

Dynamics of particle trajectories in a Rayleigh–Bénard problem

Dolors Puigjaner⁽¹⁾ Joan Herrero⁽²⁾ Carles Simó⁽³⁾ Francesc Giralt⁽²⁾

(1) Dept. Enginyeria Informàtica i Matemàtiques. Universitat Rovira i Virgili.(2) Dept. Enginyeria Química. Universitat Rovira i Virgili.

(3) Dept. Matemàtica Aplicada i Anàlisi. Universitat de Barcelona.

Motivation

Motivation and

- ObjectivesMotivation
- Objectives

Problem description

Dynamical systems approach and results

Poincaré Maps

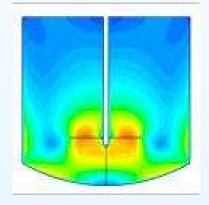
Regular regions and Lyapunov exponents

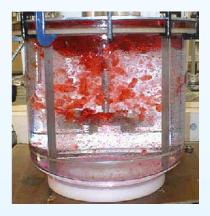
Critical points

Streamlines and trajectories

Comparison of B_2 and B_3

- Fluid mixing efficiency is a crucial issue in many engineering applications
 - Efficient mixing is usually related to turbulent regimes and to mechanical devices





- Some industrial applications require an efficient mixing in the absence of turbulence or high shear stresses
- Rayleigh–Bénard convection can offer an alternative to the use of mechanical devices

Objectives

Motivation and

- ObjectivesMotivation
- Objectives

Problem description

Dynamical systems approach and results

Poincaré Maps

Regular regions and Lyapunov exponents

Critical points

Streamlines and trajectories

Comparison of B_2 and B_3

Conclusions and outlook

The design of reactors in which **efficient mixing** is achieved without moving parts

The application of **dynamical systems theory** to the analysis of dynamics and mixing properties in flows induced by Rayleigh–Bénard convection inside a cube

- Analyze the rich dynamics of fluid particle trajectories
- Characterize well-mixed regions inside the cube
- Investigate the dependence of mixing properties on the Rayleigh number

Flow system and equations

Motivation and Objectives

Problem description

- Flow system
- Continuation method
- Bifurcation diagram
- Flow patterns
- Symmetries

Dynamical systems approach and results

Poincaré Maps

Regular regions and Lyapunov exponents

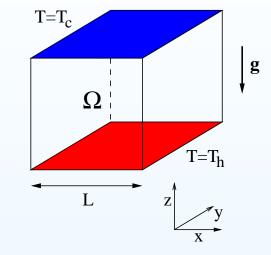
Critical points

Streamlines and trajectories

Comparison of B_2 and B_3

Conclusions and outlook

NS



 $\mathbf{Ra} = g\beta L^{3}\Delta T/\alpha\nu$ $\mathbf{Pr} = \nu/\alpha$ $\beta \text{ thermal expansion}$ $\nu \text{ kinematic viscosity}$ $\alpha \text{ thermal diffusivity}$ $\Delta T = T_{h} - T_{c}$

$$\theta = [T - (T_h + T_c)/2]/\Delta T - z$$

Continuity $\nabla \cdot \vec{V} = 0$

Momentum

$$\begin{split} &\frac{1}{Pr} \! \left(\! \frac{\partial \vec{V}}{\partial t} \! + \! Ra^{\frac{1}{2}} \! (\vec{V} \cdot \nabla) \vec{V} \! \right) \! = \\ & \nabla^2 \vec{V} + Ra^{\frac{1}{2}} \theta \vec{e_z} - \nabla p \end{split}$$

Energy

$$\begin{split} &\frac{\partial \theta}{\partial t} + Ra^{\frac{1}{2}} (\vec{V} \cdot \nabla)\theta = \\ &\nabla^2 \theta + Ra^{\frac{1}{2}} \vec{V} \cdot \vec{e_z} \end{split}$$

Boundary conditions $\vec{V} = \theta = 0$ en $\partial \Omega$

Continuation method

Motivation and Objectives

Problem description

- Flow system
- Continuation method
- Bifurcation diagram
- Flow patterns
- Symmetries

Dynamical systems approach and results

Poincaré Maps

Regular regions and Lyapunov exponents

Critical points

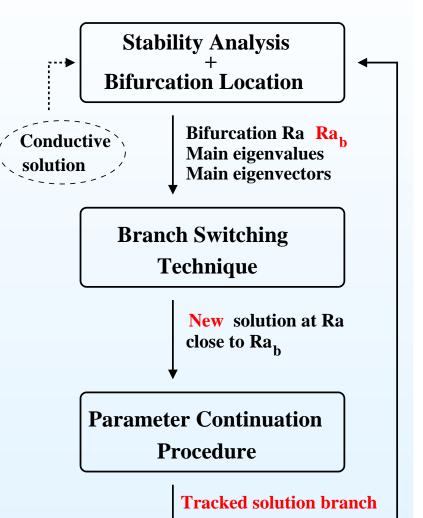
Streamlines and trajectories

```
Comparison of B_2 and B_3
```

Conclusions and outlook

Galerkin spectral method with basis functions $\{\vec{F}_i(x, y, z)\}$ satisfying the boundary conditions and the continuity equation

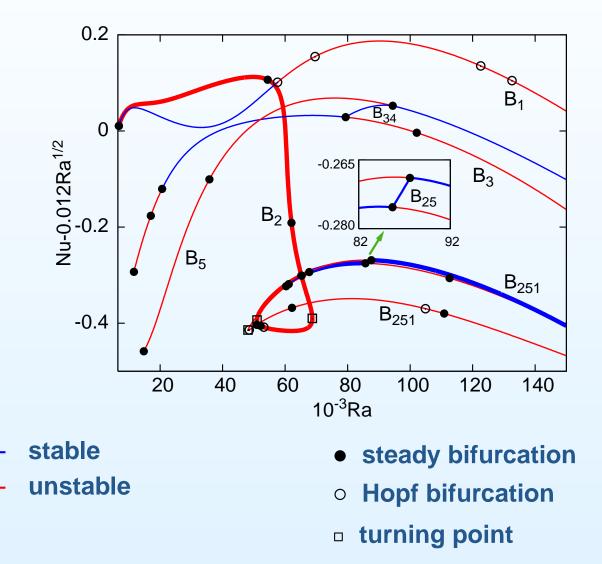
(\vec{V})	
	$= \sum c_i(t) \vec{F}_i$
$\left(\begin{array}{c} \theta \end{array} \right)$	



D. Puigjaner, J. Herrero, C. Simó, F. Giralt, J. Fluid Mechanics, 598, 393-427, (2008)

Bifurcation diagram (Pr = 130)

Steady solutions that are stable over some Ra range



Flow patterns: $\lambda_2 = 0$ surfaces

Motivation and Objectives Problem description • Flow system • Continuation method • Bifurcation diagram • Flow patterns • Symmetries	B ₂ Initial Ra 6 798 Stability Range		03 03 03 03 03 03 03 03 03 03 03 03 03 0	
Dynamical systems approach and results	67 730-85 694	<i>Ra</i> =7 000	<i>Ra</i> =51 000	<i>Ra</i> =80 000
Poincaré Maps Regular regions and Lyapunov exponents Critical points	B ₃ Initial Ra	0.04 0.02 -0.00 -0.02		0.2 0.1 -0.0 -0.1
Streamlines and trajectories Comparison of B_2 and B_3	11 612 Stability Range	-0.04	.5	-0.2
Conclusions and outlook	20 637–79 362	Ra=12000	<i>Ra</i> =51 000	Ra=80 000

 λ_2 is the second largest eigenvalue of the tensor $S^2+\Omega^2$

Symmetries and invariant planes

Motivation and

Objectives

Problem description

- Flow system
- Continuation method

Bifurcation diagram

Flow patterns

• Symmetries

Dynamical systems approach and results

Poincaré Maps

Regular regions and Lyapunov exponents

Critical points

Streamlines and trajectories

Comparison of B_2 and B_3

Conclusions and outlook

Solution	Symmetry Group	Invariant					
	(generators)	Planes					
B_2	S_{d-} , $-I$	x + y = 0					
B_{25}	-I	—					
B_{251}	S_y , $-I$	y = 0					
B_3	S_{d_+} , $-S_y$	$\begin{cases} x+y=0\\ x-y=0 \end{cases}$					

 S_y reflection about the plane y = 0 S_{d_+} reflection about the plane x - y = 0 $S_{d_{-}}$ reflection about the plane x + y = 0simmetry with respect the origin $-S_{u}$ rotation of angle π around the *y*-axis

-I

Numerical methods

Motivation and **Objectives**

Problem description

Dynamical systems approach and results

Numerical methods

Poincaré Maps

Regular regions and Lyapunov exponents

Critical points

Streamlines and trajectories

Comparison of B_2 and B_3

Conclusions and outlook

Particle trajectories (Negligible diffusivities)

 $\dot{x} = u(x, y, z)$ $\dot{y} = v(x, y, z)$ Advection equations $\dot{z} = w(x, y, z)$

- Symmetries and invariant planes
- Poincaré sections
- Periodic orbits and their stability
- Size and shape of regular regions
- Maximal Lyapunov exponents and metric entropy
- Critical points in the interior and on the boundary
 - Stability analysis Ο
 - Poincaré–Hopf index theorem Ο

C. Simó, D. Puigjaner, J. Herrero, F. Giralt, Communications in Nonlinear Science and Numerical Simulation, doi:10.1016/j.cnsns.2008.07.012. In Press

Poincaré Maps I

Motivation and Objectives

Problem description

Dynamical systems approach and results

Poincaré Maps

- Poincaré Maps I
- Periodic orbit
- Poincaré Maps II

Regular regions and Lyapunov exponents

Critical points

Streamlines and

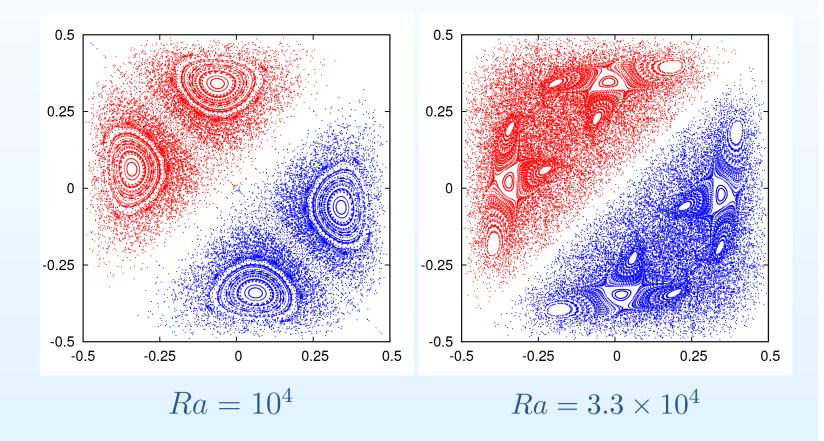
trajectories

Comparison of B_2 and B_3

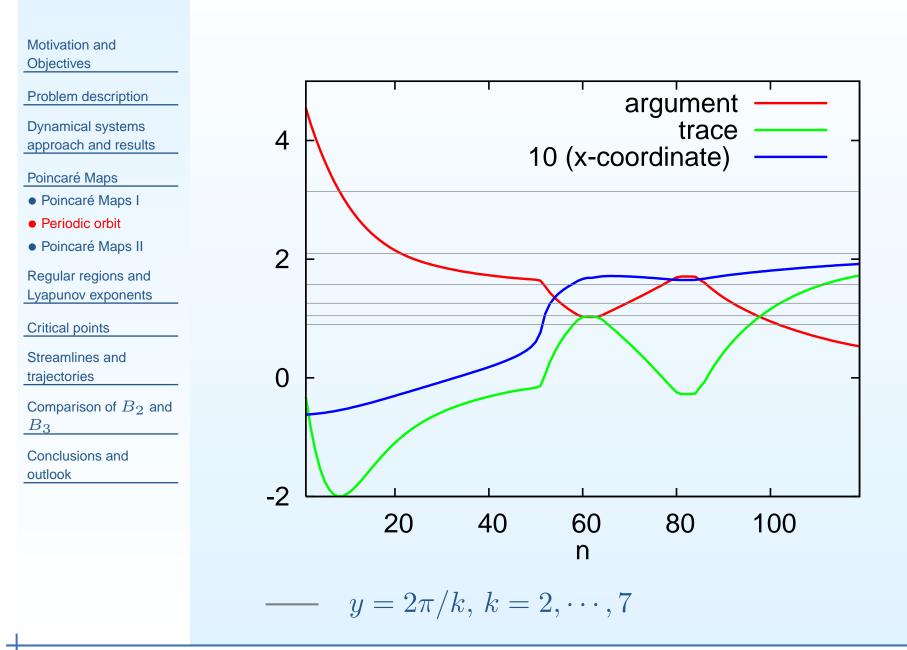
Conclusions and outlook

 $512 \ {\rm equidistributed}$ initial conditions integrated up to $t=10^3$

 B_2 , z = 0



Main stable periodic orbit (fixed elliptic point)



Poincaré Maps II

Motivation and

Objectives

Problem description

Dynamical systems approach and results

Poincaré Maps

- Poincaré Maps I
- Periodic orbit
- Poincaré Maps II

Regular regions and Lyapunov exponents

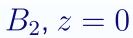
Critical points

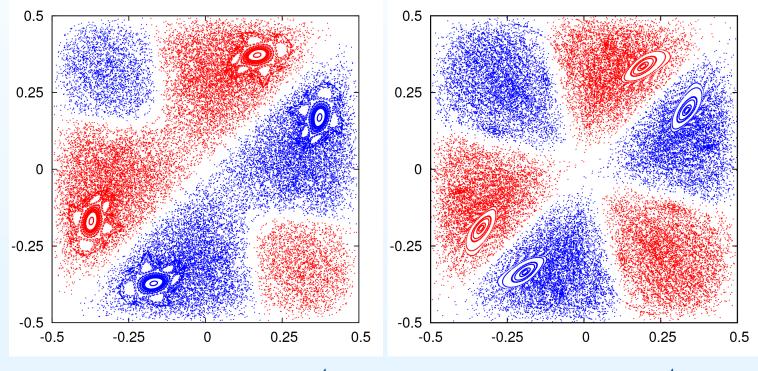
Streamlines and

trajectories

Comparison of B_2 and B_3

Conclusions and outlook





 $Ra = 6.87099 \times 10^4$

 $Ra = 8.5 \times 10^4$

Regular regions

Motivation and Objectives

Problem description

Dynamical systems approach and results

Poincaré Maps

Regular regions and Lyapunov exponents

- Regular regions
- Lyapunov exponents I
- $\bullet \; L_M$ and V_c
- Metric entropy
- Regular regions I
- Regular regions II

Critical points

Streamlines and trajectories

Comparison of B_2 and B_3

Conclusions and outlook

 $V_c \mbox{=}$ volume occupied by the chaotic zone (points outside invariant tori)

Computation Procedure

- Divide the cavity into $n \times n \times n$ cubic cells (n = 200)
- Compute trajectories of fluid particles initially located at x_0 , for any x_0 in the set C_I (final time $t_M = 10^6$) $C_I = \left\{ \left(-0.375 + \frac{i}{8}, 0.48, -0.375 + \frac{j}{8} \right), i, j = 0, \cdots, 6 \right\}$
- Store the cells visited by one or more trajectories
 - $N_r(t) =$ number of cells that at time t have not yet been visited by any particle trajectory (every $\Delta t = 200$)
- Check that $N_r(t)$ is almost constant in $t \in \left[\frac{3}{4}t_M, t_M\right]$
 - Points at a distance less than 0.01 from the boundaries are considered as non-regular

Maximal Lyapunov exponents I

Motivation and Objectives

Problem description

Dynamical systems approach and results

Poincaré Maps

Regular regions and Lyapunov exponents

- Regular regions
- Lyapunov exponents I
- $\bullet \; L_M$ and V_c
- Metric entropy
- Regular regions I
- Regular regions II

Critical points

Streamlines and trajectories

Comparison of B_2 and B_3

Conclusions and outlook

$$L_M(x_0) = \lim_{t \to \infty} \frac{1}{t} \log \left(\frac{\parallel l_t \parallel}{\parallel l_0 \parallel} \right)$$

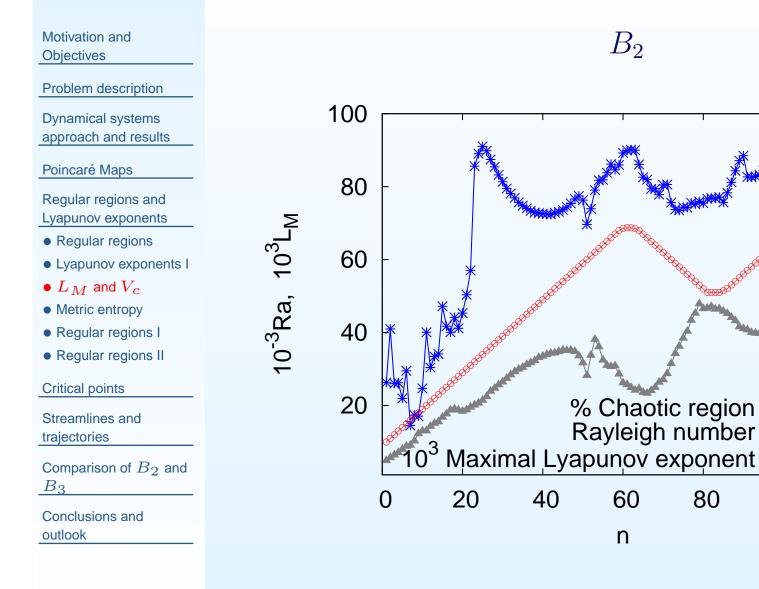
 $l_t = D_x \phi(t,x_0) l_0$ where l_0 is an arbitrary vector and $\phi(t,x_0)$ is a solution of the differential equation with $\phi(0,x_0) = x_0$

Computation Procedure

- 49 equidistributed initial conditions on the plane y = 0.48
- finite time approximations of L_M (final time=10⁵)
- transient values ($t \le 10^4$)
- calculate $\log (\| l_t \| / \| l_0 \|) / t$ every 10^3 units of time after the transient ($t > 10^4$)
- average with respect to time and initial conditions

Size of chaotic region (%)

L_M and V_c evolution



Metric entropy, h_m

Motivation and Objectives

Problem description

Dynamical systems approach and results

Poincaré Maps

Regular regions and Lyapunov exponents

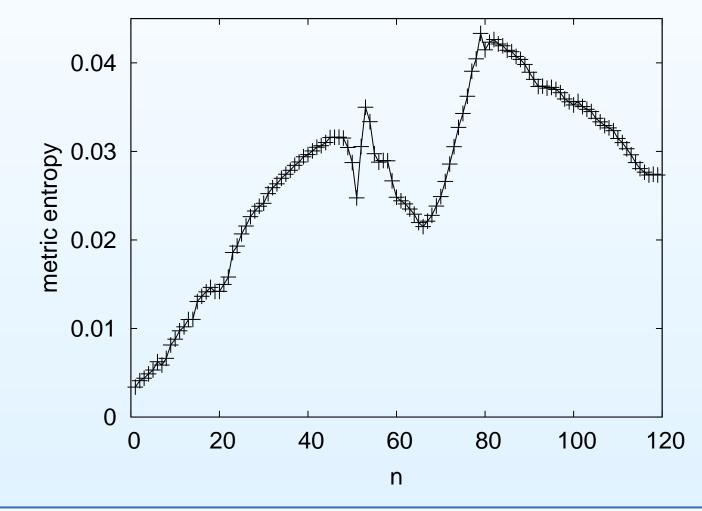
• Regular regions

- Lyapunov exponents I
- $\bullet \; L_M$ and V_c
- Metric entropy
- Regular regions I
- Regular regions II

Critical points

Streamlines and trajectories

Comparison of B_2 and B_3



Shape of regular regions

Motivation and Objectives

Problem description

Dynamical systems approach and results

Poincaré Maps

Regular regions and Lyapunov exponents

- Regular regions
- Lyapunov exponents I

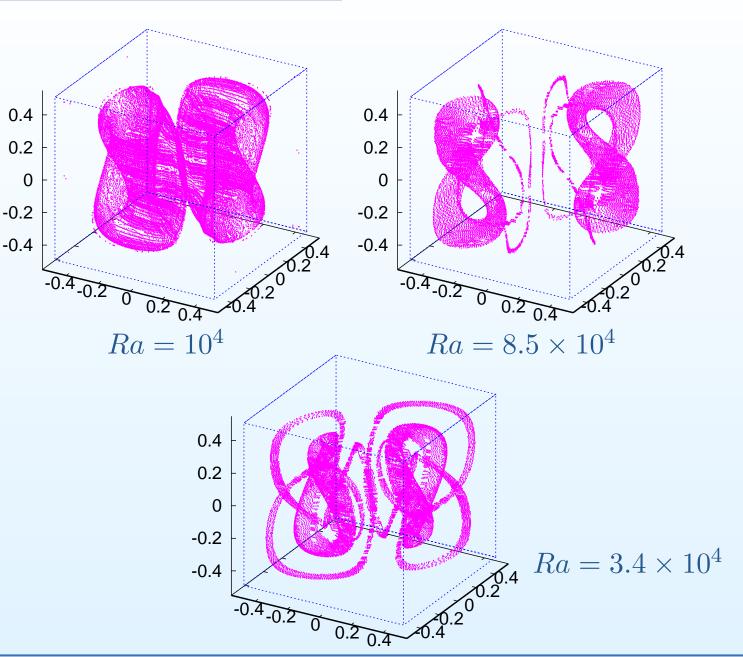
 $\bullet \; L_M$ and V_c

- Metric entropy
- Regular regions I
- Regular regions II

Critical points

Streamlines and trajectories

Comparison of B_2 and B_3



Spherical-like regular regions

Motivation and Objectives

Problem description

Dynamical systems approach and results

Poincaré Maps

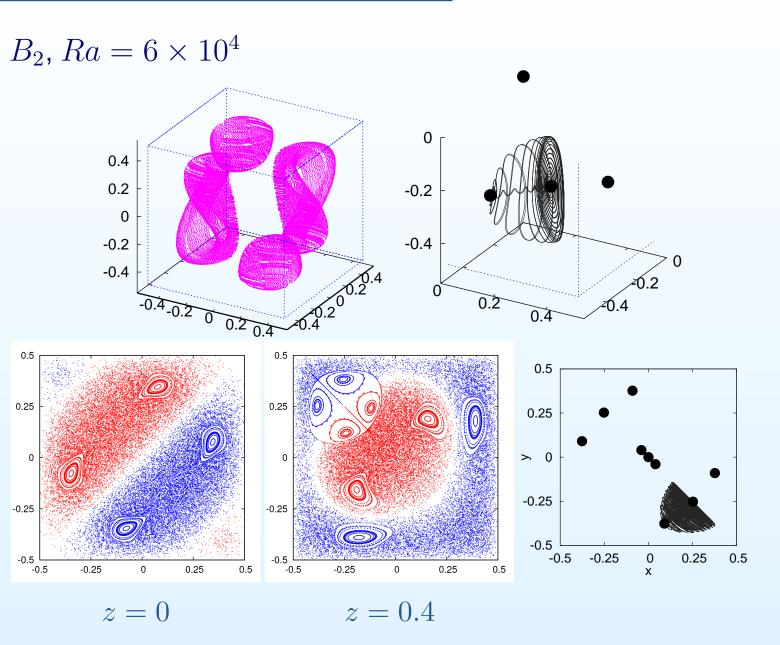
Regular regions and Lyapunov exponents

- Regular regions
- Lyapunov exponents I
- $\bullet \; L_M$ and V_c
- Metric entropy
- Regular regions I
- Regular regions II

Critical points

Streamlines and trajectories

Comparison of B_2 and B_3



Critical points: interior and boundaries

Motivation and Objectives

Problem description

Dynamical systems approach and results

Poincaré Maps

Regular regions and Lyapunov exponents

Critical points

- Critical points I
- Critical points II
- Poincaré–Hopf index
- Critical points III
- Critical points IV
- Critical points V

Streamlines and trajectories

Comparison of B_2 and B_3

Conclusions and outlook

Interior: fixed points of the advection equations ($\vec{V} = 0$) Boundary: wall $x_3 = 0$

 $\begin{aligned} \frac{dx_i}{d\tau} &= \frac{\partial u_i}{\partial x_3} + \frac{\partial^2 u_i}{\partial x_3 \partial x_1} (x_1 - b_1) + \frac{\partial^2 u_i}{\partial x_3 \partial x_2} (x_2 - b_2) + \frac{1}{2} \frac{\partial^2 u_i}{\partial x_3^2} x_3 \\ \frac{dx_3}{d\tau} &= -\frac{1}{2} \left(\frac{\partial^2 u_1}{\partial x_1 \partial x_3} + \frac{\partial^2 u_2}{\partial x_2 \partial x_3} \right) x_3 \end{aligned}$

 $\tau = x_3 t$ rescaled time

$$b = (b_1, b_2, 0)$$
 point on the wall $x_3 = 0$

Trajectories of particles passing very close to the wall are obtained by taking the limit $(x_1, x_2, x_3) \rightarrow (b_1, b_2, 0)$

$$\frac{dx_i}{d\tau} = \frac{\partial u_i}{\partial x_3} \quad i = 1, 2$$

Critical points: stability

Motivation and Objectives

Problem description

Dynamical systems approach and results

Poincaré Maps

Regular regions and Lyapunov exponents

Critical points

- Critical points I
- Critical points II
- Poincaré–Hopf index
- Critical points III
- Critical points IV
- Critical points V

Streamlines and trajectories

Comparison of B_2 and B_3

Conclusions and outlook

 λ_1 , λ_2 , λ_3 eigenvalues associated to the linearization of the vector velocity field about a critical point x_c .

Divergence—free flow (volume—preserving flow)

 $\lambda_1 + \lambda_2 + \lambda_3 = 0$ if x_c is in the interior of the cube; $\frac{1}{2}(\lambda_1 + \lambda_2) + \lambda_3 = 0$ if x_c is on a wall of the cube ; $2(\lambda_1 + \lambda_2) + \lambda_3 = 0$ if x_c is on an edge of the cube;

Classification of critical points

- SF: stable focus with a 1D unstable manifold
- **UF**: unstable focus with a 1D stable manifold
- **2S**: saddle with a 2D stable manifold
- 1S: saddle with a 1D stable manifold

Poincaré–Hopf index

Motivation and Objectives

Problem description

Dynamical systems approach and results

Poincaré Maps

Regular regions and Lyapunov exponents

Critical points

- Critical points I
- Critical points II
- Poincaré–Hopf index
- Critical points III
- Critical points IV
- Critical points V

Streamlines and trajectories

Comparison of B_2 and B_3

Conclusions and outlook

Poincaré–Hopf index theorem

The sum of the Poincaré indexes over all the isolated critical points of a vector field on a compact orientable differentiable manifold is equal to the Euler characteristic of the manifold

Change from the cubical domain to the 3D sphere \mathbb{S}^3

- the interior of the cubical domain is topologically equivalent to a 3D open ball B^3 and its boundary is equivalent to a 2D sphere \mathbb{S}^2
- deform B^3 to get a 3D hemisphere whose equator is \mathbb{S}^2
 - take a symmetric copy of the 3D hemisphere and glue both hemispheres after identifying the \mathbb{S}^2 boundaries

The Poincaré index of a critical point x_c satisfying $Re\lambda_i \neq 0$, is $(-1)^{n_p}$, where $n_p = \#\{\lambda_i \mid Re\lambda_i < 0, i = 1, 2, 3\}$. Interior critical points must be counted twice.

Critical points: bifurcations and Poincaré indexes

Motivation and			Inte	erior	•	۱	Nal	S	Ed	ges
Objectives		SF	UF	2S	1S	SF	2S	1S	2S	1S
Problem description	$10^{-3} Ra$	(2)	(-2)	(2)	(-2)	(1)	(1)	(-1)	(1)	(-1)
Dynamical systems approach and results	10 100	2	3	2	0	4	2	6	0	2
Poincaré Maps	11	2	3	0	0	4	2	2	2	4
Regular regions and	28	2	1	0	0	4	0	2	0	4
Lyapunov exponents	41	2	1	0	0	0	4	2	0	4
Critical points Critical points I 	58	4	3	0	0	0	4	2	0	4
Critical points II	60	4	2	1	2	0	4	2	0	4
Poincaré–Hopf index	61	4	4	1	0	4	0	2	0	4
 Critical points III Critical points IV 	63	6	6	1	0	4	0	2	0	4
Critical points V	65	6	6	1	0	4	2	4	0	4
Streamlines and trajectories	68.58	6	6	2	1	4	2	4	0	4
Comparison of B_2 and	68.71	6	6	2	1	4	6	8	0	4
<u></u>	68	6	6	1	0	8	2	8	0	4
Conclusions and outlook	58	6	6	1	0	8	0	6	0	4
	57	6	6	1	0	4	4	6	0	4
	52	6	6	1	0	4	0	2	0	4

Critical points: bifurcations and invariant planes

Motivation and Objectives

Problem description

Dynamical systems approach and results

Poincaré Maps

Regular regions and Lyapunov exponents

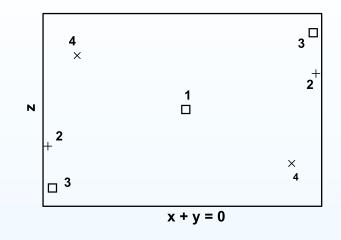
Critical points

- Critical points I
- Critical points II
- Poincaré–Hopf index
- Critical points III
- Critical points IV
- Critical points V

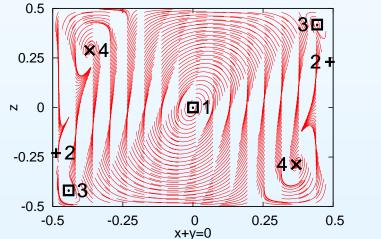
Streamlines and trajectories

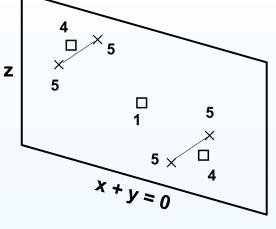
Comparison of B_2 and B_3

Conclusions and outlook

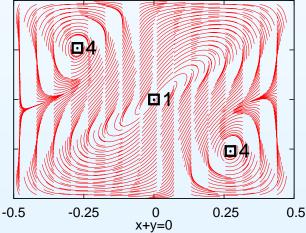


 $Ra = 10^4$





 $Ra = 5.8 \times 10^4$



SF: stable focus + 2S: saddle with two stable directions

□ UF: unstable focus

Х

Critical points: bifurcations and invariant planes I

0.5

0.25

N 0

-0.25

-0.5

-0.5

Motivation and Objectives

Problem description

Dynamical systems approach and results

Poincaré Maps

Regular regions and Lyapunov exponents

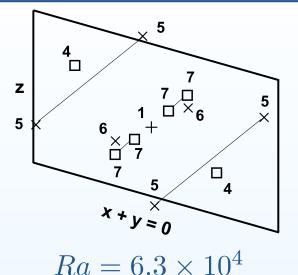
Critical points

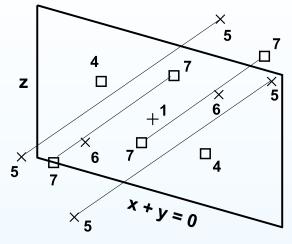
- Critical points I
- Critical points II
- Poincaré–Hopf index
- Critical points III
- Critical points IV
- Critical points V

Streamlines and trajectories

Comparison of B_2 and B_3

Conclusions and outlook





 $Ra = 8.5 \times 10^4$

04

86

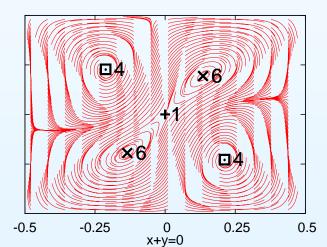
-0.25

 $\times 6$

04

0.25

0.5



- \times SF: stable focus
- □ UF: unstable focus

+ 2S: saddle with two stable directions

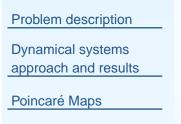
0

x+y=0

WSIMS08, Barcelona, December 1-5, 2008

Limiting Streamlines (B_2)

Motivation and Objectives



Regular regions and Lyapunov exponents

Critical points

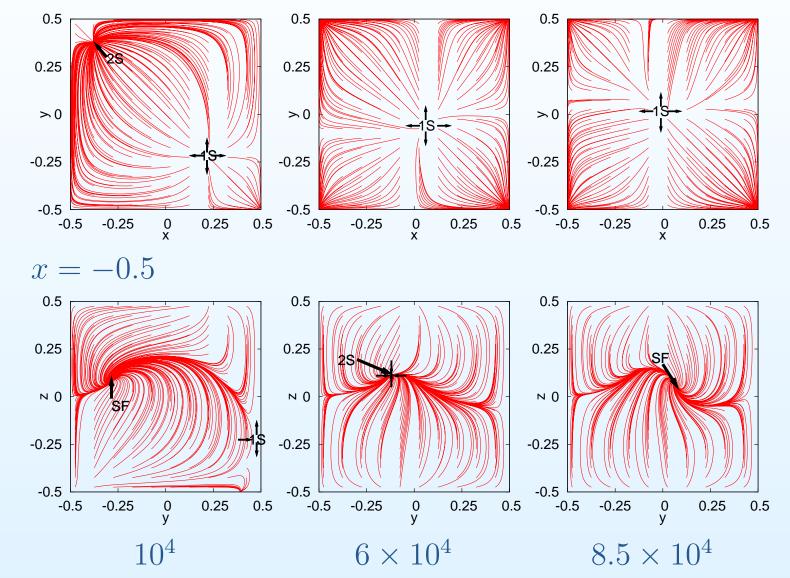
Streamlines and trajectories

- Limiting Streamlines
- Projected trajectories

 $\begin{array}{c} \text{Comparison of } B_2 \text{ and } \\ B_3 \end{array}$

Conclusions and outlook

z = -0.5



Projected trajectories (B_2 **)**

Motivation and Objectives

Problem description

Dynamical systems approach and results

Poincaré Maps

Regular regions and Lyapunov exponents

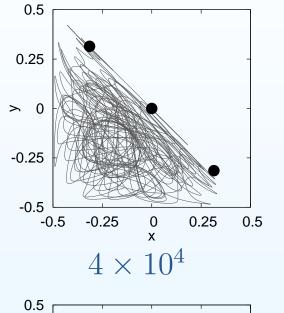
Critical points

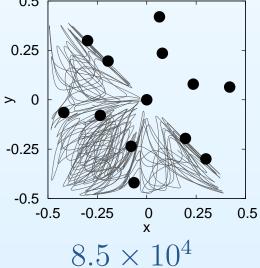
Streamlines and trajectories

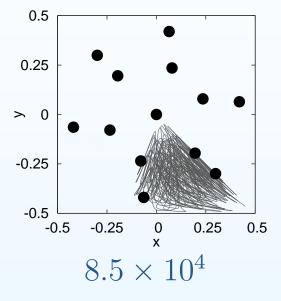
• Limiting Streamlines

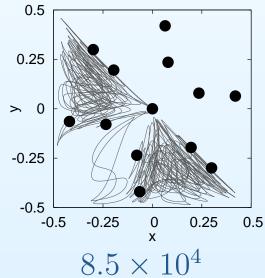
• Projected trajectories

Comparison of B_2 and B_3









V_c , L_M and h_m

Motivation and Objectives

Problem description

Dynamical systems approach and results

Poincaré Maps

Regular regions and Lyapunov exponents

Critical points

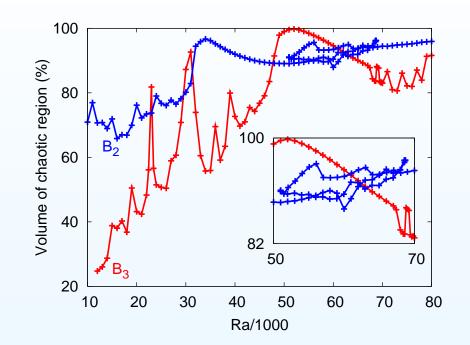
Streamlines and trajectories

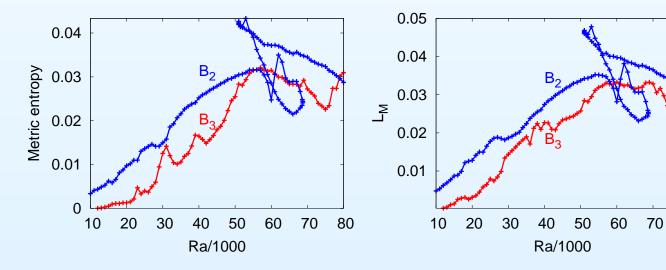
Comparison of B_2 and B_3

 $ullet V_c$, L_M and h_m

• Poincaré sections

Conclusions and outlook





80

Poincaré sections

Problem description

Dynamical systems approach and results

Poincaré Maps

Regular regions and Lyapunov exponents

Critical points

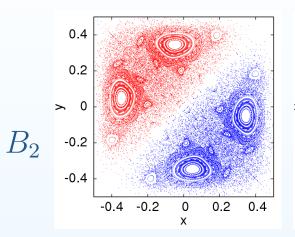
Streamlines and trajectories

Comparison of B_2 and B_3

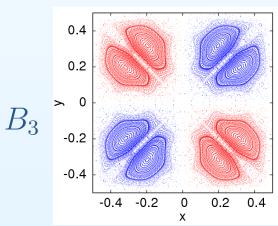
 $\bullet \, V_c$, L_M and h_m

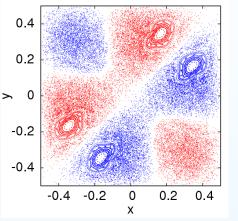
• Poincaré sections

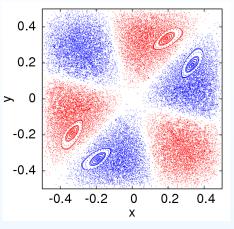
Conclusions and outlook



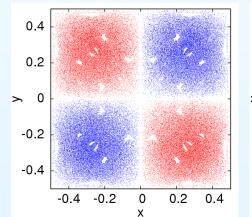
 2×10^4



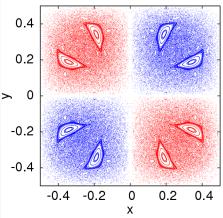




 5.1×10^{4}



 8×10^4



Conclusions

Motivation and Objectives

Problem description

Dynamical systems approach and results

Poincaré Maps

Regular regions and Lyapunov exponents

Critical points

Streamlines and trajectories

Comparison of B_2 and B_3

- Conclusions
- Outlook

- The dynamics are characterized by regions with regular motion surrounded by regions of chaotic motion
 - Changes on the topology and on the chaotic level of the flows are related to bifurcations of critical points
 - The detailed knowledge of the flow provided by the dynamical systems approach can be relevant in selecting the parameter ranges and flow patterns at which more efficient mixing is achieved

Future work

Motivation and Objectives

Problem description

Dynamical systems approach and results

Poincaré Maps

Regular regions and Lyapunov exponents

Critical points

Streamlines and trajectories

Comparison of B_2 and B_3

- Conclusions
- Outlook

- Study the relative position of the most relevant invariant manifolds of the fixed points and hyperbolic periodic orbits
- Study the effect of a non-negligible molecular diffusion on the dynamics of particle trajectories
- Extend the study to non-stationary flows

Basis Functions I

Motivation and Objectives

Problem description

Dynamical systems approach and results

Poincaré Maps

Regular regions and Lyapunov exponents

Critical points

Streamlines and trajectories

Comparison of $B_2 \ {\rm and} \ B_3$

Conclusions and outlook

Basis Functions

- Basis Functions I
- Basis Functions II

 $\begin{pmatrix} \mathbf{V} \\ \theta \end{pmatrix} = \sum_{i=1}^{N_x} \sum_{j=1}^{N_y} \sum_{k=1}^{N_z} \left[a_{ijk}^{(1)} \mathbf{G}_{ijk}^{(1)} + a_{ijk}^{(2)} \mathbf{G}_{ijk}^{(2)} + a_{ijk}^{(3)} \mathbf{G}_{ijk}^{(3)} + a_{ijk}^{(4)} \mathbf{G}_{ijk}^{(4)} \right]$

$$\mathbf{G}_{ijk}^{(1)} = \begin{pmatrix} 0 \\ -g_i f_j f'_k \\ \frac{1}{h_2} g_i f'_j f_k \\ 0 \end{pmatrix}, \quad \mathbf{G}_{ijk}^{(2)} = \begin{pmatrix} -f_i g_j f'_k \\ 0 \\ \frac{1}{h_1} f'_i g_j f_k \\ 0 \end{pmatrix}, \\ \mathbf{G}_{ijk}^{(3)} = \begin{pmatrix} -\frac{1}{h_2} f_i f'_j h'_k \\ \frac{1}{h_1} f'_i f_j h'_k \\ 0 \\ 0 \end{pmatrix}, \quad \mathbf{G}_{ijk}^{(4)} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ g_i g_j g_k \end{pmatrix}$$

$$N = 4 \times 8 \times N_x \times N_y \times N_z$$
 terms

Basis Functions II

Motivation and Objectives

Problem description

Dynamical systems approach and results

Poincaré Maps

Regular regions and Lyapunov exponents

Critical points

Streamlines and trajectories

 $\begin{array}{c} \text{Comparison of } B_2 \text{ and } \\ B_3 \end{array}$

Conclusions and outlook

Basis Functions

- Basis Functions I
- Basis Functions II

 $f_k(x): \quad C_k(x) = \frac{\cosh(\lambda_k x)}{\cosh(\lambda_k/2)} - \frac{\cos(\lambda_k x)}{\cos(\lambda_k/2)};$ $S_k(x) = \frac{\sinh(\mu_k x)}{\sinh(\mu_k/2)} - \frac{\sin(\mu_k x)}{\sin(\mu_k/2)}$ $g_k(x): \quad \cos((2k-1)\pi x);$ $\sin(2k\pi x)$

 λ_k y μ_k are the positive solutions of

 $\tanh(\lambda_k/2) + \tan(\lambda_k/2) = 0$ $\coth(\mu_k/2) - \cot(\mu_k/2) = 0$