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The construction investigated in this paper begins with an ordered, finite
set of closed subgroups of some compact Lie group; from this data, the
construction produces a topological space. Using a combination of fibra-
tion and cofibration techniques, it is possible to describe both the global
and the local topological structure for this space. The construction yields
novel, canonical decompositions of some compact manifolds (including cer-
tain spheres), as well as other interesting spaces with more exotic local
topological structure. With this approach, the correspondences of twistor
theory can be seen in their global geometric context, as a l-parameter
family of such correspondences, which canonically fit together to form S'*,
a (constant radius) 14-dimensional sphere in a 15-dimensional Euclidean

space.
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1. Introduction

The aim of this paper is to introduce and then illustrate the lattice construction with a theoretical observation
and some interesting examples. The observation shows that the three pairs of fibrations underlying the
correspondences of twistor theory, may be viewed as the first part of the lattice construction for a particular
lattice of closed subgroups of the unitary group, U(4). The second part of the construction binds these
fibrations into a single topological space, which is shown to be a 14-dimensional sphere. This sphere is then

seen to be the global context for twistor theory in section 2.

The other goal of this paper is simply to illustrate the lattice construction, with some examples of the
synthesis and analysis of certain simply-connected, compact manifolds (always without boundary). In section
3, one such 8-dimensional manifold, X?, is obtained from the application of this canonical construction to the
following lattice of Lie groups: SU(3) and the two subgroups, SU(2) and SO(3), as well as their intersection,
S0O(2). This manifold is referred to as X(3) in the more general context where X, is obtained from the
lattice construction, applied to the lattice of Lie groups: SU(n) and the two subgroups, SU(n — 1) and

SO(n), as well as their intersection, SO(n — 1). However, only X(3) is a closed manifold.

A point in a topological space will be called a non-singular point, if it has a neighborhood homeomorphic to
a Euclidean space. The set of singular points in the space (by definition, points where the space is not locally
Euclidean) will be termed the singular subspace. Specifically, this singular subspace for X(3) is empty, while
for X(,) with n > 4, the singular subspace is the embedded sphere, S§2n=1 ¢ X(n)- The neighborhoods of
these singular points are explicitly described.

In section 4, for each n > 2, we consider the lattice: SU(n+ 1) and two distinct subgroups, both isomorphic
to SU(n), and so that their intersection is SU(n — 1). In this case, the lattice construction produces a

(4n + 1) dimensional manifold, denoted Y*"*!.

Both X(3) and Y4+l are simply-connected, compact manifolds with the homology of a product of two
spheres. Specifically, there are isomorphisms, H.(X(3)) & H.(S® x 5°) and H.(Y*"*1) = H (S?" x 5271,

An elegant observation of A. Borel [1] strongly suggested that Y*"*! is homeomorphic to the real Stiefel
manifold, V5,422 which consists of all orthonormal 2-frames in R?"*+2, T know of no such identification for
X8,

This canonical lattice construction is similar to that of a finite CW-complex, constructed by skeleta of
increasing dimension. The major difference is that the concept of the cell (in the skeletal filtration of a
CW-complex), is replaced by the product space of a standard simplex and the appropriate homogeneous
space. In section 5 we discuss some generalizations of the lattice construction, and consider briefly the
spectral sequence associated with the skeletally induced filtration of the constructed space. In the language
of category theory, A.Svensson [12] showed that the lattice construction is functorial and discussed some of

the advantages of knowing this fact.

The simplest way to describe the construction may not be the most illuminating; however, it is the most
direct, and for that reason it will be presented first. R and C will always denote the real numbers and the
complex numbers, respectively. Let G be a compact Lie group, and suppose that Gy, G1,Ga,..., G, are

m + 1 closed subgroups of G. Let A, C R™*! denote the standard m-simplex with barycentric coordinates
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bo,b1,b2,...,bm (ie., each b; > 0 and Yilobj = 1). The construction we wish to describe yields a quotient

space of the product space

GxAm={(g0)19€G, B =(bo,b1,....bm)}.
In order to produce the desired quotient space, we require the following equivalence relation, “~” on G'x A,,.

Definition: Let (g,3),(¢’,3') € G x A,, be two arbitrary elements of the product space. We define the
relation, (g, 3) ~ (¢, 8') to mean that (1) 8 = 8" = (bo,b1,...,bn) € Ay, and (2) foreach k (k= 0,1,...,m),
if b, #0, then g7'g’ € Gy. m

The quotient space, X = (G x A,,)/(~) is then the result of applying the lattice construction to the given
lattice of subgroups of G. It is this topological space, X and certain subspaces of X (together with their

relation to the lattice of Lie groups) that we wish to study in this paper.

The projection onto the second factor, G x A,,, = A,, induces a map on the quotient space,
B:X = Ay

More generally, if K is any subcomplez of A, then X(K) = 371(K) C X is filtered by skeleta. Let K?
denote the p-skeleton of K, and use the map 3 to define the skeletally induced filtration of the space X (K)

while dropping reference to K in order to simplify the notation:
X, =pB7'(K?)
This filtration,
@IAX’_] cXocXiCc---CX, IAY(K’)

gives rise to a spectral sequence (in section 5), which converges to H*(X(K)), the cohomology of the space
X(K).

We conclude this section with the observation that the most unusual feature of this spectral sequence is the
way in which it begins:

EP = H(X,, Xpm) 2 Y HY(G/Glo])

where the index for the direct sum, o ranges over the set of p-simplices of K, and
P
Glo] =) G
i=0

where {b,,, b, ,...,b, } are the non-zero barycentric coordinates in the interior of the p-simplex ¢. In this
context, the first differential, d; : E; — E; can be described explicitly, in terms of the above direct sum

decomposition.
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2. An Envelope for Twistor Theory

For each k = 1,2, 3, let U(k) x U(4—k) be included in U(4), in the usual way: the element of U (k) is in the
upper left corner of a 4 x 4 matrix, the element of U(4 — k) is in the lower right corner of the 4 x 4 matrix,
and the remaining 2k(4 — k) entries are zero. Now we could simply apply the lattice construction to the
lattice of subgroups of G = U(4) which consists of all seven of the subgroups that are intersections of the

subgroups:

Gy = U(3) x U(1).

~—

In addition to these three, the four others are:

GoNGy=U(1) x U(1) x U(2)
Go NGy =U(1) x U(2) x U(1)
GiNGy=U(2)x U(1) x U(1)

GoNGINGy=U(1) x U(1) x U(1) x U(1).

The seven corresponding homogeneous spaces, obtained as quotient spaces of U(4), also correspond to the

seven subsimplices of Az in the lattice construction of the space X.

However, there is an easier way to identify the desired space X, in this case, using the adjoint representation
of U(4) on its Lie algebra, ¢ Herm(4, C), the real vector space of all 4 x 4, complex, anti-Hermitian matrices.
The action is by conjugation, and it is represented here as the (right) conjugate action on Herm(4, C), the

16-dimensional, real vector space of all 4 x 4, complex, Hermitian matrices.

(H,U) — HY =U*HU : Herm(4, C) x U(4) — Herm(4, C)

Let Hermy (4, C) = { H € Herm(4, C) | Tr(H) = 0}, the 15-dimensional subspace of all traceless matrices.
Since Tr(U*HU) = Tr(H), Hermg (4, C) is an invariant subspace.

For real number, r > 0, let S(r) = { H € Hermy (4, C) | Tr(H?) = r?}, which is topologically a 14-
dimensional sphere, since Tr(H?) is just the Hilbert-Schmidt Euclidean norm on €% = R32, restricted to
the vector subspace Hermg(4, C) & R'. If {\1, A2, A3, A4} is the set of eigenvalues of H € Hermy(4, C),
then I} \; = Tr(H) = 0. If moreover H € S(r), then T}_,(\;)> = Tr(H?) = r2. Since the eigenvalues are

invariant under the conjugate action of U(4), it follows that each sphere, S(r) is an invariant subspace.

For the remainder of this section, let $'* denote S(1), and consider the conjugate action of U(4) on S*.
S xU4)— st

Each orbit contains a unique diagonal matrix with eigenvalues in non-decreasing order down the diagonal.
Since the eigenvalues of any H € S can be reordered so that A\; < Ay < A3 < A\; and A\; < Ay, the map

B:8" = Ayt Hs B(H) = (bo(H),b1(H),ba(H))
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is well-defined, where the barycentric coordinates by (k= 0,1,2) are defined by

by — Akt2 — Akg1
TN N

Since we consider only orbits in S, the eigenvalues must satisfy

4 4
D Ai=0 and Y (\)=1
i=1 i=1

Thus, the barycentric coordinates 3(H) determine the eigenvalues of H. In this way, the orbits of U(4)
in ' correspond bijectively with the points of the standard 2-simplex, A,, and we will identify this as
the orbit space, with orbit-projection map 3. Using three (barycentric) coordinates to describe the two
dimensional simplex, has the advantage of faithfully representing all possible degeneracies of the spectrum
in the simplicial structure of As.

Let X; = 87 1((A2)?), where j = 0,1,2, and (As)/ is the j — skeleton of the 2-simplex (orbit space). Thus,

X, = S™ is constructed from X, which is constructed from

Xo = (6/) u (6/61) u (6/6y).

the disjoint union of the three indicated Grassmann manifolds (at the vertices of Ay).

The 1-simplex with vertices vy and v,, consists of the 1-parameter family of orbits in S'* corresponding to
the condition
A< A< A3=M

(i.e., bp = 0). With the exception of the two orbits represented by the end points vy and vy, the other
orbits (those represented by interior points) are each homeomorphic to the compact homogeneous space
U(4) /U(1)xU((1) x U(2) = F(1,1,2), a 10-dimensional flag manifold called the twistor correspondence
space. This flag manifold is the total space of two quite different fibre bundles:

61 F(1,1,2) = G(1,3) = U(4) / U(1) x U(3) = CP(3)
has fibre CP(2) while
Y F(1,1,2) > G(2,2)=U(4) /| U(2) x U(2)
has fibre, CP(1) = S2.

The various complex flag manifolds (as well as the corresponding real flag manifolds) and the fibrations
between them, are explored in detail and with greater generality in [5, Chapter 2 and Appendix D] (see [6]
for an announcement of results). In this section, only the one special case relevant to twistor theory will be

described. Some of these more general results are reported in section 5.

In twistor theory (see [9],[10] and [13]), the two fibrations,
CP(3) <= F(1,1,2) -5 G(2,2)

5
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form the twistor correspondence between the compact, complezified Minkowski space, G(2,2), and the twistor
space, G(1,3) = CP(3). Thus, points in G(2,2) correspond to embedded copies of CP(1) = $? in C'P(3),
and points in CP(3) correspond to embedded copies of CP(2) in G(2,2).

More generally, all the correspondences of twistor theory are given as a pair of fibre bundle projections, p
and ¢, which have a common total space
AdB-LC

Such a correspondence can also be represented topologically as the double mapping cylinder
Ay, (Bx0.1]) U, C.
Notice that in case p : B — A is an homeomorphism, then the double mapping cylinder is just the usual

mapping cylinder of the map ¢: B — C.

Now we attach the 1-flag cell, F(1,1,2) x [0,1] at the two ends of this cylinder, to Xy, at the two (more
degenerate) orbits at vy and v;. This yields

C'P(3) Uy (F(l, 1,2) x [0, 1]) Uy G(2,2)

Similarly, the 1-simplex with vertices v; and v, represents the 1-parameter family of orbits in S corre-
sponding to the condition
M=\

(i.e., bp = 0). With the exception of the two orbits represented by the end points v; and vs, the other
represented orbits are each homeomorphic to U(4) / U(2) x U(1) x U(1) = F(2,1,1), a 10-dimensional flag
manifold called the dual twistor correspondence space, which is again the total space of two different fibre
bundles:

¢ F(2,1,1) > G(3,1) =U(4)/U(3) x U(1) = CP(3)
has fibre CP(2), while
V' F(2,1,1) = G(2,2) =U(4)/U(2) x U(2)
has fibre, CP(1) = 52.
The two fibrations,
G(2,2) &~ F(2,1,1) % C€P(3)

comprise the dual twistor correspondence between the previously mentioned compact, complezified Minkowski
space G(2,2) and the dual twistor space G(3,1) = CP(3). Once again, the points in G(2,2) correspond to
embedded copies of CP(1) = S? in CP(3).

Now we attach the second 1-flag cell, F(2,1,1) x [0,1] at the two ends of this cylinder, to the two (more

degenerate) orbits at v; and v,. The result of both operations is the space
CP(3)U, (F(1,1,2) x [0,1]) Uy G(2.2) Uy (F(2,1,1) x [0,1]) Uy CP(3)
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To complete the construction of X1, the third 1-flag cell, F(1,2,1) x [0, 1] must be attached to the remaining
pair of orbits represented by the vertices, vy and vq, both of which are CP(3). This 1-parameter family of

orbits corresponds to the condition b; = 0, which can also be written in terms of eigenvalues as
M=)\

Again, the flag manifold, U(4) / U(1) x U(2) x U(1) = F(1,2,1) is the total space of two different fibre
bundles.

" F(1,2,1) - G(3,1)=U(4)/U(3) x U(1) = CP(3)

v F(1,2,1) > G(1,3) =U(4)/U(1) x U(3) = CP(3)

Both of these fibre bundle projections (which are the two attaching maps) have their fibres homeomorphic

to CP(2), the (4-dimensional) complex projective plane. Thus, X7 has been constructed from Xj.

Finally, the 2-flag cell, F(1,1,1,1) x Ay will be attached to X; along its boundary, 8 (F(1,1,1,1) x Ay) =
F(1,1,1,1) x Ay, by the map,
F(]., 1, 1, 1) X 8A2 — X1

which collapses orbits to more degenerate orbits, as appropriate, while the barycentric coordinate, 3 € 0A,
remains unchanged. Thus, X = S'* has been constructed from X, as promised, and we have only to
locate, within S'#, the pair of fibre bundle projections which constitute the ambitwistor correspondence. In
fact, the 2-flag cell, F(1,1,1,1) X Ay may be viewed as a l-parameter family of such pairs of fibre bundle

projections.

U4)/UQ)xU(1) x U(1l) x U(1l) = F(1,1,1,1) is a 12-dimensional flag manifold called the ambitwistor

correspondence space, which is the total space of two rather different fibre bundles.

A:F(1,1,1,1) = G(2,2) = U(4) / U(2) x U(2)
pe F(1,1,1,1) = F(1,2,1) = U(4) ] U(1) x U(2) x U(1)

In this context, F(1,2,1) is called the ambitwistor space. Since points in the orbit space, Ay, bijectively
represent individual orbits of U(4) in S§'%, it follows that double mapping cylinders can be used to construct
(a space homeomorphic to) the subspace

AHwv([0.1])) c §*

for any simple, continuous path, v : [0,1] — A, satisfying the condition that the dimension of the orbit
v(s) remains unchanged for all 0 < s < 1 (but will decrease at both end points (0) and (1), in almost all

interesting cases, though this is not part of the condition).

Many examples of such subspaces of S'4 can be represented by straight line segments in A,, satisfying the
above condition on the constancy of the dimension of orbits represented by interior points of the straight
line segment. The most relevant such straight line segments in Ay, are those with one end point at vertex

v, and the other end point on the straight line segment (1-simplex) joining the vertices, vy and vs.

We will refer to the double mapping cylinders, which are associated with twistor correspondences, by the

same terms: twistor, dual twistor and ambitwistor. If 37! is applied to the straight line segment (1-simplex)
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joining the vertices, vy and v, in Ay, then the resulting subspace of S'* will be the twistor double mapping
cylinder. Similarly, if 371 is applied to the straight line segment (1-simplex) joining the vertices, v; and
vy in Ay, then the resulting subspace of S'* will be the dual twistor double mapping cylinder. Finally, if
37! is applied to any single straight line segment joining the vertex, v; to an interior point of the opposite
1-simplex in As, then the resulting subspace of S'* will be homeomorphic to the ambitwistor double mapping

cylinder .

In the context of algebraic geometry, each orbit of U(4) in S* is an algebraic variety. Replacing unitary
groups by orthogonal groups (and Hermitian matrices by real symmetric matrices) throughout this construc-
tion will produce a similar decomposition (over Ay ) of the 8-dimensional sphere, S®. Moreover, each orbit of
O(4) in S® can be regarded as the space of real points in the corresponding U(4)-orbit in §'*. For details,
the reader is referred to [5, Chapter 2].

3. The 8-dimensional manifold, X8

The Lie group G = SU(3) contains the two closed subgroups, Gy = SU(2) and G; = SO(3), where the
inclusion of SU(2) in SU(3) uses the upper left (2 x 2) submatrix of the (3 x 3) matrix, as usual, and SO(3)
is the subgroup consisting of those matrices of SU(3) containing only real entries. Of course, the intersection
SU((2)NSO(3) = SO(2) is a circle. In this section we apply the canonical construction (described in section
1) to this lattice of subgroups. Since this lattice consists of only two subgroups and their intersection, the

lattice construction yields

X = (6/Go)0y ((G/(Gon G) x 0,1]) UG/ Gh).

In order to understand the two attaching maps, p and ¢ (at the two ends of the cylinder), it is necessary to
consider the 7-dimensional manifold, W7 = SU(3)/SO(2) and view the two attaching maps as the canonical

fibre bundle projections.

p: W — §° = SU(3)/SU(2)
q: W — M° = SU(3)/SO(3)

Both of these fibre bundles have fibres homeomorphic to S%, the two dimensional sphere. Thus, from just
the S% — bundle, p : W — S, it follows easily that W is a simply-connected, 7-dimensional manifold with
homology isomorphic to the homology of the product space, $% x S°.

The homotopy exact sequence for the fibre bundle,
SU(3) — M® = SU(3)/S0(3)

with fibre SO(3) = RP(3), implies that M is a simply-connected, 5-dimensional manifold and wy(M) = Z5.
The Hurewicz theorem and Poincare duality can be applied, and we find that Ho(M) = Z, Hi (M) = 0,
Hy(M) = Z,, H3(M) = 0, Hi(M) = 0 and H5(M) = Z. Further calculations yield n3(M) = Z; and
7T4(M) =0.

Now we can define the 8-dimensional manifold X as the double mapping cylinder
Xt =5"U, (W7 x [0, 1]) U, M?,
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where the cylinder on W is attached at each end to the base space of the indicated fibre bundle projection.
From the Van Kampen theorem, we see that X is simply-connected. Using the Mayer-Vietoris homology
exact sequence, we see that the homology groups of X are isomorphic to the homology groups of the product
space, S% x S°.

Finally, we must justify calling X an 8-dimensional manifold, by showing that X is locally homeomorphic
to the Euclidean space, R®. The points of X are represented by points of the cylinder, W x [0,1] = { (w, ) |
w €W, 0<t<1}. For points (w,t) with 0 < ¢ < 1, the existence of a neighborhood homeomorphic to R®

follows at once from the fact that W is a 7-dimensional manifold.

For those points of X which are equivalence classes of more than one element, they are represented by
either (w,0) or (w,1), for some w € W. It is easy to construct a neighborhood of such a point in X as
the product of two spaces; the first is a sufficiently small neighborhood of the point in either S* or M?®
(and thus, may be chosen to be homeomorphic to R*), while the second space is the cone on the fibre of
the appropriate attaching map (since it is a fiber bundle projection). Of course, p and ¢ each have fibres
homeomorphic to S?, and so the second space can be viewed as a cone homeomorphic to IR*. Therefore, we
have constructed neighborhoods of points represented by pairs (w,t) with ¢ = 0 or 1, and these neighborhoods
are homeomorphic to R®> @ R? =2 R®. We conclude that X is locally homeomorphic to the Euclidean space,

IR, near each of its points.

To summarize, we have the following.

Proposition: X is a compact, simply-connected, 8-dimensional manifold, and
H,(X) = Hy(S* x S°)

are isomorphic integral homology groups, for all p > 0. =

From these facts it follows that the homology decomposition [7] for the homotopy type of X is given by
X =(S*Use’)Uge®,

where o € m4(5%) = Zs, B € 77(5 U, €°) and X is homotopy equivalent to the cofibre (or mapping cone)
of 3. Of course, the homotopy class a = 0 if and only if S¢* : H*(X®; Z,) — H>(X®; Z;) is zero, and this
occurs, if and only if Sq* : H*(M?; Zy) — H>(M®; Zs) is zero.

To see that Sq* : H? (M?;Z3) — HP®(MP®; Zs) is zero, consider the appropriate non-zero transgression in
the Serre cohomology spectral sequence with Zs coefficients for the principal SO(3)-bundle with projection
SU(3) — M°>.

Therefore, o = 0 and 3 € 77(S3 V §%) = 77(S3) & 77(S®) @ 7s(S®). Though tangential to the main thrust
of this paper, it may be interesting to ask for which elements 3 € 77(S® V §%) does the cofibre of 3 have the

homotopy type of a manifold?

We can extend the previous construction to larger square matrices. However, unlike the series of examples
produced in the next section, attempts to generalize the above example lead to the construction of spaces

which are not manifolds, since they fail to be locally Euclidean.
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The Lie group G = SU(n) contains the two closed subgroups, Go = SU(n — 1) and G; = SO(n), where the
inclusion of SU(n — 1) in SU(n) uses the upper left (n — 1) X (n — 1) submatrix of the (n x n) matrix, while
SO(n) is the subgroup consisting of those matrices of SU(n) containing only real entries, and therefore, the

intersection is SU(n — 1) N .SO(n) = SO(n — 1).

Now consider the manifold, W,y = SU(n)/SO(n — 1) and view the two attaching maps as the canonical

fibre bundle projections,

p: Wy = 52"~ =5U(n)/SU(n—1)

and

q: W(n) — J\f(n) = SU(n)/SO(n)

Each of these fibre bundles has its fibres homeomorphic to a manifold. The fibre of ¢ : W(,,) — M, is
just the sphere, S"~!. However, the fibre of p : Wiy — §2n—1 s M1y, which is certainly not an integral
homology sphere, for each n > 4. This follows from the fact that the integral homology group, Hz(M,_1))
is the group of order two, in case n > 4. (The case n = 2 is trivial, while the case n = 3 is discussed at

length in the earlier part of this section.)

Now we can define X(,,) to be the double mapping cylinder
Xy = 5271 Uy (Weay % [0,1]) Uy M,

where again the cylinder on W, is attached at each end to the base space of the indicated fibre bundle
projection. From the Van Kampen theorem, we see that X, is simply-connected. Of course, the homology
of X() can be computed using the Mayer-Vietoris homology exact sequence.

Finally, we should examine X, to try to understand why it is not a manifold, for n > 4. There are three
mutually disjoint subsets of X(,,), whose union is X(,,). One is the open cylinder in the middle, W,y x (0,1),
and the other two are the closed subsets, M|, and S§2n=1_ Obviously, the points of Wny x (0,1) are non-
singular. Further, the points of M(,) C X(,) are seen to have Euclidean neighborhoods, which can each be
constructed as a product of a Euclidean neighborhood in M(,) and an open cone on S"~1. the fibre of the

projection, g. The third set, S?"~! is quite different.

The points of the embedded sphere, §?"~! C Xy, are precisely the singular points of X, (i.e., those points
of X(,) which do not possess a neighborhood homeomorphic to a Euclidean space). However, neighborhoods
of these singular points can be constructed as products of open cones on spaces. Thus, these neighborhoods
are themselves open cones on the joins of the corresponding spaces. Specifically, for a point in $?"7!, a
neighborhood in X, can be constructed as a product of a small neighborhood in $ Zn=1 and an open cone
on M, 1), the fibre of the projection, p. Since M(,_;) is not an homology sphere, for n > 4, the local
homology at the vertex of the cone shows that the vertex does not have a neighborhood homeomorphic
to a Euclidean space. Details on the construction and analysis of these locally contractible spaces in which
all points have conical neighborhoods, will be found in [5, Appendix D]. Of course, we can regard these

neighborhoods as generalized polar local coordinates.
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4. The (4n + 1)-dimensional manifold, Y47 +1

For each integer, n > 2, the Lie group G = SU(n + 1) contains the two closed subgroups, Gy = SU(n) and
G1 = SU(n), where the two inclusions of SU(n) in SU(n + 1) make use of the usual upper left and lower
right (n X n) submatrices of the ((n +1)x (n+ 1)) matrix. Of course, Go NGy = SU(n — 1).

In this section we apply the canonical construction (described in section 1) to this lattice of subgroups. Here

again, since the lattice has only the two subgroups and their intersection, the construction yields

Y = (G/Go), ((G/(Gon G1)) x [0.1]) Uy (G/Gn)

Let W = Wyy1 2 = SU(n+1)/5U(n—1) denote the 4n-dimensional complex Stiefel manifold of orthonormal
complex 2-framesin C"™*!. The two attaching maps, p and g (at the two ends of the cylinder) are the canonical
fibre bundle projections,

poq: W — ST = SU(n+1)/SU(n).

Both of these fibre bundles have fibres homeomorphic to SU(n)/SU(n—1) = §?"~!, the (2n—1)-dimensional
sphere. Therefore, W is a simply-connected, (4n)-dimensional manifold with homology isomorphic to the
homology of the product space, §27 ! x §27+!,

Now we can define the (4n + 1)-dimensional manifold Y as the following double mapping cylinder.
yin+l — g2ty (I/V4n x [0, 1]) U, S2m+

where the cylinder on W is attached at each end, to the base space of the indicated fibre bundle projection.
Again, the Van Kampen theorem, implies that Y is simply-connected, and the Mayer-Vietoris homology exact

sequence implies that the homology of Y is isomorphic to the homology of the product space, §2™ x §27+!,

Finally, we show that Y is a (4n + 1)-dimensional manifold, by proving that Y is locally homeomorphic to
the Euclidean space, R'™*!. As in the last section, the points of Y are represented by points of the cylinder,
W x[0,1] = {(w,t) | we W, 0<t<1}. For points (w,t) with 0 < ¢ < 1, the existence of a neighborhood
homeomorphic to R*"*! follows at once from the fact that W is a (4n)-dimensional manifold.

For those points of Y which are equivalence classes of more than one element, they are represented by either
(w,0) or (w,1), for some w € W. Again, it is possible to construct a neighborhood of such a point in Y (at
either end), as the product of two spaces. The first of these spaces is any sufficiently small neighborhood
of the point in §?"*! (and thus, may be chosen to be homeomorphic to R*"*'), while the second of these
spaces is the cone on the fibre of the appropriate attaching map (and fiber bundle projection). Of course,
in both cases, p and ¢ each have fibres homeomorphic to $2"~!, and so the second space can be viewed
as a cone homeomorphic to R?*". Therefore, we have constructed neighborhoods (of points represented by
(w,t) with ¢ = 0 or 1), which are homeomorphic to R?"*! ¢ R?" = R*"+! We conclude that Y is locally

homeomorphic to the Euclidean space, R'"*!, near each of its points. In summary, we have the following.

Proposition: If integer n > 2, then Y is a compact, simply-connected, (4n + 1)-dimensional manifold, and
H,(Y) = H,(5*" x §*"t1)

are isomorphic integral homology groups, for all p > 0. =

11
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Much of the remainder of this section is an explanation of the following result. The author wishes to thank
A. Borel [1] for the insightful suggestion that it seemed rather likely that Y4"*! could be identified in this

way.

Proposition: If integer n > 2, then Y*"*! is homeomorphic to V,2 2, the unit tangent bundle of §2"+!
(i.e., the real Stiefel manifold of orthonormal 2-frames in R*""%). m

To prove that Y41 ~ Vaons2,2, we will first construct an action of SU(n + 1) on V42> and then identify
the orbit space of this action with the closed interval, [-1,1] C R. Then it remains only to show that the
isotropy subgroup of SU(n + 1) for an orbit is SU(n) (respectively, SU(n — 1)), if the orbit is represented

as an endpoint (respectively, interior point) of [—1, 1], the orbit space.

Explicitly, using column vectors, let 2 = (21,...,2p+1)%, w = (Wi,...,wpp1)T € €L, where each 2z, =
ay + by and ag, by, € R. Consider the R-module isomorphism, ~ : C"*! — R?"*2 which sends z to 2 =2 =
(a1y...yang1,b15--.,bpg1)T (which defines z). Similarly, define y = @. Suppose (z,y) € R?"*% x R*"*2 is

Tr =1 =yTy = w*w and 2Ty = 0. Further, the usual complex

an orthonormal pair. Therefore, z*z = 2
inner product on C™*! is defined by z*w. Since the real part of z*w is just 27y = 0, it follows that
1z*w € R. In fact, —1 <z"w < 1, and 2z*w is the required invariant parameter which characterizes orbits.

This identifies the orbit space as [—1,1].

Notice that {z,w} is linearly dependent (respectively, independent) over C, if and only if 1z*w = +1
(respectively, —1 < 1z*w < 1), and this occurs if and only if the isotropy subgroup, H = SU(n) (respectively,
H = SU(n —1)). Thus, we have a representation of V42 2 as the double mapping cylinder

Vanta = gt U (VVn.+1,2 x [—1, 1]) Uy S+l

which is the definition of Y41,

Finally, V5,42 2 can be viewed as the total space of the unit tangent vector bundle over S§2m+1 ] consisting of
all the unit length tangent vectors for $?"*! c R?"*2. Each fibre is homeomorphic to $?" and contains two
distinguished points (a copy of S°), corresponding (under the~identification) to the scalar multiplication
by =i of the unit vector under this fibre in the base, S?"+! C C"*!. In each fibre, the isotropy subgroup
is SU(n) on S°, and SU(n — 1) on the complement, $?" \ S$°. The union of all these copies of S° is the
total space of a subbundle with fibre S° and base $?"*!. Since the base is simply connected, this covering
space is a product, S° x S*"T! C V4,124, and consists of the two ends of the double mapping cylinder.
These two copies of $?"*! are the two non-generic orbits, and they represent the standard example of a
unit tangent vector field (and its negative) on an odd dimensional sphere. Their complement in Vongz,2 is
then the cylinder W,4 2 x (—1,1), which projects to the base $?"*! with fibre $?"~! x (—1,1). Thus, the
construction (over SZ”“H) of Vonya o from W,,11 2 appears as a suspension of the fibres.

5. Generalizations and Conclusions

The lattice construction occurs quite naturally in the adjoint representation of a Lie group on its Lie

algebra. Certain special cases are studied in detail in [5] [3] [4] (with an early report in [6]), with the
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two primary purposes of explicitly computing (1) the spectra of symmetric molecules with a strong Jahn-
Teller effect, and (2) the quantum adiabatic phase (or “Berry phase” or “quantum geometric phase”) of all
possible, time-reversal invariant quantum systems, in terms of simple algebraic topology invariants of the
given periodic Hamiltonian. The solution of this general “Berry phase” problem requires an understanding
of the stratification provided by the lattice construction for the following lattices of closed subgroups of two
ambient Lie groups, G. For each integer, n > 2, the ambient group, G = U(n) (respectively, G = O(n))
contains the lattice of all possible intersections of the n — 1 subgroups { U(k) xU(n—k) | k=1,2,...,n—1}
(respectively, { O(k) x O(n—k) | k =1,2,...,n—1}). Regarding molecular spectra, the Jahn-Teller effect is
seen to be the result of the Riemannian geometry of this lattice construction (using the orthogonal groups)
for 2 <n <5.

Of course, a similar construction can be obtained using the symplectic groups and the lattices of block-
diagonal products of smaller symplectic groups. This symplectic group construction is not discussed in [5],

since it is not required in our treatment of the Jahn-Teller effect and the quantum adiabatic phase.

Returning to the notation introduced in section 1, m = n — 2 and the quotient space, X = (G x A,,)/(~)
is diffeomorphic to a sphere of dimension n* — 2 (respectively, a sphere of dimension (n? + n —4)/2). Thus,
section 2 of this paper is just the lattice construction for n = 4 with G = U(4), together with the observation
that the quotient space, X is the 14-sphere. In section 2 it is clear, a priori (by construction), that X = S,
and so (unlike the examples in sections 3 and 4), it is not necessary to prove that X is locally Euclidean.
However, it is an enlightening exercise to show (directly from the lattice construction) that these quotient
spaces, X, are locally Euclidean. This exercise is nearly trivial for n < 3 but for n = 4 it is non-trivial
to show that X is locally homeomorphic to R!'* (without using the fact that X = S, which we happen
to know, only because we understand that the construction of X is equivalent to the stratification of $'*
obtained from the decomposition ! into orbit types, using the given U(4) action).

Note that from the unitary group, U(n), we construct the map
B s Ay_o,
while the orthogonal group, O(n), yields the map
B Sitn=1)/2 _, Ay_s.

Both of these maps are denoted by the same symbol, 3, because the latter is just the restriction of the
former. In these examples, the map 3 is merely the global geometric manifestation of the finite dimensional

spectral theorem.

Thus far, the lattice construction has always produced surjective maps
B: X = A,

which have a standard simplex as the range space. In order to generalize % this construction, consider an

arbitrary finite simplicial complex, K. Suppose that K°, the zero skeleton, consists of m + 1 vertices. Then

! Dissection is easier than construction, as with frogs.
2 For a somewhat different generalization, see [5, Appendix D].
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K is a subcomplex of A,,. Suppose further that 5: X — A,, is the result of some lattice construction. This
permits the definition of X(K) = 87!(K), and the restriction of 3 produces the map

Bt X(K) > K,

which can be viewed as the pull-back of 3 over the inclusion, K’ C A,,. This map, Bx is called the lattice
construction over the simplicial complex, K and it is the desired generalization. Obviously, the space, X (K)
may depend strongly on the chosen bijective correspondence between the set of m + 1 closed subgroups of

G, and the set of m + 1 vertices that make up the zero skeleton, K°.

Finally, in this somewhat greater generality, we return to the skeletally induced filtration introduced in
section 1. Let KP denote the p-skeleton of the finite, simplicial complex, K, and define the finite filtration
on X(K) given by

X, = X(K?) = B~ (K?)

@=X771CX0CX1C"'C.XmIX(RY)

As usual, this filtration gives rise to various spectral sequences. This paper concludes with a brief outline of
the corresponding spectral sequence for ordinary cohomology (with an arbitrary abelian group of coefficients,
which is not displayed in the notation). Of course, any general homology or cohomology theory would yield

a similar spectral sequence.
Consider the exact sequence for the pair, (X,, X,-1).
oo — HPTUTN(X, ) — HPY(X,, X)) — HPYI(X,) — HPP(X,_)) — -+
Definition: Let E{Y = HP*9(X,, X,_;) and let D! = HP*4(X,_;) m
Thus, the exact sequence for this pair can be written

}Df,qfl éEf’q ;D{Hlyq*l 5Df’q S ...

for all integers, p. This ezact couple gives rise to the associated spectral sequence in the usual way. (See [8]

and [11] for a description of this technology.)
Definition: Let A?'? denote the kernel of the restriction H?*9(X(K)) — HP*9(X,_1). =
This produces the filtration of HPT(X(K)),
0= Amthrtam-l .. c AptLa-l c AT C ... C AYPTY = FPYI(X(K))
and the usual exact couple argument proves that
0 — APTLI=L ey APY  EPT 5

is a short exact sequence. Thus, this spectral sequence converges to the graded object associated with the

A=*filtration of H*(X(K)), as one might expect from such an exact couple.
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As observed in the introduction, the only unusual feature of this spectral sequence is the passage from the

E”" terms to the E;"" terms. Of course, in general we have differentials on level s.
ds: EP1 — EPTsa=stl
We can give an explicit description in one particular case, the differentials on level 1,
dy s BP9 = HPV(X,, X,1) — HPF 07 (X0, X,) = ELF
because of the natural direct sum decomposition of the E; terms,

E\» = H"(X,, X, 1) = Y _ H'(G/Go)),

where ¢ indexes the p-simplices of K and
P
Glo] =) G
i=0

{brgs by, ;... by, } being the non-zero barycentric coordinates in the interior of the p-cell o

The non-zero components of dy occur for pairs, (7, 0) where o is a p-simplex in the boundary of the (p+ 1)-
simplex 7 C K. Let by be the additional non-zero barycentric coordinate in the interior of the (p + 1)-cell
7. Thus, we have G[r] = G4 N G[o], and the natural fibre bundle projection ®., : G/G[r] = G/G[o] has
fibre homeomorphic to G[o]/G[r] = G|o]/(G, N G[o]), and induces the corresponding component of d; on
the cohomology summands

., : H(G/Glo]) » H*(G/G[1]).

Thus, the components of d; can be calculated by viewing them (each) as edge morphisms in a Serre coho-

mology spectral sequence for the fibration, @, ,.

Notice that all the examples of sections 3 and 4 are concerned with X(Al), the case in which K = A;.

The spectral sequence under discussion simplifies considerably when K = A; becoming merely a long ezact

sequence®. It is easily seen that this long ezact sequence is naturally equivalent to the Mayer- Vietoris

ezact sequence, which proved useful in sections 3 and 4.
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