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I. Introduction

Let (X,µ), µ(X) = 1, be a standard Lebesgue space and let α : X → X be an

automorphism of (X,µ). Then α defines an unitary operator, called the Koopman

operator [K], in L2(X, dµ) and denoted by the same letter.

In the important papers [VN] and [HvN], von Neumann and Halmos classified all

classical ergodic systems for which the Koopman operator has purely discrete spectrum.

The main result of their analysis is that such systems are classified by the spectrum,

which forms a discrete subgroup of U(1), and each such a system is conjugate to a shift

on a compact abelian group, the Pontriagin dual of the spectrum. Here, and throughout

the paper, U(1) is the group of complex numbers with absolute value 1 and discrete

topology. For a clear account of that result, see e.g. [CFS], [W], or [Si].

This theory was extended to noncommutative setting by Olsen, Pedersen and Take-

saki [OPT]. It turns out that noncommutative ergodic systems with discrete spectrum

are classified by the spectrum of the automorphism, which as above is a discrete sub-

group H of U(1) and a second cohomology class of H. This theorem is stated more

carefully in Section II.

The notions of quasi-eigenvalue and quasi-eigenfunction were introduced by von

Neumann and Halmos [H]. They proved, using those concepts, that there exist spectrally

equivalent but not conjugate automorphisms with mixed spectrum. Later Abramov [Ab]

gave a complete classification of totally ergodic systems with quasi-discrete spectrum.

A topological version of Abramov’s theory for minimal systems was discussed in [HaP],

[HoP].

Let us shortly describe what quasi-eigenvalues and quasi-eigenfunctions are and

state the Abramov’s theorem. With the above notation α is called totally ergodic if αn

is ergodic for every n = 1, 2, . . .. Ordinary eigenvectors and eigenvalues of α are called,

correspondingly, quasi-eigenvectors and quasi-eigenvalues of the first order. A function

f ∈ L2(X, dµ) is called a quasi-eigenvector of the second order if

α(f) = φf,

where φ is a quasi-eigenvectors of the first order (i.e. an eigenvector) of α. In such

a case φ is called a quasi-eigenvalue of the second order. Continuing this process one

obtains quasi-eigenvectors and quasi-eigenvalues of arbitrary order - see Section II for

a more precise definition. The crucial observation is that, if α is totally ergodic, quasi-

eigenvectors corresponding to different quasi-eigenvalues are orthogonal. One considers

then the situation when L2(X, dµ) has a basis consisting of quasi-eigenvectors of α

possibly of arbitrary order. If this is the case, then we say that α has purely quasi-

discrete spectrum. The Abramov’s theorem can be formulated as follows.
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Theorem I.1. [Ab] There is a one-to-one correspondence between the conjugacy

classes of totally ergodic dynamical systems with purely quasi-discrete spectrum and

the equivalence classes of pairs (H,R) where H is a discrete abelian group of the form

H =
⋃∞

n=1Hn where H1 ⊂ H2 ⊂ . . . is an increasing sequence of discrete abelian groups,

H1 ⊂ U(1) and H1 has no non-trivial elements of finite order, and R is a homomorphism

of H such that for every n = 1, 2, . . . the kernel of Rn is the group Hn.

This paper contains an attempt to extend the Abramov theorem to the quan-

tum mechanical context i.e. when the space X is replaced by a noncommutative von

Neumann algebra. One case of this program that we were able to understand fairly com-

pletely is when the second order quasi-eigenvectors form a basis in the corresponding

L2-space. This assumption is satisfied in the original example that has motivated our

work on the subject. The main results of the paper, Equivalence Theorem and Repre-

sentation Theorem, show that such systems are classified by quadruples (H1, H2, [r], k),

called quantum quasi-spectra, where H1 and H2 are groups, k : H2 7→ H2 is an iso-

morphism and [r] is (essentially) a k invariant second cohomology class of H2. Such

quadruples are also required to satisfy a number of conditions described in Section IV.

It seems that the classification problem in full generality leads to an excessively

complicated system of algebraic invariants and is left for future investigation. In what

follows we present a detailed account of the classification theory under the above men-

tioned additional assumption.

Our proofs and organization of the material follow closely that of Abramov’s with

several important differences. Among them are:

• The set of quasi-eigenvalues forms a group but not with respect to operator

multiplication but rather a twisted version of it denoted by ∗ in this paper.

•We introduce a natural concept of a normalized basis of quasi-eigenvectors which

simplifies proofs of the Equivalence Theorem and the Representation Theorem.

The paper is organized as follows. In Section II we introduce a fairly general

setup and precisely formulate the problem. In Section III we show how to construct

group-theoretic invariants for totally ergodic quantum dynamical systems with purely

quasi-discrete spectrum (of the second order). We prove the equivalence theorem in

Section IV, and the representation theorem in Section V. Finally, Section VI contains

a simple example of such a quantum dynamical system.
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II. Quantum Ergodic Systems

We begin by reviewing the basic concepts which are used throughout the paper.

We will work within the von Neumann algebra framework, see e.g. [BR], as this is

the natural setup for noncommutative (quantum) ergodic theory. We will adopt the

following definition of a quantum dynamical system.

Definition II.1. A quantum dynamical system is a quadruple (A, G, α, τ) with the

following properties:

(i) A is a von Neumann algebra with a separable predual.

(ii) G is a locally compact abelian group.

(iii) α : G→ Aut (A) is an action of G on A by von Neumann algebra automorphisms.

(iv) τ is a G-invariant, normal, faithful state on A.

Since locally compact abelian groups are amenable, it allows one to define the time

average of an observable and prove ergodic theorems, see e.g. [L], [J], and references

therein. The most relevant are the groups G = Z (in which case the system is called a

quantum map) and G = R (in which case the system is called a quantum flow).

We will denote by K = L2 (A, τ) the GNS representation space of A associated

with the state τ . Since A has a separable predual, K is a separable Hilbert space. It

is natural to think of K as a quantum version of the classical Koopman space. The

automorphisms αg extend to unitary operators of the K-spaces. By a slight abuse of

notation, we continue to denote them by αg.

Definition II.2. Two quantum dynamical systems (A, G, α, τ) and (B, G, β, ω) are

conjugate if there exists an isomorphism of von Neumann algebras Φ : A → B such that

(i) Φ ◦ α = β ◦ Φ;

(ii) ω ◦ Φ = τ .

A non-zero element U ∈ K is an eigenvector of α if for every g ∈ G we have

αg(U) = λ(g)U , where λ(g) ∈ U(1). Clearly, each g → λ(g) is a character of the group

G. The set Specp (α) of all such characters is called the point spectrum of α.

Definition II.3. A quantum dynamical system (A, G, α, τ) is called a system with

purely discrete spectrum if K has an orthonormal basis consisting of eigenvectors of α.

As a consequence of the separability assumption, Specp (α) is a countable subset

of the dual group Ĝ.

Ergodic theory of von Neumann algebras has been studied by many authors. For

references and a variety of results, see e.g. [C], [KL1,2], [KLMR], [L] and [J]. For our

purposes, the following definition of quantum ergodicity will be sufficient.

4



QUANTUM DYNAMICS

Definition II.4. A quantum dynamical system (A, G, α, τ) is called ergodic if the

only G-invariant elements of K are scalar multiples of I.

Equivalently, the joint eigenspace of αg’s corresponding to the eigenvalue 1 is one

dimensional and consists of the scalar multiples of the identity operator. For quantum

ergodic systems, the time and ensemble averages of an observable are equal. Also one

has the following classification theorem due to Olsen, Pedersen and Takesaki [OPT].

Theorem II.5. [OPT] There is a one-to-one correspondence between the conjugacy

classes of ergodic quantum dynamical systems with purely discrete spectrum and the

family of pairs (H, σ) where H ⊂ Ĝ is a discrete group and σ is a second cohomology

class of H.

In fact, in analogy with the commutative theory, every quantum dynamical system

is conjugate to a shift on the noncommutative deformation of Ĥ determined by σ - see

[OPT].

Definition II.6. A quantum dynamical system (A, G, α, τ) is called totally ergodic

if for every g ∈ G individually, the only elements of K invariant under αg, are scalar

multiples of I.

For an example of ergodic but not totally ergodic quantum dynamical system see

Section VI.

We shall call the eigenvectors of α quasi-eigenvectors of the first order. Similarly,

eigenvalues of α are called quasi-eigenvalues of the first order. The set of normalized

quasi-eigenvectors of the first order is denoted by G1 while the set of all quasi-eigenvalues

of the first order is denoted byH1. We define the set Gn of normalized quasi-eigenvectors

of n-th order and the set Hn of quasi-eigenvalues of n-th order inductively. Suppose

that Gn and Hn are defined.

Definition II.7. With the above notation, a non-zero element U ∈ K is called a quasi-

eigenvector of order n+1 of α if αg(U) = λ(g)U , where λ(g) ∈ A∩Gn. Then λ is called

a quasi-eigenvalue of order n+ 1.

Definition II.8. A quantum dynamical system (A, G, α, τ) is called a system

with purely quasi-discrete spectrum if K has an orthonormal basis consisting of quasi-

eigenvectors of α of possibly arbitrary orders.

The subject of this paper is the classification problem for (noncommutative) totally

ergodic systems with quasi-discrete spectrum. This is to be solved by constructing a

complete set of algebraic invariants of such systems.
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III. Classification of Quasi-Discrete Systems

In this paper we tackle the program described in the previous section under the following

additional assumptions:

1. We consider only G = Z, i.e. quantum maps. The automorphism α1 corresponding

to the generator 1 of Z will simply be denoted by α.

2. We asume that K has an orthonormal basis consisting of the second order quasi-

eigenvectors of α.

3. We require that τ is a normalized trace.

Additionally, throughout the rest of the paper we assume that the system (A,Z, α, τ)
is ergodic. We do explicitly mention when total ergodicity is used.

With extra effort the classification program can be presumably carried out for

arbitrary abelian locally compact groups and, what is most challenging, arbitrary quasi-

discrete spectrum. The trace assumption is used in the proof of unitarity in the following

proposition and possibly is not really needed. In any case it seems likely that ergodicity

and discreteness of the quasi-spectrum will force any invariant state to be a trace.

Every constant is an eigenvector belonging to the eigenvalue λ = 1, and therefore

H1 ⊂ G1. Moreover, obviously:

H1 ⊂ H2 ⊂ G1 ⊂ G2. (III.1)

Proposition III.1. Let λ be an eigenvalue of α. If Uλ ∈ K is a normalized second

order quasi-eigenvector of α:

α (Uλ) = λUλ , (III.2)

then Uλ ∈ A and Uλ is unitary.

Proof. This needs a little von Neumann algebras theory from [Ar]. Let P \ ⊂ L2 (A, τ)

be the closure of A+1, where A+ is the positive part of A and where 1 ∈ A ⊂ L2 (A, τ)

is the unit in A. It follows from this definition that P \ is invariant under α. It is known

that every x ∈ L2 (A, τ) has a unique decomposition:

x = u |x|,

where u ∈ A is a partial isometry and |x| ∈ P \. Write Uλ = u |Uλ| in (III.2). Then:

α(u)α(|Uλ|) = (λu) |Uλ|

It follows that |Uλ| is an invariant vector for α and so, by ergodicity, it is equal to 1.

But that means that Uλ ∈ A. Applying the ergodicity assumption to U ∗
λUλ we see that

U∗
λUλ = 1.

Since 1−UλU
∗
λ is positive and τ (1− UλU

∗
λ) = τ (1− U∗

λUλ) = 0 we see that Uλ is

unitary. ¤
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Proposition III.2. If U, V ∈ G2 belong to the same quasi-eigenvalue λ then there is a

constant C, |C| = 1, such that U = CV .

Proof. Applying α to U−1V yields:

α(U−1V ) = U−1λ−1λV = U−1V.

It follows from ergodicity of α that U−1V is a constant. ¤

Let us recall from [OPT] the following structural result about G1.

Proposition III.3. For each pair λ, µ ∈ H1, we have

UλUµ = σ (λ, µ)UµUλ, (III.3)

where Uλ, Uµ ∈ G1 are the corresponding eigenvectors and σ : H1 × H1 → U (1).

Furthermore, σ has the following properties:

σ (λ, λ) = 1, (III.4)

σ (λ, µν) = σ (λ, µ)σ (λ, ν) , (III.5)

and

σ (µ, λ) = σ (λ, µ)
−1

. (III.6)

A map σ : H1 × H1 → U (1) satisfying (III.4), (III.5), (III.6) is called a symplectic

bicharacter.

The following lemma deals with effects of noncommutativity of A on the classifica-

tion problem.

Lemma III.4.

(i) If Uλ ∈ G2 belongs to quasi-eigenvalue λ ∈ H2 then there exist a number φ(λ) ∈

U(1) such that

U−1
λ λUλ = φ(λ)λ.

(ii) If U ∈ G2 and V ∈ G1 then UV U−1 ∈ G1.

Proof. We verify by direct calculation that U−1
λ λUλ and λ belong to the same eigenvalue

of α. Consequently, Proposition III.2 implies item (i).

If U ∈ G2 belongs to λ ∈ H2, λ ∈ H2 ⊂ G1 belongs to R(λ) ∈ H1, and V ∈ G1

belongs to µ ∈ H1, then we compute:

α(UV U−1) = λUµV U−1λ−1 =
µ

φ(λ)
λUV λ−1U−1

= µUλV λ−1U−1 = µσ(R(λ), µ)UV U−1
(III.7)

which proves (ii). In the above calculation we used (i) twice as well as Proposition III.3.

¤

If λ, µ ∈ H2 and Uλ ∈ G2 is a quasi-eigenvector belonging to λ we define the

following product on H2:

λ ∗ µ := λUλµU
−1
λ . (III.8)
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Proposition III.5. Each of the sets H1, G1, G2 is a group under operator multiplica-

tion while H2 is a group under ∗ multiplication. Moreover H1 ⊂ H2 is a subgroup.

Proof. The fact thatH1 and G1 are groups follows from [OPT] so we need to concentrate

on H2 and G2. We first verify that the right hand side of (III.8) is in G1:

α(λUλµU
−1
λ ) = R(λ)R(µ)σ(R(λ), R(µ)) · λUλµU

−1
λ (III.9)

by (III.7). Here R(λ) and R(µ) are eigenvalues corresponding to eigenvectors λ and µ.

Additionally:

α(UλUµ) = λUλµUµ = λUλµU
−1
λ · UλUµ = λ ∗ µ · UλUµ (III.10)

so that λ ∗ µ ∈ H2. Consequently the ∗- product is well defined. The identity operator

1 ∈ A is the unit for this multiplication. Since

α(U−1
λ ) =

λ−1

φ(λ)
· U−1

λ

the ∗ inverse of λ is

I(λ) :=
λ−1

φ(λ)

with λ−1 the operator multiplication inverse. Associativity of the ∗ multiplication fol-

lows from (III.9) which also shows that G2 is a group under operator multiplication.

Finally if λ, µ ∈ H1 then λ ∗ µ = λµ. ¤

We define a map R : G2 → H2 by R(U) := λ if α(U) = λU . In other words,

R assigns to a quasi-eigenvector the corresponding quasi-eigenvalue. Clearly R maps

G1 ⊂ G2 into H1 ⊂ H2. Also R maps H2 ⊂ G1 into H1.

Proposition III.6. The mapping R : H2 → H1 has the following properties:

(i) For every λ ∈ H2 and µ ∈ H1 we have µσ (µ,R(λ)) ∈ H1 and

λ ∗ µ ∗ I(λ) = µσ (R(λ), µ) . (III.11)

In particular, H1 is a normal subgroup of H2.

(ii) R is a “twisted” homomorphism:

R(λ ∗ µ) = R(λ) ∗ λ ∗R(µ) ∗ I(λ) = R(λ)R(µ)σ(R(λ), R(µ)). (III.12)

(iii) The kernel of R is the group H1.
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Proof. Item (i) is just a rephrasing of (III.7) and item (ii) follows directly from (III.9).

Item (iii) is a consequence of ergodicity of α, as eigenvectors corresponding to eigenvalue

λ = 1 are proportional to the identity. ¤

Let N :=Image of R ⊂ H1. Equip N with the following product:

n1 ∗ n2 := n1n2σ(n1, n2) ∈ N,

where the last inclusion follows from Proposition III.6, item (i). It is easy to see that

N is a group with respect to this product and R : H2 7→ R is a homomorphism.

Consequently, we have the following short exact sequence of groups:

1 −→ H1 −→ H2
R
−→ N −→ 1 . (III.13)

This sequence is an extension with abelian kernel, and the N -module structure on H1

is given by (III.11), see [B].

Proposition III.7. The group H2 is at most countable, and, assuming that α is totally

ergodic, H1 has no nontrivial elements of finite order.

Proof. Since α is assumed to be totally ergodic no nontrivial elements of finite order in

H1 can exist. Also H1 is at most countable as a consequence of separability of K. Since

R defines a one-to-one map H2/H1 7→ H1, the group H2 is at most countable. ¤

If U belongs to λ ∈ H2 then α(U) belongs to R(λ) ∗ λ. Thus it makes sense to

study the properties of the map:

k(λ) := R(λ) ∗ λ. (III.14)

Proposition III.8. The map k defined by (III.14) is an isomorphism of H2. Moreover

k(λ) ∗ I(λ) ∈ H1 and k(λ) = λ iff λ ∈ H1.

Proof. k is a homomorphism since

k(λ ∗ µ) = R(λ ∗ µ) ∗ λ ∗ µ = R(λ) ∗ λ ∗R(µ) ∗ I(λ) ∗ λ ∗ µ

= R(λ) ∗ λ ∗R(µ) ∗ µ = k(λ) ∗ k(µ)

by Proposition III.6. The inverse of k is k−1(λ) = R(λ)−1 ∗ λ. Next k(λ) ∗ I(λ) = R(λ)

so it is in H1. Finally k(λ) = λ iff R(λ) = 1 so λ ∈ H1. ¤

9
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Proposition III.9. If the automorphism α is totally ergodic, then quasi-eigenvectors

belonging to different quasi-eigenvalues are orthogonal in K.

Proof. The statement is true for ordinary eigenvectors. Let K1 be the closed subspace

of K spanned by G1, and let K2 be its orthogonal complement. The assumption of total

ergodicity of α is used in the following lemma which says that quasi-eigenvector which

is not an eigenvector can not be a linear combination of eigenvectors.

Lemma III.10. Suppose U ∈ G2 is not in G1 and belongs to λ ∈ H2. Then U 6∈ K1.

Proof. Assume that

U =
∑

µ∈H1

aµUµ. (III.15)

We can compute αn(U) in two different ways. First use (III.15) and apply αn to each

Uµ. This yields:

αn(U) =
∑

µ∈H1

a′µUµ,

where a′µ differs from aµ by a phase. Secondly, use α(U) = λU n-times and then expand:

αn(U) =
∑

µ∈H1

a′′µUR(λ)nµ,

where, as before, a′′µ differs from aµ by a phase. By Proposition III.7 R(λ)nµ are all

different. Consequently, for any µ there is an infinite number of coefficients in (III.15)

equal, up to a phase, to aµ, and so they must be zero. ¤

Returning to the proof of Proposition III.9, if U ∈ G2 and not in G1, then we claim

that U is in K2. In fact, let U = U1 + U2 be the orthogonal decomposition of U with

respect to K = K1 ⊕K2. It follows from Lemma III.10 that U2 6= 0. Since α is unitary,

α(U1) ∈ K1 and α(U2) ∈ K2. Moreover λU1 ∈ K1 because G1 forms a group. For the

same reason λU2 ∈ K2 as:

(µ, λU2) = (λ−1µ, U2) = 0,

for µ ∈ G1. Consequently we have α(U1) = λU1 and α(U2) = λU2 which implies, in

view of Proposition III.2, that U1 = CU2. This can happen only if C = 0 as U1 and U2

belong to perpendicular subspaces of K.

It remains to prove that if U, V ∈ G2 are not in G1 and belong to different quasi-

eigenvalues λ, µ ∈ H2 then U, V are orthogonal. But this is the same as proving that

U−1V is orthogonal to 1 ∈ K1. Since G2 is a group with respect to operator multiplica-

tion, U−1V ∈ G2 and belongs to quasi-eigenvalue I(λ) ∗ µ. If U−1V is not in G1 then

the orthogonality follows from the previous argument. It remains to consider the case

when U−1V ∈ G1. But two elements of G1 are orthogonal unless they belong to the

same eigenvalue, and, since λ 6= µ, I(λ) ∗ µ 6= 1. ¤

10
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Corollary III.11. For every λ ∈ H2 we have:

τ(Uλ) =
{
1 if λ = 1
0 otherwise.

Proof. This is a direct consequence of Proposition III.9 and τ(Uλ) = (1, Uλ). ¤

IV. Equivalence Theorem

In this section we spell out the complete set of group theoretic invariants for totally

ergodic quantum dynamical systems with quasi-discrete spectrum of the second order.

The equivalence theorem proved here says that if two such systems have the same set

of invariants then they are conjugate.

If H is a group, then a function r : H ×H → U (1) is called a 2-cocycle if

r (λ, µ) r (λµ, ν) = r (λ, µν) r (µ, ν) , (IV.1)

for all λ, µ, ν ∈ H. A 2-cocycle r is called trivial if there is a function d : H → U (1),

such that r (λ, µ) = d (λµ) /d (λ) d (µ). The set of equivalence classes of 2-cocycles mod

trivial 2-cocycles is the second cohomology group H2(H) of group H (with values in

U(1)).

Lemma IV.1. Let (A,Z, α, τ) be a totally ergodic quantum dynamical system with

purely quasi-discrete spectrum of the second order. Choose an orthonormal basis {Uλ},

λ ∈ H2, in K, consisting of quasi-eigenvalues of α and such that U1 = 1. Then for each

pair λ, µ ∈ H2,

UλUµ = r (λ, µ)Uλ∗µ, (IV.2)

where r (λ, µ) is a 2-cocycle on H2. Moreover, any other orthonormal basis of K con-

sisting of quasi-eigenvectors of α leads to a cohomologous r and A is linearly spanned

by {Uλ}.

Proof. (IV.2) is a consequence of Proposition III.2, (III.10). The associativity of the

operator multiplication implies that r is a cocycle. If {Vλ} is any other orthonormal

basis of K consisting of quasi-eigenvectors of α then Vλ = d(λ)Uλ, d(λ) ∈ U(1), and

d(λ) gives the equivalence of the corresponding cocycles. Finally, since Uλ is a basis in

K it follows that A is a σ-weakly closure of the linear span of {Uλ}. ¤

Since H2 ⊂ G1, given a choice of a basis in K we can write for any λ ∈ H2:

λ = C(λ)UR(λ), (IV.3)

where C(λ) ∈ U(1). The main properties of the coefficients C(λ) are summarized in

the following lemma.

11
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Lemma IV.2. With the above notation we have:

C(λ ∗ µ) = C(λ)C(µ)
r(λ,R(µ)) r(R(λ), λ ∗R(µ) ∗ I(λ))

r(λ ∗R(µ) ∗ I(λ), λ)
. (IV.4)

Additionally, if λ ∈ H1 then C(λ) = λ.

Proof. Proof is a straightforward calculation using (IV.2), (IV.3), and Proposition III.6

which we omit. ¤

Let D(λ) be the following U(1)-valued function on H2:

D(λ) =
{
λ if λ ∈ H1

1 otherwise.
(IV.5)

We shall show below that one can choose a basis {Uλ}, λ ∈ H2, in K, consisting of

quasi-eigenvalues of α, such that the matrix elements of α are particularly simple.

Proposition IV.3. There is a basis {Uλ}, λ ∈ H2, in K, consisting of quasi-

eigenvalues of α, such that

α(Uλ) = D(λ)Uk(λ). (IV.6)

Such a basis will be called a normalized basis.

Proof. Notice that (IV.6) says that α(Uλ) = λUλ is λ ∈ H1, which is always true, and

α(Uλ) = Uk(λ) if λ /∈ H1. Consider the orbits of k. If λ ∈ H1 then k(λ) = λ and H1

is the set of fixed points for k. If λ /∈ H1 then kn(λ) = R(λ)n ∗ λ and, as H1 has no

elements of finite order, all kn(λ) are different for different n ∈ Z. Choose one element

s(λ) from each orbit kn(λ), so that each λ can be uniquely written as λ = kn(s(λ)).

Choose Us(λ) arbitrarily and set

Uλ := αn
(
Us(λ)

)
.

Since Uk(λ) = αn+1
(
Us(λ)

)
, (IV.6) is clearly satisfied. ¤

Let {Uλ} be a normalized basis and let r(λ, µ) be the corresponding 2-cocycle on

H2. Applying α to (IV.2) we infer that

r(k(λ), k(µ))

r(λ, µ)
=

D(λ ∗ µ)

D(λ)D(µ)
. (IV.7)

Such a cocycle will be called a normalized cocycle. If Vλ = d(λ)Uλ, d(λ) ∈ U(1) is

another normalized basis then

d(k(λ)) = d(λ). (IV.8)

By H2
k(H2) we denote the set of equivalence classes of normalized 2-cocycles on H2

modulo k-invariant coboundaries (IV.8).

12
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Remark. If H2 is abelian the set H2
k(H2) can be alternatively described as follows.

Let D̃ be a homomorphism of H2 into U(1) extending the natural embedding H1 ⊂

U(1). Such an extension is always possible for abelian groups [Ab]. Then, just like

in Proposition (IV.5), a basis Ũλ can be constructed satisfying α(Ũλ) = D̃(λ)Ũk(λ).

The corresponding 2-cocycle r̃ on H2 is then k-invariant by an analog of (IV.7), and

cohomologous to r by Lemma IV.1. So, in this case, H2
k(H2) is the second group of

k-invariant cohomologies of H2. In general, when H2 is not necessarily abelian, it is

desirable to have a better description of H2
k(H2).

Let us denote by [r] the cohomology class of r in H2
k(H2). When restricted to H1

the conditions (IV.7) and (IV.8) are void. Moreover, since H1 is abelian, there is a

one-to-one correspondence between the second cohomology classes [r] and symplectic

bicharacters σ, see Proposition III.3. The correspondence is given by:

r (λ, µ) = σ (λ, µ) r (µ, λ) , (IV.9)

see [OPT].

So far to a totally ergodic system with purely quasi-discrete spectrum of the second

order we have associated the following algebraic structure:

1. A countable abelian group H1 ⊂ U(1) which has no nontrivial elements of finite

order.

2. A countable group H2, such that H1 ⊂ H2 is a normal subgroup.

3. An isomorphism k : H2 7→ H2 such that k(λ) ∗ λ−1 ∈ H1 and k(λ) = λ iff λ ∈ H1.

4. A cohomology class [r] in H2
k(H2).

Definition IV.4. A quadruple (H1, H2, [r], k) satisfying conditions 1-4 above is called

a quantum quasi-spectrum.

Definition IV.5. Two quantum quasi-spectra (H1, H2, [r], k) and (H ′
1, H

′
2, [r

′], k′) are

called isomorphic if

(i) H1 = H ′
1.

(ii) There exists an isomorphism φ of the groups H2 and H ′
2 leaving fixed all the

elements of the group H1 = H ′
1 and such that

k = φ−1k′φ, [r] = φ∗[r′],

where φ∗ is the induced isomorphism of the cohomology groups.

We are now prepared to prove the following theorem which is the main result of

the section.

13
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Theorem IV.6. (Equivalence Theorem) Let (A,Z, α, τ) and (B,Z, β, ω) be two
totally ergodic quantum dynamical systems with purely quasi-discrete spectrum of the

second order, and let (H1(α), H2(α), [rα], kα) and (H1(β), H2(β), [rβ], kβ) denote the

corresponding quantum quasi-spectra. The following statements are equivalent:

(i) The quantum quasi-spectra (H1(α), H2(α), [rα], kα) and (H1(β), H2(β), [rβ], kβ) are

isomorphic;

(ii) (A,Z, α, τ) and (B,Z, β, ω) are conjugate.

Proof. Only (i) → (ii) is non trivial. Let K(α) and K(β) be the corresponding GNS

Hilbert spaces. We are going to construct a conjugation Φ : A 7→ B as an isomorphism

implemented by a unitary map Q : K(α) 7→ K(β). Let {Uλ} and {Vµ} be normalized

orthonormal basis in K(α) and K(β) correspondingly, consisting of quasi-eigenvectors.

Set:

Q (Uλ) := Vφ(λ), (IV.10)

where φ is an isomorphism of H2(α) and H2(β). By Lemma IV.1 we have Uλ1
Uλ2

=

rα(λ1, λ2)Uλ1∗λ2
and Vµ1

Vµ2
= rβ(µ1, µ2)Vµ1∗µ2

. Since rα and φ∗rβ are cohomologous,

we may assume, renormalizing Vµ if necessary, that

rα(λ1, λ2) = rβ (φ(λ1), φ(λ2)) . (IV.11)

We can deduce from (IV.11) that Φ(Uλ) := QUλQ
−1 = Vφ(λ) as follows:

QUλ1
Q−1Vφ(λ2) = QUλ1

Uλ2
= rα(λ1, λ2)QUλ1∗λ2

= rα(λ1, λ2)Vφ(λ1∗λ2)

= rβ (φ(λ1), φ(λ2))Vφ(λ1)∗φ(λ2) = Vφ(λ1)Vφ(λ2)

But A and B are linearly generated by, correspondingly, Uλ and Vµ and so Φ extends to

an isomorphism of A and B. A straightforward calculation verifies that Φ ◦ α = β ◦ Φ:

(Φ ◦ α)Uλ = D(λ) Φ
(
Ukα(λ)

)
= D(λ)Vφ(kα(λ)) = D(λ)Vkβ(φ(λ))

= β
(
Vφ(λ)

)
= (β ◦ Φ)Uλ

Also ω(Φ(Uλ)) = τ(Uλ) by Corollary III.11. It follows that (A,Z, α, τ) and (B,Z, β, ω)
are conjugate. ¤

14
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V. Representation Theorem

In this section we prove a representation theorem which says that for any system of

invariants (i.e. a quantum quasi-spectrum) there is a corresponding quantum dynam-

ical system with exactly that system of invariants. Consequently, the correspondence

between the conjugacy classes of totally ergodic systems with purely quasi-discrete spec-

trum and the isomorphism classes of quantum quasi-spectra is onto.

Theorem V.1. (Representation Theorem) Let (H1, H2, [r], k) be a quantum

quasi-spectrum. There exists a totally ergodic quantum dynamical system (A,Z, α, τ)
with purely quasi-discrete spectrum such that its quantum quasi-spectrum is isomorphic

to (H1, H2, [r], k)

Proof. Consider K := l2(H2) and let {φλ} be the canonical basis in K. Define A to be

the von Neumann algebra generated by the following operators Uλ:

Uλφµ := r(λ, µ)φλ∗µ, (V.1)

where r(λ, µ) is a normalized 2-cocycle on H2 corresponding to [r]. For any f ∈ K we

obtain

Uλf(µ) = r(λ, I(λ) ∗ µ)f(I(λ) ∗ µ).

It follows that

UλUµ = r (λ, µ)Uλ∗µ,

Then set

βφλ := D(λ)φk(λ), (V.2)

where D(λ) ∈ U(1) was defined in (IV.5). Equivalently, or any f ∈ K we have

βf(λ) = D
(
k−1(λ)

)
f
(
k−1(λ)

)
= D (λ) f

(
k−1(λ)

)
, (V.3)

since D(λ) is k invariant. β is a unitary operator in K with the inverse given by

β−1φλ =
1

D (k−1(λ))
φk−1(λ),

or, equivalently, for any f ∈ K

β−1f(λ) =
1

D(λ)
f(k(λ)).

Conjugation with β gives an automorphism α of A since one verifies that

α(Uλ) := βUλβ
−1 = D(λ)Uk(λ). (V.4)

15
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In fact,

βUλβ
−1φµ =

1

D (k−1(µ))
βUλφk−1(µ) =

r
(
λ, k−1(µ)

)

D (k−1(µ))
βφλ∗k−1(µ)

=
r
(
λ, k−1(µ)

)
D(λ ∗ k−1(µ))

D (k−1(µ))
φk(λ∗k−1(µ)) =

r
(
λ, k−1(µ)

)
D(λ ∗ k−1(µ))

D (k−1(µ))
φk(λ)∗µ.

Notice that by (V.1) we have

Uk(λ)φµ = r(k(λ), µ)φk(λ)∗µ.

Consequently,

βUλβ
−1φµ =

r
(
λ, k−1(µ)

)
D(λ ∗ k−1(µ))

D (k−1(µ)) r(k(λ), µ)
Uk(λ)φµ = D(λ)Uk(λ)φµ

by (IV.7).

Define

τ(A) := (φ1, Aφ1)

Since βφ1 = φ1, the state τ is α invariant. Moreover vector φ1 is cyclic and separating

for A and so the GNS Hilbert space of state τ is canonically identified with K. In this

identification Uλ is mapped to φλ and the unitary operator in K defined by α is simply

β. Also τ is a trace since A is linearly generated by Uλ’s.

We need to verify that the system (A,Z, α, τ) is totally ergodic and that its quantum

quasi-spectrum (H1(α), H2(α), [rα], kα) is isomorphic to (H1, H2, [r], k). It follows from

(V.3) that the spectrum of β (and equivalently of α) is H1 with φλ, λ ∈ H1 being the

corresponding eigenvectors. Also

βnf(λ) = D (λ)
n
f
(
R(λ)−n ∗ λ

)
,

where R(λ) := k(λ) ∗ λ−1 ∈ H1. As H1 has no nontrivial elements of finite order, φ1 is

the only invariant vector for βn and α is totally ergodic. Next observe that

α(Uλ) =
D(λ)UR(λ)

r(R(λ), λ)
Uλ,

and so that H2(α) consists of the operators of the form
D(λ)UR(λ)

r(R(λ),λ)
. They are different

for different λ’s as they correspond to different quasi-eigenvectors of an ergodic system.

The map

H2 3 λ 7→ φ(λ) :=
D(λ)UR(λ)

r(R(λ), λ)
∈ H2(α)

16
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is consequently bijective. φ is a homomorphism as a consequence of the following cal-

culation:

φ(λ ∗ µ)Uλ∗µ = α(Uλ∗µ) =
1

r(λ, µ)
α(UλUµ) =

1

r(λ, µ)
α(Uλ)α(Uµ)

=
1

r(λ, µ)
φ(λ)Uλφ(µ)Uµ =

1

r(λ, µ)
φ(λ) ∗ φ(µ)UλUµ = φ(λ) ∗ φ(µ)Uλ∗µ

Since R(φ(λ)) = R(λ), it follows that k = φ−1kαφ. Finally, as {φλ} is a normalized

basis in K consisting of quasi-eigenvectors of α, formula (V.1) implies that [r] = φ∗[rα].

¤

VI. Examples: Quantum Torus

In this section we consider examples of systems, defined on on quantum tori, il-

lustrating our theory. The first example is a system satisfying all the assumptions of

our classification scheme. Interestingly, it appears as a quantization of a kicked rotor in

[BB].

Recall that the algebra A of observables on a quantum torus is defined as the

universal von Neumann algebra generated by two unitary generators U, V satisfying the

relation [R]:

UV = e2πihV U .

One can think of the elements of A as series of the form a =
∑

an,mU
nV m. A natural

trace on A is simply given by τ(a) = a0,0. The automorphism α is defined on generators

by:

α(U) := e2πiωU, α(V ) := UV.

It extends to an automorphism of A. If ω is irrational, then α is totally ergodic. In fact,

the eigenvectors of α are just powers of U :

α(Un) = e2πinωUn.

Consequently H1 = {e2πinω , n ∈ Z} ∼= Z and the spectrum is simple which proves total

ergodicity if ω is irrational. Moreover

α(UnV m) = e2πi(nω+hm(m−1)/2)Um · UnV m,

which shows that UnV m are quasi-eigenvectors of the second order for α. Since they

form an orthonormal basis in L2 (A, τ) we see that (A,Z, α, τ) is a totally ergodic system

with purely quasi-discrete spectrum of the second order.

17
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We can identify H2
∼= Z2 as groups and H1 is simply the subgroup Z× {0} ⊂ Z2.

The mapping R is given by

R(n,m) = m ∈ Z ∼= H1,

and the isomorphism k is

k(n,m) = (n+m,m).

Define

C(n,m) :=
{
1 if m = 0
eπi(h(nm−n)+ω(n2/m−n)) otherwise.

Then a simple calculation shows that C(n,m)UnV m is a normalized basis for this

ergodic system.

In this simple example the group H2 is abelian. We can identify H2
k(H2) with

H2(H2), the second cohomology group of H2. The later group is identified with the

set of symplectic bicharacters by (IV.9). A simple calculation shows that the following

symplectic bicharacter represents [r] in our example.

σ ((n,m), (n′,m′)) = e2πih(nm′−n′m),

Notice that σ is trivial on H1 and k-invariant.

The above example can be easily extended to give systems with a basis consisting of

quasi-eigenvectors of arbitrary order. Here is one way to do it. Consider the algebra as

before but with an extra generator W which we assume for simplicity to commute with

U and V . As before define a trace τ such that τ(UnV mW k) = 0 unless n = m = k = 0.

Finally extend the automorphism α by α(W ) = UVW . Then one easily verifies that

quasi-eigenvectors of order one are powers of U , quasi-eigenvectors of the second order

are UnV m and quasi-eigenvectors of the third order are UnV mW k. The last expressions

form a basis in the corresponding Hilbert space.

Systems that are ergodic but not totally ergodic are usually associated with ele-

ments of the finite order. For example in an algebra generated by two unitary generators

U, V satisfying the relations UV = e2πi/NV U , and V N = 1 consider an automorphism

α given by

α(U) := e2πiωU, α(V ) := e2πi/NV.

Here N is a positive integer and ω is assumed to be irrational. The eigenvectors of

α are UnV m, 0 ≤ m ≤ N − 1. This system is ergodic but not totally ergodic since

αN (V m) = V m for any m.
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