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Abstract

We present the construction of the x-Poincaré in two dimensions
from matched pairs of Lie groups: SO(1,1) and a x-deformed group
of translations.



1 Introduction

Quantum deformations of Lorentz and Poincaré symmetries are now an in-
teresting field of studies with possible applications in fundamental theories
[1]. The k-deformation [2] of the Poincaré algebra is one of the most attrac-
tive and promising for physical models, mainly due to its simple structure.
A significant progress in the studies of the k-Poincaré has been made with
the discovery of its bicrossproduct structure [3], with the classical Lorentz
algebra and the deformed algebra of translations being its two components.
It has allowed to introduce the x-Minkowski space and to investigate its
properties [4]. Moreover, it has offered us a new way of looking at the
k-Poincaré, since the bicrossproduct Hopf algebras arise in an algebraic ap-
proach to quantum gravity [5].

The bicrossproduct construction can also be seen as originating from the
group factorization P = GH of a group P into its two subgroups G and H.
The bicrossproduct Hopf algebra C(H)pa CG could be interpreted as a
quantum algebra of observables of a particle moving along the orbits of G
on H. For a general theory of these objects and examples we refer the reader
to [6, 7, 8].)

One of the remaining interesting problems in the x-deformation model
is to look at the underlying group structure and the matched pair of Lie
groups.

We shall look into this problem in our paper, keeping in mind the above
interpretation and trying to establish relations with results obtained else-
where.

First, we introduce the basic notation and definitions used in the paper.

We say that G and H form a matched pair of Lie groups if there exist
a right action (>) of G on H and a left action (<) of H on G satisfying the
following compatibility conditions:

1
2
3
4

ech=h, gde=g, gi>(920h) = (9192)>h,
gre=e, edh=ce, (gahy) ahy = ga(hyhy),
g> (hiha) = (9> hi) ((9 <h1) > ha),
(9192) <h = (91 9h) (924 (92> h)),

(1)
(2)
(3)
(4)

for every ¢,91,92 € G, h,hy,hy € H; e denotes a neutral element of each

group.
Having such a pair, one introduces the following group structure on the



Cartesian product G x H:

{91, M} o{ga, b2} = {g1(h1 > g2), (h1 <g2)ha},
{9,y = {p "oy h 7 ag™' ) (5)

Of course, for a group X, which factorizes into two subgroups G and H,
(i.e. the map G X H 3 (g,h) = g-h € P is a bijection) we recover a matched
pair G and H, with left and right actions derived from (5).

Finally, let us mention that for every matched pair of Lie groups, their
Lie algebras form a matched pair, with the right and left action derived from
the relations (1-4):

§0 [y ma] = [E0my o] + [, €0 ma] + (Eam) b = (E<am)pm (6)
(€1, &]an =[G an, &)+ &, & an]+ & <(epn) =& (&b n) (7)
2 The k-deformed group of translations.

Out of the full Hopf algebra of the x-Poincaré we may single out the second
component of its bicrossproduct structure, the k-deformed Hopf algebra of
translations Py, with the following algebra and coproduct structure:

[PM,PD]:O, (8)
APy =Pyo®1+ 10 R, 9)
AP1:P1®1—}—6_P_£®P1. (10)

Since this algebra is commutative, it corresponds to an algebra of functions
on a group. The product in this group could be found directly from the
coproduct structure (10). However, we shall choose here another way, which
uses its structure as a matched pair of Lie groups in an explicit way. First,
let us observe that the universal enveloping algebra of this group (dual to
the algebra P,) has two generators X, T with the commutation relation:

X, 7] = %X. (11)

Now, the Lie algebra, generated by X and T has a structure of a matched
pair of two one-dimensional Lie algebras provided we define the correspond-
ing left and right actions:

1
TeX=—--X, TaX=0. (12)
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The corresponding pair of Lie groups can be identified with the additive
group of real numbers with the matching left and right actions, for t € R
and z € R: :

tbx =ze %, tax=1. (13)

The general theory of matched pairs of two one-dimensional additive
groups has been studied by Majid [6]. All possible pairs are parametrized
by two real numbers A and B, with the actions, for real s and u:

1 1
sdu= Eln(l + (P = De ™), spu= Zln(l—}-e_Bs(eAu -1)). (14)

The above derived k-deformation corresponds to the special case of A =0
and B = %

Using the construction (5), one recovers the group of deformed transla-
tions Ri, which is topologically equivalent to R? but it is equipped with a
nonabelian group structure:

t S t+s
el - L) 0

Examples of orbits are shown on Fig.1, the lines show example orbits of
horizontal and vertical translations.
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Figure 1.
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3 Matched Pair P, and SO(1,1)

We identify the group SO(1, 1) with the additive group of real numbers and
we denote its generator (boost) by N. The commutation relations between
N and the X and T are

N, X]=—T, [N, 7]=—-X — %N. (16)

The corresponding left and right actions, which are derived from the
bicrossproduct structure are classical for the action of N on the k-Minkowski:

NoX=-T, NoT =X, (17)

whereas the deformation appears in the back-action (right action) of the
x-Minkowski: .
NaX =0, N<aT =—-=N. (18)
K

In order to obtain the corresponding pair of Lie groups we build a faithful
linear representation, exponentiate its matrices and find the expressions for
the corresponding actions using the matrix multiplication and the rule (5).

Before we present the result, let us mention that one can use in this case
either the adjoint representation:

0 00 -0 0 0 -1 0
xX=lYoo0|, T=f 0 00|, N=|-1 0 -1,
0 10 1 o0 i 0 0 0

or a two-dimensional representation:

0 0 1 -1 0 0
() et () a=(2 )

Although all the relations (16-18) have a well-defined limit for x — oo,
the above two-dimensional representation does not.
In either case the exponentiation gives the following result for the matched

pair of R and RZ:
x cosh ¢ — ksinh ¢sinh % — Lz2sinh ge

O o=

kin ((cosh ¢ — 1)(sinh £ + 512%) — Lasinh ¢ 4 e ) (21)

t
[t
2K

¢<] l ; ] —In (_l n : (costh—l)e_E(l—]Er)-l-sinth ) . (22)

cosh ¢—1)(sinh £+ #1‘2)— %x sinh ¢+e%




Both the action and back-action are well defined in the neighborhood of
unity for both groups, however, they are not defined globally. For instance,
the action of R on R? becomes ill-defined for ¢ big enough if sinh £ —
—I—Z%:ﬂ — z is negative.

It is easy to verify that in the limit x — oo we recover the usual action

of SO(1,1) on R? (and the back-action as well):

t | | tcoshgp —zsinho
¢D[w]_[wcosh¢—tsinh¢]’ (23)

o~

¢<l ]:qb. (24)

x

Example orbits of the group action on the plane are presented below for
two values of k.

k=25




4 Conclusions

As we have indicated earlier, the xk-deformed group of translations is a special
case of a matched pair of two one-dimensional additive groups:

X,7] = S0 -ePY), (25)
AX = 1@X+X®1, (26)
AT = ToePT+10T (27)

where the classical limit is A = B = 0 and the x-deformation is A = 0,
B=1

Assuming the interpretation of the bicrossproduct construction of the
deformed Minkowski space (or the momentum space in the dual picture)
as an A — 0 limit of a geometrically curved phase space, we see that the
two-dimensional k Poincaré might be seen as a general symmetry structure
of the phase-space.

So far we have explored only one limit, with A = % = 0. An interesting
problem would be to investigate the other limit, with A fixed and B — oo,
which would correspond to a flat phase-space of a quantum mechanical sys-
tem. However, the cross-algebra of the quantum-like limit is degenerate be-
cause the obtained algebra has no Hopf algebra structure (there exists a co-
product but no counit and no antipode). Therefore, one should rather build
a symmetry structure on a two-parameter family of deformations arising
from the bicrossproduct of two real lines and take the limit afterwards. The
symmetry structure would be a two-parameter deformation of the Poincaré,
with the deformed translation part being neither commutative nor cocom-
mutative.

References

[1] P.Podles, S...Woronowicz, On the classification of quantum Poincaré
groups. Commun. Math. Phys. 178:61-82, 1996

[2] J. Lukierski, A. Nowicki, H. Ruegg and V.N. Tolstoy. q-Deformation of
Poincaré algebra. Phys. Lett. B268:331-338, 1991.

J. Lukierski, A. Nowicki and H. Ruegg. New quantum Poincaré algebra
and s-deformed field theory. Phys. Lett. B293:344-352, 1992.

A. Nowicki, E. Sorace and M. Tarlini. The quantum deformed Dirac
equation from the k-Poincaré algebra. Phys. Lett. B302:419-422, 1993.



[3]

[4]

[5]

S.Majid,H.Ruegg. Bicrossproduct structure of k-Poincaré and non-
commutative geometry. Phys.Lett.B 334, 348, (1994)

A.Sitarz Noncommutative differential calculus on the s-Minkowski
Phys. Lett.B 349, 42-48, (1995)

S.Majid,
Hopf Algebras for physics at the Planck scale, Class.Quant.Grav. 5,
1587-1606, (1988)

S.Majid, Foundations of Quantum Group Theory, Cambridge Univer-
sity Press, Cambridge 1995,

S.Majid, Cross Product, quantization, nonabelian cohomology and
twisting of Hopf algebras, in: Proceedings Generalized Symmetries,

Clausthal, (1993), World Scientific

S.Majid, Matched Pairs of Lie groups associated to solutions of yang-
Baxter Equations, Pacific Journal of Mathematics, 141(2), 311, (1990)



