2

z + η − κ = 0, z = η(x, t). (5)

Here Φ(x, z, t) is the velocity potential such that u = (∇Φ, Φz), the function η is the
departure from a flat free surface, κ is the curvature of the surface. We reduce the problem
in the interior by writing

Φ(x, z, t) = F−1
n

F {φ(x, t)} e|k|z
o

.

Where F is the Fourier transform in x with dual variable k. Inserting into the boundary
conditions gives a time evolution system of equations for η and φ.
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Dispersion relation

Ω(k) called the dispersion relation. There are two important speeds associated to the waves

Phase speed (propagation speed of wavefronts or crests).

cp =
Ω(k)

|k|

k

|k|
= Cpêk

Group speed (propagation of energy)

cg = ∇kΩ

A necessary condition for solitary waves to bifurcate from linear waves at a given
value of k in a weakly nonlinear equation with linear dispersion relation Ω(k) is
that

cg = cp

[Solitary waves are solutions η(x − ct) which decay to zero as |x − ct| → ∞]
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One-dimensional, One-way, Weakly-nonlinear

In one dimension the evolution for η can be factored into left and right propagating waves.
The equation for the right-propagating ones is given approximately by

ηt + Lη = ǫN (η), (6)

where N is a quadratic nonlinear term and L is a linear operator, diagonal in Fourier space,
with the odd Fourier symbol given by the dispersion relation iΩ(k):

Leikx = iΩ(k)eikx. (7)

Computing the group velocity in terms of the phase velocity:

cg = (kcp)′ = kc′p + cp.

The condition that phase and group velocity are equal is generically satisfied in the limit as
k → 0, and is satisfied at finite k wherever c′p = 0. (Note that at k = 0, c′p = 0 also.)

Generically, solitary waves bifurcate from linear waves when there is an
extremum of cp(k) in one-dimension, and a minimum of Cp(|k|) in higher
dimensions. [Local extrema usually lead to generalized solitary waves.]
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Shallow water (k ≈ 0) examples

Ω(k) = sign(k)

»

|k|sinh(|k|)(1 − λ + B|k|2)

cosh(|k|) + λsinh(|k|)

–1/2

. (8)

If ρ0 = 0, Ω ≈ k − 1
2

`

1
3
− B

´

k3, cp = 1 − 1
2

`

1
3
− B

´

k2 giving the Korteweg-de
Vries equation:

ηt + ηx + ǫ
1

2

„

1

3
− B

«

ηxxx + ǫ
3

2
ηηx = 0.

In higher dimensions only B > 1
3

have solitary waves in this limit.

If ρ0 6= 0, approximation leads to Ω(1 − λ)−1/2 ≈ k − 1
2
λk|k|, cp = (1 − λ) − λ|k|,

giving the Benjamin-Ono equation:

ηt + ηx −
1

2
ǫλHηxx + ǫ

3

2
ηηx = 0.

Here, H is the Hilbert transform in x, with Fourier symbol −isign(k).
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Deep Water I

In deep water the full dispersion relation simplifies considerably

Ω(k) = sign(k)
ˆ

|k|(1 + |k|2)
˜1/2

, k = (k, l),

and we expand and rescale about (k, l) = (1, 0) for left-travelling waves

Ω̃(k) ≈ sign(k)
ˆ

−1 + 2|k| − k2 − 2l2
˜

.

Leading to an approximate equation (the “finite-k KP equation")

ηt + Hη + 2ηx −Hηxx −Hηyy − ǫ
3

2
ηηx = 0. (9)

ηt −
1

6
ηxxx −

Z

ηyy − ǫ
3

2
ηηx = 0. (10)

[KPI equation]
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Deep Water II
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The capillary gravity regime, and corresponds to λ = 1.7cm and cp = 23cm/sec in water.
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Role of NLS

c
p

c
g

Away from k = 0 narrow band solutions take the form of wavepackets: consider solutions of
the form (where we have chosen the appropriate scalings)

η = ǫA(ǫ(x − cgt), ǫ2t)eik(x−cpt) + ∗ + O(ǫ2), (11)

[From this it is clear that approximate traveling waves satisfy cg = cp.] Define X = x − cgt,
τ = ǫ2t. Then A(X, τ) satisfies the NLS equation:

iAτ + λAXX = χ|A|2A (12)

Here λ = 1
2
c′g =

√
2

2
. The product λχ < 0 corresponds to a focussing NLS.
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Limitations of NLS

Solitary wave type solutions

A(X, τ) = d|2χ/λ|1/2sech(d(X − 2kλτ))eikX−iλ(k2−d2)τ . (13)

For traveling waves one must have ǫk = −λ(ǫd)2/2, giving a traveling speed

c = cg −
λ

k0
(ǫd)2

This solution serves to motivate the existence of solitary wave and as an initial guess in
numerical computations. However NLS fails at:

Symmetry of waves. Only symmetric waves are found in models (although there is
indication that exotic asymmetric solutions are possible). In NLS the relative phase
between carrier and envelope is undetermined.

Stability of waves. Solitons are stable (in the appropriate sense) in NLS, however in
the fluid some solitary waves are stable and others unstable.

Wave dynamics and interaction. NLS is integrable and collisions are elastic. In all
other model equations they are not. (This is being checked numerically in Euler.)
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1-D Solutions
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Elevation waves are unstable, and the evolution transforms them into depression waves.

This can be confirmed with eigenvalue calculations in models as well as Euler. (Instability of

translational mode)
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2-D NLS

The “relevant" NLS model in two-dimensions is the focussing case

iAt − ∆A − |A|2A = 0. (14)

with conserved quantities

M =

Z

|A|2, E =

Z

|∇A|2 −
1

2
|A|4

The equation has finite time singularity, depending on the sign of E, according to an elegant
argument of Zakharov. Consider

G(t) =

Z

(x2 + y2)|A|2, then G′′(t) = 8E.

If E < 0 then G → 0 and the wave collapses. Ground state solitary waves (which

approximate the localized solutions of the water wave problem) have E = 0.
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2-D Solutions
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We shall see through computations that elevation waves are unstable and depression waves
are sometimes stable. Change of stability at extrema of E(c).
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2-d Line Solitary Wave stability

Line solitary waves unstable and focus. Predictable through 2D NLS linear stability analysis

or through initial stages of focussing instability.
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Collisions (Inelastic)

There are inelastic collisions in the model. Movies.
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Conclusions

Searching for a correct model in deep water. In shallow water we have the depression
KdV and KP equations (for B>1/3). The NLS type envelope equations are inadequate
in this deep water regime.

Are the 2-d waves observable [see Fauve et al for 1d observations]?

Does nonlinearity enhance efficiency of energy transfer from wind?

General principles and approach to 2-d solitary wavepackets. Other examples?

Little is known mathematically about the finite-k KP: robustness, finite time singularity,
etc...?.
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