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Abstract - We study the problem of Bose condensation at zero temperature
and weak coupling for a three dimensional system of bosons, interacting with a repulsive
short range potential, in the Bogoliubov approximation. We prove that the properties of
the model can be explained in terms of an anomalous asymptotically free renormalization
group flow and we show that the two-point correlation function has the typical superfluid
behaviour at long wavelengths, as generally expected. The proof is, for the moment, only
at the level of perturbation theory in the running coupling constants. We also obtain
an expression for the sound speed, whose leading term (when the coupling goes to zero)
coincides with the sound speed in the exactly soluble Bogoliubov model.
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1 Introduction

It is commonly believed, following the pioneering paper by Bogoliubov [1], that a three
dimensional system of bosons at zero temperature, interacting with a weak repulsive short
range potential, exhibits condensation and superfluid behaviour. In the perturbative
theoretical analysis, the two phenomena are related to the asymptotic behaviour of the
two-point correlation function S(z — y), where x — y is the space-time (imaginary time)
separation. There is condensation if S(z —y) — p > 0 as @ —y — oo, p being the
condensate density, while the superfluidity is related to an anomalous behaviour of S(z —
y) — p, whose Fourier transform is expected to have a singularity of the type (k2 +c*k?*)™!,
to compare with the singularity (—iko 4+ k*/2m)~" of the free Bose gas (see, for example,
[2]). In fact this anomaly explains, according to Landau’s criterion [3], the superfluid
properties of the system, whose spectrum is expressed, for small momenta, in terms of
collective excitations with speed e.

The renormalization group approach allows us to solve in a relatively simple (but
not standard) and non ambiguous way the difficult infrared divergences problems, which
plague the perturbation theory of the model, by reducing them to the study of the flow
equations for a finite number of quantities (the running couplings and the renormalization
constants, see below), which describe the relevant properties of the interaction on different
scales. Our main result is that one can control this flow at level of perturbation theory in
the running couplings, so obtaining a strong justification of the generally accepted picture
of Bose condensation and superfluid behaviour. Moreover, it is reasonable to guess (at
least for people working in rigorous renormalization group theory) that our results could
be improved, by solving in this case the so called large fields problem, so that one can get
a rigorous construction of the model, valid for small coupling but not perturbative.

There is of course a huge physical literature on the perturbative theory of Bose conden-
sation at zero or small temperature. As far as we know, up to 1994, the more convincing
results about the superfluid behaviour at zero temperature were contained in [4] (see also
references therein), where the authors used arguments similar to the ones that we will
explain in this paper. However, at our knowledge, there was no previous treatment of
the problem explicitly based on renormalization group arguments. The results contained
in this paper were presented at the Workshop in Constructive Physics, held at the Ecole
Polytechnique, Palaiseau, in july 1994 [8], and were discussed also in [9].

Recently, there was a renewed interest on the subject of Bose condensation, motivated
by new experimental results [12], and a new paper appeared [10], explicitly based on
renormalization group ideas, where a more heuristic approach to the problem was used.
In [10] the authors consider also the two-dimensional case, which will not be treated here,
because the corresponding renormalization group flow can not be rigorously studied, even
at level of perturbation theory, at least by using only the ideas of this paper; in fact in
the two dimensional case, there is a relevant non gaussian contribution to the effective
potential. In the present paper we present a simplified version of the derivation of the
main results discussed in [8], [9] (which agree with those of [10]).

Of course, in the three dimensional case the main results of [10], which essentially
follow from dimensional arguments and symmetry considerations, are in full agreement



with the results of this paper.

2 The model

The theoretical analysis is generally based on the functional representation of the model.
Let H be the Hamiltonian describing a system of N bosons in R?, enclosed in a periodic
box of side size L, interacting with a pair potential Av(x —y) which is supposed to be
integrable, with short range py' and repulsive, in the sense that #(0) = [ dxv(x) > 0 and
A>0. H contains also a chemical potential term —puN.

Let % be the creation and the annihilation operators for the bosons and ¢? =

eHtple o = £, 2 = (t,%).
Define, for 3 >t;, >0,:=1,...,n, with t; # t; for ¢+ # 7,
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where o; = 1 and 7 is the permutation of (1,...,n), such that t,q) > ty3) > ... > L.

In particular define S(z) = S

The functions (1), which we shall call the Schwinger functions, describe the properties
of the ground state of the above bosons system (essentially by definition) in the grand
canonical ensemble with chemical potential .

The case A = 0 is trivial and one finds that, if g < 0 is taken as a function of 3, L,
which goes to 0 as L, 3 — oo, in such a way that the number of particles in the condensate
(the state k = 0) is fixed (that is, e®#(1 — e#)~t = L%p), then

1 e—zkx
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where k = (ko, k).

The other Schwinger functions can be calculated by the Wick rule; they will describe
the ground state of a system of non interacting bosons with density p, a Bose condensed
state.

Let us now consider the case A > 0. As it is well known (see, for example, [2]) the
Schwinger functions can be expressed as functional integrals in the following way:

S ~VP(dy) .
le Xy /S‘Q S‘anfe_v P(dg@) 9 (3)

where P(dy) is a complex gaussian measure, such that the fields ¢, of = (¢, )* have

covariance:
/% yP(de) = S(z—y), (4)

/99;99; (dp) = /99 ¢ P(dp) =0,



and, if © = (20,%), y = (yo,y) and v = —p,

Vie) = /\/v(x— ¥)8(zo — yo)pfwr oy v, dady

+ v [grerde. (5)

v has the role of a control parameter that should be fixed so that the limiting theory is
meaningful as a perturbation of the free theory with propagator (2). If this program is
successful, it is natural to say that there is Bose condensation at 7' = 0 with given density
p and chemical potential —v.

The form of the covariance (2) shows that the fields T can be represented as

oy =&+, (6)

£* being variables independent from ¥F and with covariance (¢~¢%) = p, while the fields
i have covariance (7 ¢F) = So(x —y), (¥7¢;) = (bf¢f) = 0.

The integration with respect to £ can be thought as a Gaussian integral by writing
£ = & £14& and P(dE) = (mp) Lexp|—p 1 (€2 + £2)]dé1dEy. Hence, if we define A =
[—38,38] x [=3L, 5L]? and:

W(E) = — Jim +log [V P(ay) (7)

[A]—oo A

we see that the computation of ((7¢7) in presence of interaction will lead to the integral:

o [ e
p= [A]—o0 2’/Tp

46 W,
(€2 + e 7 (W (&) W]IAI, (8)

where Wy is a normalization constant and the equality to p of the above integral is just
the requirement that the condensate density should be p. Therefore equality (8) can hold
if and only if the function W (), which is a function of the product £T¢~, by symmetry
considerations, reaches its minimum at éT¢~ = p. And in this case {t¢~ will be a sure
random variable, provided the minimum is not degenerate.

This implies that, in order to get a condensate with density p, one has to choose v so
that the free energy (7) has a minimum in £ = ¢~ = \/p > 0.

These considerations are a heuristic justification of the so called Bogoliubov approxi-
mation, very usually used in the literature, consisting in replacing the fields ¢+ by a real
positive constant external field and by choosing its value so that the ground state energy
is minimum. In agreement with this approximation, we shall assume that, in order to
study Bose condensation at 7' = 0, one has to consider the measure

N1 WP (dy) (9)

where NV is a normalization constant, V,(1) is obtained from (5) trough the substitution

(6), &t = ¢ = /p and v has to be chosen so that the free energy is minimum for the
fixed value of ¢*.



The Schwinger functions of the field ¢ are defined by an expression similar to (3) and
we shall use the symbol S to denote them. Their perturbation expansion is obtained in
the usual way in terms of the propagator So(x — y). Note that the measure (9) does not
preserve the free measure property S__(z —y) = Sy (z —y) = 0.

An old perturbative argument [5] allows one to show (see also [2]) that the free energy
is minimum if the following formal equation is satisfied:

Y1(0) = E44(0) (10)
where Y,,,,(k) is the Fourier transform of the sum of all one particle irreducible graphs
(connected graphs which can not become disconnected by cutting one leg) with two ex-
ternal lines 97!, 72

The renormalization condition (10) has here the same role of the condition which
determines the critical temperature in Statistical Mechanics; therefore it is natural to use
it, instead of the free energy minimum condition, as the condition fixing the chemical
potential, in a renormalization group analysis of the measure (9).

The problem we want to study is an infrared problem; therefore we shall consider a
simplified model by substituting So(z) with

1
)= —— [ dkto(k)— ,
s60(r) = (s [ A0
where to(k) is a smooth function, which imposes an ultraviolet cutoff on scale py (the scale
of the potential). The choice of #o(k) is not relevant, so that in the following, for simplicity,

we shall suppose that to(k) is the characteristic function of the set {k2 + £ 7o (i)Q}.

2m 2m — \2m
Note that the assumed presence of the ultraviolet cutoff on the scale of the interaction

e—zkaj

(11)

potential is reasonable only if ppy® < 1, that is, only if there is in mean much less than
one particle in a cube with side equal to the range py"' of the potential.
Hence we have to study the measure:

N L7Vl p(SO) (o) | (12)
where P(S0)(di)) is the measure with covariance (11). We can do that by a multiscale
analysis, in the form presented in [6] and applied to a “similar” infrared problem, the one
dimensional Fermi gas, in [9]. We shall now give a rough description of this analysis. A
more detailed discussion will appear in the next future [11].

3 The renormalization group flow

The infrared behaviour of the model should not change, if we localize the potential V,, so
obtaining:

V() 2 Xo(0) [ (F07)? da +
+206(0)/p [ I U7 (0F +07) do+ (13)
HXB(0)p + ) [t de + Xo(0)p [(6F + ) de
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We now observe that, if the local terms of order greater than two were not present
(so obtaining the exactly soluble Bogoliubov model), then the condition (10) could be
imposed, by choosing v = —2Mpt(0), that is by putting equal to zero the coefficient of
Yptip~. This observation implies that the “natural” way to study the measure (12) is to
change the free measure, by absorbing in it the local terms of V,, quadratic in the field,
which remain after imposing the condition v° = v +2Xp5(0) = 0. We shall denote Pg(di))
the new measure and we shall call it the renormalized free measure.

As it is well known [1], the renormalized free measure has indeed the superfluid be-
haviour for k — 0, with ¢ = ¢ = 2Ap5(0). We can show that this is true also for the
measure (12), that we shall write in the form:

N7 e %) pg(dy) . (14)

It is convenient, before proceeding, to change the basic fields by defining:

4 —
= o), = 0t ey, (15)

ﬂ

so that V; becomes a function of y. The covariance of the fields y* in the distribution
Pg is given by:

Cro(w) = r [ GG Rl (16)
where, if ¢ = A5(0)p2mpy?, the matrix Go(k) is defined by
k2 P2 .
~ = deto(k) ik
Gk = p 2+ Heamtll) iy (1)
—ikg e

In order to study the measure (14), we make the scale decomposition 001“2(33) =
S0 Cf%2(x), where Cf'7? () is obtained from (16) by substituting to(k) with T (k) =
to(y7"k) — to(y~"*1k), and the scaling parameter v is a any number greater than 1. We
have the scaling relations:

6\12'10'2 (.I‘) — 7(3+"1;°2 Vhx 0102 (,}/ .I‘) , (18)
with
37 (0) = e | TR B (19)
and 2h 2 2
G = p (1) iy ) ()

Note that g;'7?(x) are essentially independent of h, for A — —oc.
Let us now define the effective potentials Vi, () in the usual way [6], by iterating the
relation:

—V /P h+1 h+1)) ~Vig1 (x+xP11) , (21)



where p]gh)(dx) denotes the measure with covariance Cj,.
The scaling relations (18) imply that we can define dimensionless fields Y* by the

relations: y; = " Xy X = 'y%)("'h and this allows us to analyze the relevant local

part ﬁf/h(x) of the effective potentials Vh(X)- By a trivial dimensional analysis and by
taking into account the symmetries of the model, one can show that £V, (y) has to be of
the form:

"2

L‘f/(h)(x) = go_mP(S\th + pnFon + 72h17h(F02 — Fy)

+ 2%, Foy + 26, Dy + 265, Dy + 2d,, D) (22)

where Frym, = [ do ;™' XT™, Dy = —(2mp?°)? [(Ouyx7 ) d, Des = —p5* [(Oxx5 ) da,
Dy = =2mpy? [ x}0n x5 da.

As usual, we can hope to have a perturbative control of the model only if we can show
that all the running constants appearing in (22) stay small for b — —oo, for a suitable
choice of g (that is, of the chemical potential), such that < v, for h — —oo. This
condition is equivalent to the renormalization condition (10), if we can also show that

Up,

A, and firn go to 0 as h — —oo (asymptotic freedom). In fact, in this case, it implies
that, for A — —oo, the effective potential is of the second order in the fields ¥»* and that
they appear only in the combination (¥} + ¥, )* = 2pFo,, up to terms containing field
derivatives, which do not influence (10). A simple calculation allows one to prove that
this structure of the effective potential implies the renormalization condition.

2m

Y ~ 7 . 0 N ~ N -
For h = 0 we have: )\o=i,ﬂo=—€ 2,1/0:%p—Q,andzozg'o:ozozd():O.
0

However 24, (p, dj and &y will be different from zero for A < 0 and they could grow as
h — —oo. This problem can be solved by the same strategy used in passing from the
representation (12) of the measure to the representation (14). We define iteratively a new
family of effective potentials V4 (y) in the following way.

Given Vi(x) = Vo(x), we define V_1(x) as before; we then define V_y(x) by absorbing
p(<

the terms proportional to z_q, C_l, d_y and é_; in the measure Py )(dx) (the measure
with covariance Y571 Cf172), so that:

/P](Bs_l)(d ~Va( / dx —V—1(x) _ (23)

We can iterate this procedure, so defining a family of measures P](Bsh)(dx) and a family of
effective potentials V,(x), such that:

LVi(x) = POP [)\hF4O + pnFo + 42 l/h(F02 FQO)] , (24)

2m

and the covariance C'Z;”* of P(<h)(d/ ) is of the form:

ik to(’}/_hk) G;}L(k)O'JO'Q > (25)

0102 1
Sh (CU) = (Zﬂ_ 4



k2 2p2 7y, -
G<n(k) ZP( m K2 Szj]ghEkg 24,K? ) : (26)
—Zkth ~om pg 0 — T’;L

We have studied perturbatively the flow of the running couplings An, pp and v, and
of the renormalization constants Zy,, Ap, B and Ej, (the beta function of our problem),
by keeping only the leading terms in the expansion of rn_; in terms of {rp,h’ > h},
it vy = {An, th, Vhy Zh, An, Br, Er}; the details of this calculations can be found in [8].
It turns out that the leading terms are associated with the one-loop Feynman graphs,
calculated with the single scale propagator which follows from the previous definitions
(note that it is a function of the renormalization constants). Moreover it is possible to
prove that, if ¢ is sufficiently small, there is no important change in the values of r; up
to h o hg, if £ >~ 4%" that is, in the momentum region where the superfluid behaviour is
not yet dominating.

Finally an important role is played by the exact identity, following from gauge invari-

ance of the model [9],[8],[10]:
Zn(0) = —pn/ V2 (27)

valid for any A < 0. There is another exact identity, that is:

Zy
Ap = — 28
= (28)
which however has a minor role (and in fact was not used in [8]).
A detailed calculation of the beta function in the region h < hg allows one to prove
that, for h — —oo, Ay and By converge to some finite positive constants A_., and B_,,

while (Eh—l — Eh)/Eh = (Zh—l — Zh>/Zh and:
Zh—l = Zh — Coz}% (29)

where ¢q is a suitable positive constant, depending on A_., and B_,.

The discussion of the above equations is elementary and, starting from initial datum
Zo = € (or any other close to it), the result is that, if vg is chosen so that v} is bounded
uniformly in A, then, asymptotically: Z, = 4\, = —un/V2 = €|h|™", vn = O(\y), if ¢ is
a suitable constant (¢ independent).

At this point it is a standard task to check that all the neglected terms in the beta
function are at least of order 1/|k|*. Hence they can not change in a substantial way the
asymptotic properties of the flow (up to convergence problems). By using the techniques
of Ref. [6], one could also prove that the sum of all terms of order n, in the expansion of
rh—1 in terms of {rp., A’ > h}, is bounded by C"n! for a suitable constant C, independent
of h.

The main consequence of the previous discussion is that, for & — 0 (that is, for
h — —o0), the model is gaussian (asymptotic freedom) and the pair Schwinger function

of the fields ¥»* behaves as:

. q 1 .
Salb) = =Sa(h) = =) = (30)



where go = p3/(2m) and, if vy = po/m, the sound speed c is given by:

Y Nt
o= JE@'B =1 = gt o) (31)
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