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The physical problem and the
numerical results from KLMR

Observation: Jupiter comets (Oterma, Gehrels
3) make rapid transition from heliocentic or-
bits outside Jupiter to heliocentric orbits inside
the Orbit of Jupiter and vice versa.

The interior heliocentric orbit is close to the
3 : 2 resonance (three revolutions around the
Sun in two Jupiter periods) while the exterior
heliocentric one is near 2 : 3 resonance .

KLMR: PCR3BP (planar restricted three body
problem) as a model for the Sun-Jupiter-comet
system.

Methods of dynamical system theory: the tran-
sitions are the consequence of the existence of
several homo- and heteroclinic orbits between
the libration points.

In fact the existence of symbolic dynamics on
three symbols was claimed.



Symbolic dynamics - definitions

Bernoulli Shift : ¥, ={1,2,...,k}%, ¢ : %) —
2

o(c); = cjt1

Bernoulli shifts are dynamical equivalent to a
coin tossing.

Definition. P : X — X - continuous, S C X,
S-compact, we say that P has a symbolic dy-
namics on k symbols on S, when the following
conditions are satisfied

e P(S)=S,i.e. S is P-invariant

e there exists a continuous map n: S — 2,
such that com=mo P

o 7w(S5) =X, (or at least n(5) is a large sub-
set of X )



PCR3BP problem

24+ y? 11— 1-—
Qa,y) = - ;y + r1”+%+“( 5 1)
ro= @+ +y?

o= V@ -1+ )2+

Jacobi integral:

C(z,y, &,9) = —(&° + 92) + 2Q(z,y) = const.

M, C) = {(z,y,z,y) | C(z,y,z,y) = C},

C' = 3.03, u = 0.0009537 - Oterma comet in
Sun-Jupiter system.



Hill’'s Region

Hill's region - the projection of M(u,C) onto
position space (coordinates (z,v))
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OUR RESULTS FOR PCR3BP

For C = 3.03, u = 0.0009537 - Oterma values,
the existence of

0. periodic orbits L*i and L§ around the libra-
tion points L1 and Lo, respectively.

1. topologically transversal heteroclinic orbits
connecting L”i and L§ and vice versa in the
Jupiter region.

2. two topologically transversal homoclinic or-
bit to L7 in interior (Sun) region and to L7
in exterior region.

3. symbolic dynamics:

S — S, L7, 1— L1,S, L5 L5 — L7,
L5 X, X — X,L5.
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Hetero- and homoclinic orbits
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Left: 3:2 - homoclinic (internal region) and 1:2
homoclinic (external reg.)

Right: 5:3 - homoclinic (internal region) and
2:3 homoclinic (external reg.)



Symbolic dynamics - the graph
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Sections and Poincaré maps

Sections: © = {(z,y,z,y) € M|y =0}, ©4 =
©n{y >0}, o_=0n{y <0}.

Coordinates on ©1: T : U C R2 - ©4

Ty(e,d) = (z,0,4,+1/29(x,0) —i2 — C ) (2)

Poincaré maps between sections ©4

P_I_Z@_I_—>@_|_
P_..:60_ —-0_
P%,_I_I@_|_—>@_

Pl_ . @_—>@_|_.
>

P_|_(33) = P oP _|_(x)7
P_(x)

|
W
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Symmetries in PCR3BP

If (x(t),y(t)) is a trajectory for PCR3BP, then
(z(—t), —y(—t)) is also a trajectory.

Let R: ©4+ — O+ R(x,z) = (x,—x) for (x,2) €
©1+. We have

if PL(xg) =21, then Pi(R(z1)) = R(zo)
if P%,:l:(xO) = x1, then P%’:F(R(:Ul)) = R(xq)
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Symbolic dynamics for PCR3BP

fay = Pt
fo1) = P-oPypo(Pryp_oPyp ) oPy,
f(1,2) = FPyo P1/2,— © (P1/2,-|- © P1/2,_)4 o P_,
f(2,2) = P_.

Theorem. For every o = {a;} € {1,2}% there
exists xg € Haqy (close to L), such that

e the trajectory of xg is defined for ¢t € (—oo, c0)
and stays in the Jupiter region

® Tn = flap,an_1)° " °flanar) © f(a1,a0)(F0) €
Hey,, for n >0

_ r—1 —1 —1
® In = f(Oén-|-1,Oén)o' ' 'Of(&—1,&—2)of(&o,04—1)($O) <
Hg, for n < 0.
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Moreover,

periodic orbits: If a is k-periodic, then zg can

be chosen so that x;, = zg (i.e. xg is peri-
odic).

homo- and heterclinic orbits: If o = :_ for
k < k- and o = 14 for k > ki, where
i—,i4 € {1,2}, then

. * . *
im =z, =L, , lim zp = L,
n——oo - n—aoeo +



h-sets on the plane - definition

h-set N on the plane:
e c,u,s € R?, u,s - linearly independent

o [IN|=c+ [-1,1Ju+[-1,1]s - the support
of N

e Nt =c¢+[-1,1]u+ {-1,1}s - horizontal
edges N

e N =c—u+4[-1,1]s, N"¢c+u+[-1,1]s -
'left’ and 'right’ edfe of N

® S(N)l =c+ <_OO7 1)“’ + <_OO7 OO)S,
S(N)r =c+(1,0)u+ (—00,0)s - 'left’ and
'right’ side of N

13



H-set on the plane
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Covering relation - Definition

N, M - h-sets, f:|N| — R? - continuous
We say, that NV =f:> M (N f-covers M ) if
o f(IN]) Cint(S(M);U[M|US(M)r)

e one of the conditions (O) or (R) is satisfied
(O) fF(N') C S(M); i f(N"¢) C S(M);

(R) f(N') Cc S(M), i f(NT¢) C S(M),
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Covering relation - Example

f(N'®)

PR

< f(Nle)
]
N M
f f

N =N and N = M

1.046816 1.046823

T 0.000032

0.00001

Example from the proof for PCR3BP
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Main theorem on covering relations

Theorem.(P.Z.)
Ng, N1,..., N - h-sets. f; : |[N;] — R? -continuous
fore =0,...,k—1. Assume, that

Ng L% Ny L Ny Dl

Then there exists =z € int|Ng| such that
fiofi—10---ofo(x) € int|Ni—|—1|7 1 =0,...,k—1.

If moreover N, = Ng, then x can be chosen so
that

fre—10 fr—po---0 folx) ==
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Local hyperbolicity - cone conditions

f:R?2 > R?2-C! maps. f(0) =0. U - convex,
OeU

_ [ MU) & (U)
ACE "(é(U) /\§<U>>°

f(x) e Df(U) -x, foraxecU

6’1(U) = sup{le| : e € e1(U)},
e5(U) = sup{le| : € € e2(U)},
A1(U) = inf{|A1] : A1 € A (U)},
Ao (U) = sup{|Xa] : Az € X2(U)}.
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Definition Let x4« be a fixed point for f. We
say that f is hyperbolic (satisfies cone condi-
tions) on N > zx, if there exists a local co-
ordinate frame on N, such that (in this new
coordinates)

rzx — O
e1(N)es(N) < (1= X5(N))(AT(N) —1).
N = [—a1,a1] X [-az,a2],

where a1 > 0, ano > 0 are such that the follow-
ing inequalities are satisfied
€/]_(N) aq 1—)\/2(N).

< <
MN(N)—1 g er(N)

(3)
Theorem Assume that f is hyperbolic on N.

1. if f*(z) € N for k > 0, then lim,_ o, fF(z) =

Ix,

2. ifyp € N and f(yr_1) =y for £ < 0, then
Iimk_>_oo Y — Tx.
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Theorem. Assume that g is hyperbolic on Ny,
and f is hiperboliczny na Ng. Let zg = g(zg) €
Nm and zy = f(xy) € Ng. Assume that

No =L Np <% Ny L N, 2
JSm—1

g
—— Nm::>Nm,

then there exists a sequence (:ck)g:_oo (this is
a backward orbit ), f(xp) = x4y for £ < 0O
such that

xp € Ng, k<O,
fi—lofi—QO"'ofO(mO)ENi fori:17°°°7m7

g"o fim—10---0 folzg) € Nm for n > 0,
lim xp = x,
k— —o0 & /

im g% o f—10- 0 fo(zg) = zq.

k—o00
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What did we proved with computer

assistance
P P Pq/o.
Hy =% H; =5 B2 Z&F N,
Py1o P14 Pyo P14
/ N, / N, / N / N,
Pyjp Py 4 Pyjp
——> Ny — Ng — N7
Pyo 4 P P_

=" H3 = Hy, = H>.

From symmmetry

P Py /5 _
Hp = R(H») = R(H3) =& R(N7)
Py/o. P1/o _ Py o,
L2 R(Ng) =3 R(Ns) =5 R(Na)
P B P P _
22T R(N3) =T R(No) =X R(V1)

P Py o P
By R(Np) 22 R(H?) =5 R(H;) = H;
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What about symmetry of L7, L3,
periodic orbits, homo- and

heteroclinic connections?

We proved that L7, L5 and the 'basic’ homo-
clinic orbits to L7 and L5 are symmetric.

Moreover, we proved that there exist an infinite
number of symmetric periodic orbits and sym-
metric homoclinic orbits to L7 and L5, which
can be described by symbolic sequences.

The method of proof: It is enough to look for
intersections of Fix(R) = {x | ¢ = R(x)} with
PE(Fiz(R)) - this is the Fixed Set Iteration
method (also known as DeVogelaere method

).
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How to get an infinite number of

symmetric orbits 7

Theorem. Assume R is a reversing symmetry
for P and

No = Nj = No... == N.

and Fix(R) N Ng is a horizontal disk in Ng and
Fix(R) N N is a vertical disk in Ng.

Then there exists = € intNg, such that P?¥(z) =
x and for ¢ = 0,...,k holds
Pi(z) € intN,, PFFicintn,_,

If Ny = Ngp and Ny is hyperbolic (with a fixed
point x*) then there exist a symmetric ho-
moclinic to z* orbit to P‘(z) such that for
1 =20,...,k holds

Pi(z) € intN,, PFTeintN,_,
and P'(z) € Ng for i < 0 or i > 2k.
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How to get an infinite number of

symmetric orbits ? continuation

We have an infinite number of chains described
in the previous theorem.
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Future work

e Does there exists a symbolic dynamics for
3D problem such the corresponding orbits are
not all contained in the Sun-Jupiter plane?

e Does the symbolic dynamics persist if the
Jupiter orbit become an ellipse with a small
eccentricity (which is the case in nature)? This
means considering PER3BP instead of PCR3BP.
This is work in progress with Maciej Capinski.

Problem: Fixing C' in PCR3BP have made our
problem hyperbolic and 'easy’. In PRE3BP
C' is no longer conserved, we have KAM-tori.
This becomes a problem of the Arnold diffusion
for an a priori-unstable system.
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PRE3BP

We want computer assisted proof. What do
we need:

e rigorous normally hyperbolic invariant man-
ifold build from Lapunov periodic orbits (see
yesterday talk of Maciej Capinski). Not done
yvet

e the verification of twist condition - should be
an easy Cl-computation

e the application of the KAM - probably very
difficult to get reasonable size of bounds, but
always ok for sufficiently small eccentricity

e the Melnikov type computation, this I'm not
sure how to do at this moment, but hopefully
standard tools plus rigorous numerics should

suffice
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