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2 WALTER CRAIG

§1. Introduction

This paper considers solutions of the Schrodinger equation in the form

Zatd} = % Z 8$jaje(x)8wld) y T E R™ , e R ’
(1) ji=1

w(% 0) = wo(ﬂf) .

Our focus is on the moments and the regularity of the initial data y(z) for equation
(1), and their relationship to the moments and the regularity of the solution. The basic
fact is that there is a relation between the moment properties of the initial data and the
smoothness of the solution for nonzero times ¢, which depends on the global behavior
of the orbits of the classical limit of (1). This latter is the hamiltonian system for
(z,€) € T*(R")

d

d—x =0¢a(x,§)
@) ds

% = 8wa(mv§) )

with hamiltonian given by the principal symbol of (1);

n

(3) a(z,§) =1 ) a? ()¢

7,4=1

whose solution gives the bicharacteristic flow ¢(s;z, &) on the cotangent space T*(R™).
This relationship is clearly a microlocal phenomenon, and the analysis extends to
equations of the more general form

(4) 0 = —3 > 02,07 ()0, + ma(z, D) + vo(z, D)V ,

J4=1

which includes potential terms, as well as possible first-order terms which would stem
from the presence of a magnetic field. The principal results for these equations are
described in articles [6] and [4]. In this paper, I extend the analysis in several directions.
This includes the study of the mapping properties of the evolution of (1) and (4) on
Sobolev and weighted Sobolev spaces, and the extension of certain of the results of the
above references to non selfadjoint problems.

To explain the phenomenon, it is best to start with the case of the free Schrodinger
equation

(5) i) = —LAY, zeR"

The following result is well-known, and straightforward to verify.
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Theorem 1. Consider initial data vo(z) € L*(R™) for equation (5).
(i) For allt € R

(6) 19 (@, t)l|z> = [[%o(2)llz2 -

(i) If in addition the initial data is localised in the sense that all of its moments are
finite,

(7 k| / o* o (2)[2de < +o00 |

then for all t # 0, the solution ¥ (x,t) is C*°.
(iii) For initial data vy € H"(R™), the Sobolev space with norm

lo(@)|[%n = / 1~ A 240(e)2da

then for all t, ¥(x,t) € H"(R™), and ||¢¥(z,t)|gr = ||vo(2)| ar-
(iv) When io(x) is in S, the Schwartz class, then for all t, (z,t) is in S.

Statement (i) is fundamental in the interpretation of quantum mechanics, where
the measure |v(z)|2dr = dPy(x) describes the initial spatial probability distribution
of a quantum particle, [1(z,t)|?dz = dP;(z) is the spatial distribution that quantum
mechanics permits us to deduce at another time ¢ through solution of the Schrodinger
equation, and (6) is the fact that the Schrodinger equation (5) preserves probability.
Based on this interpretation, it is natural to impose the moment condition (7) on the
initial distribution, and the result of Theorem 1(ii) is that the solution is instantaneously
smooth, however not necessarily localised, for any nonzero time ¢. It is distinctly not true
that the finiteness of the initial moments alone will guarantee that they are finite at later
time; this will be discussed further below. On the other hand, a finite Sobolev norm of
¥o(x) corresponds directly to finite moments of the momentum density \;ﬁ; (€)]2d¢, and
the assertion of Theorem 1(iii) is that these moments are preserved by the Schrédinger
evolution.

The goal is to study analogous results for solutions of equation (1), and to describe
the connection between the dispersive smoothing of solutions and the global behavior
of its bicharacteristics from (3). For this purpose we will assume the following estimates
on the coefficients of (1):

Q Z el < 10¢a(s, )| < Cle]

which is the statement of ellipticity, and

Ca

(9) 02 (@7(@) ~ )| < 5ty

(o) > || + 1,

which is the condition that the metric on R” given by (a’‘)~! is asymptotically flat.
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Definition 2. The point (zg,£°%) € T*(R™) is not trapped forwards (respectively back-
wards) by the bicharacteristic flow if

(10) [Te0(s;20,£%)| — 00, as s — +oo (respectively, s — —o0) .

The set of (z,&) € T*(R™) which is not trapped forwards will be called £, and the set
which is not trapped backwards will be £_. The involution £ — —¢& of T*(R™) exchanges
g+ and £_.

The basic result of paper [6] considers the classical wave front set WF (¢(x,t)) of
solutions of equation (1).

Theorem 3. Consider solutions of equation (1) , where the coefficients satisfy the
estimates (8) and (9). Suppose that the point (xo,£°) is not trapped backwards by the
bicharacteristic flow ¢(s;x,€). For initial data vo(x) € L*(R™) which has all of its
moments finite (7), then for all t > 0, (x¢,£%) ¢ WF (¢(z,t)).

Clearly, the analogous result holds for ¢ < 0, whenever (zg, £°) is not trapped forwards
by the bicharacteristic flow.

In addition, it is usual to consider equation (5) with potential or electromagnetic vec-
tor potential terms, and for this purpose a similar theorem holds for the more general
equation (4), where mq(z,§) and vo(z,£) are symbols of pseudodifferential operators
whose properties will be described below. The original work on the microlocal smooth-
ness of Schrodinger’s equation (1), (4) is by L. Boutet de Monvel [2] and R. Lascar [12].
The principal work on the microlocal regularity of solutions for ¢ # 0 depending upon
global non trapping conditions on bicharacteristics appears in [6]. The present paper de-
scribes these results and gives an outline of the methods used in the proof. In addition,
this paper will expand upon [6] in several ways. (i) The first involves global estimates of
the moments of solutions in terms of the moments as well as Sobolev norms of the initial
data. One corollary of Theorem 1 is that, unlike the solutions of diffusion equations,
the moments of solutions of Schrodinger’s equation are not able to be bounded in terms
of moments alone of the initial data 1g(x), and some information about the derivatives
of Yo(z) is also needed. Necessary and sufficient bounds in terms of weighted Sobolev
norms are given in Theorem 14 of Section 3, along with estimates on the growth in time
of these moments. (ii) The analysis of [6] extends to the Laplace-Beltrami operator

V/det(a) >, Y 0z;+/det(a ~147¢(z)8,,, but it excludes non selfadjoint operators in equa-
tion (1). Using the idea of a gauge transformation which appears in the paper [11], part
of the analysis will be performed for suitably decaying non selfadjoint terms in equation
(4). This gauge transformation is based upon a microlocal quadrature and the resulting
pseudodifferential operators have novel symbol properties, and can be analysed using
the techniques of [5, Section 4] and [4]. (iii) Finally, we analyse the mapping properties
on Sobolev spaces and weighted Sobolev spaces of the pseudodifferential operators that
are analysed in (ii).

The paper [4] and the present paper are completions of the text of seminar talks in
Toronto in 1995 and at the Ecole Polytechnique and the Universitat Bonn in 1996. While
the introductions to both of these are expository, I have tried to minimise the overlap
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between them, and there are new results in each. A preliminary version (in french) of
this article appears in the collection Séminaire Equations aux Dérivées Partielles, 1995
- 1996 (Ecole Polytechnique) [5]. Concerning section 4 of the present article, I would
like to thank L. Vega for his friendly and illuminating discussion of his preprint [11].

§2. Microlocal moments and regularity

Rewrite the equation (1) symbolically as

with A = —3 3., 8s,0;00,, selfadjoint on a suitable domain in L?(R"™). There is an
identity which is satisfied by solutions of (11), for virtually any operator B;

(12) Oere (v, By) + re (v, ;[ A, Bly) =re (¢, (8:B)y) -

In the specific cases in which B commutes with A and is time-independent, we con-
clude that e (1, By) = 0. In particular, for B = I, then 8¢ (z,t)||3. = 0,
which exhibits conservation of probability and is the analog of Theorem 1(i) for equa-
tion (1). The second basic estimate comes from the choice B = A itself, whereupon
ENDY i a?*(2)8;,;105,1 dw = 0, which is the principle of conservation of energy.

Changing the setting somewhat, consider identity (12) using B = b(z, D) a pseudo-
differential operator, whose symbol b(z, £) is of order m and lies in an appropriate class.
The order of the terms appearing in the identity is well defined, and we see that b(z, D)
is of order m, while +[A,b(z, D)] = —{a,b}(x, D) + e, where the Poisson bracket is of
order m + 1 and the error will be expected to be of order m or less. The identity (12)
will give a useful estimate of the solution if

(13) C(.’L‘,g) = - {a'a b}(wa g) )

b(z,€) >0, c(,6) >0,
using the Garding inequality and the differential inequality which results from (12).
Equation (13) relating b(z, &) and ¢(z, §) is known as the cohomological equation of the
dynamical system (2). In fact this is the same strategy used by L. Hérmander in one
of his proofs of the theorem of propagation of singularities for solutions of hyperbolic
equations; this appeared in [9]. However, in the present case the term {a,b} is the
principal contribution, and not the error term, as in that reference.

The identity (12) and the demands of positivity (13) bring us to a fundamental
question. When can one have a pair of symbols (b(z, &), c(z,&)) satisfying (13)? In
other words, statement (13) is that b(xz, &) > 0, and b(z, £) decreases along the orbits of
the bicharacteristic flow of the hamiltonian field (2) of a(z,£). A minimal response is
that for s < 0, ¢(s;supp (b)) C supp (b), a relationship which has dire consequences for
the symbol properties of b(z, &) in the forward scattering regions &£ .

In fact, take the point of view that, given an appropriate symbol ¢(z, £), we will con-
struct the symbol b(z, £) such that —{a,b} = —X,(b) = ¢, where X, is the hamiltonian
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vector field of a(z,£) on T*(R™). It is well known that the existence and regularity of
the cohomological equation (13) is very closely related to the recurrence properties of
the flow o(s;z,£). For the simplest example, if c(zg,£%) > 0 for a point (xg,£°) on a
periodic bicharacteristic, then there cannot be a solution b(z, £) of (13).

On the other hand, when supp (¢) C £_ is in a scattering region, the answer is more
straightforward. Take c(z,£) € S™*! a classical symbol, which means that m,supp (c)
is compact in R", and

(14) 820 e(w,€)| < Caple)™*181

where the traditional notation in this subject is that (£)2 = (|¢|2 4+ 1). Suppose that
supp (¢) C £_ and, to avoid difficulties, that c¢(z,&) = 0 for [{| < 1. A solution of (13)
is obtained by quadrature

+oo
(15) bz, €) = / (o (s:2,€))ds

Here is the rub; the symbol b(z, &) does not have 7w, supp (b) compact, for its support
is along all backwards bicharacteristics which emanate from supp (¢). Furthermore,
this natural construction (15) does not give rise to a particularly well behaved class of
symbols.

Proposition 3. For c¢(x,v) > 0 (not identically zero), with supp (c¢) € £_, the sym-
bol b constructed by quadrature (15) has m supp (b) not compact. The general symbol
estimates that b(z, &) satisfies are that

(16) 020 b(z, )| < Caple)™ 1) *1P1 .

Estimate (16) alone does not give rise to a reasonable symbol class, and pseudo-
differential operators constructed from them do not in general form a usual calculus.
Fortunately there are several additional properties of symbols which are the result of

the process of quadrature. Because a(z,§) is asymptotically flat, there are four special
vector fields with respect to which the symbol b(z, §) is better behaved. Define

. . O, k@,
(17) X;=¢-8, X, 8e, X3 = 8, X <§>g O .

Proposition 4. For classical symbols c(x,&) € S™T1 with supp (¢) C £_, then the
result b(z,£) of quadrature (15) satisfies the estimate

(18) [X70207b(, )| < Cagy (€)™ 1PN (z) I,

where o, B are n multiindices, and v is a 4 multiindez.
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Definition 5. The symbol class S™%(p, §) consists of those b(z, &) € C°(R") which
satisfy

(19) 10202b(z,£)| < Cag ()™ 181 (z)F+eI81-0lal

Define the symbol class S;n’k(l,O) to be the subclass of $™*(1,0) which in addition
satisfy the analogue of estimate (18) with respect to the vector fields X;, which is

[ XT9208b(2, €)| < Cagy (€)™ 181 (z)FH1P!

For m = 0 the operator b(z, D) whose symbol satisfies (16) may not even be bounded
on L?(R"), however the operators which result from the process of quadrature are
somewhat better behaved.

Theorem 6. Consider c(z,&) € St a classical symbol, with supp (c) C £_ and c(x,§) =
0 for || < 1. Then the solution b(x,&) of (15) satisfies b(x,§) € Sg’o(l, 0), and further-
more

(20) 16(z, D)¢p(z)[| 2 < Cllvp(2)]|z2 -

The proof of this theorem appears in [6] (section 4); it involves the following steps. (i)
Without loss of generality, we can assume that the support of ¢(z, ) is small. (ii) Then
one can see that the support of b(z, &) from (15) will satisfy the geometric condition
that for some constant R > 0, whenever both (z,¢), (y,£) € supp (b) and |z — y| > R
then

(21) sz =yl <z —y) €.

This reverse Cauchy - Schwartz inequality implies that within the support of b(z,§)
the position vectors (z — y) tend asymptotically to align with the momentum &; this is
precisely the situation for orbits of (2) in either of the classical scattering sets £1. The
operator b(x, D) now permits an almost orthogonal decomposition in the backwards
scattering region. Clearly the same analysis applies to symbols c(z,£) € S™*! with
supp (¢) C &4 the forward scattering region, with the quadrature formula along the
forward bicharacteristic

(22) bz, &) = — / (o(siz,€)) ds

— o0

although now b(z,£) < 0 if ¢(z,£) > 0. An immediate application of Theorem 6 and
the identity (12) is a ‘microlocal smoothing’ result for the scattering regions £, U E_
for equation (1).



8 WALTER CRAIG

Theorem 7. Consider any classical symbol s(x, &) € SY/? such that supp (s) C E,LUE_.
Let ¢(x,t) be a solution of equation (1). For any T > 0, ¢(z,t) satisfies the estimate

(23) /0 Is(z, D)y (z,)||72 dt < C(T)|[%o(2)lI7= -

Proof. We have already observed that the evolution under equation (1) preserves the
L?-norm of solutions. Using smooth cutoff functions it is possible to assume that s(z, £)
is supported away from ¢ = 0, and in one of £_, £,. Set c(x,£) = s(z,£)? and solve
(15) or possibly (22) for b(z,&) € 52’0(1, 0). Use the pair of symbols (b(x, &), c(z, §)) for
pseudodifferential operators in the identity (12), and integrate it over the time interval
t € [0,T], giving

re (Y(T), b(x, D)y(T)) +/ re (¢ (t), —{a, b}(z, D)¢(t)) dt
(24) °

T

= ve (o, bla, Do) — | rew(t), ev(t) dt
0

The following terms of (24) are bounded in terms of the initial data:

[re (¥(T), b(z, D)y (T))| < Cllp(T)IIZ> = CliollL:

(25) )
[re (40, b(x, D)to)| < Cllthol|z2 -

With some more work ([6], Theorem 4.5) we can show that

(26) [re ((t), e ()] < CliollZ2

therefore from (24) we have the estimate of the remaining term

(27) / re ((t), e(z, D)w(t)) dt < C(T)|[wol2 |

and with an application of the Garding inequality for the classical symbol c(z, &), the
result (23) follows. O

For (z0,£°%) € &_ and s(z,€) constructed with its support in a sufficiently small
neighborhood of (zg,£%), statement (23) is the initial step in an induction argument
that gives the result of Theorem 2 of the dispersive smoothing of solutions of equation
(1). To obtain the rest of the C* result we have to work harder, with more suitable
symbol classes. These will be the classes S™F(p,d) of Definition 5, where we take
0 < p < <1, with symbols supported in suitable neighborhoods of the backwards
bicharacteristics through (zo, £°).
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Theorem 8. For 0 < p < 6§ < 1 the classes S™F(p, ) form the basis of a traditional
calculus of pseudodifferential operators.

Symbols with mixed spatial and Fourier transform properties have been studied in
the past, in particular in the classical papers of R. Beals & C. Fefferman [1] and in
L. Hérmander’s paper on the Weyl calculus [10]. The classes S™*(p,§) do not satisfy
the criteria of [1], however they are a subcase of the Hormander - Weyl theory. A
straightforward independent treatment is presented in [6] and [4].

Given a pair of symbols (b(z, §), ¢(z, £)) such that c(z, &) = —{a, b}(z, ), and writing
2[A4,b(z, D)) = —{a,b}(z, D) + e, the time integral of the identity (12) gives that

re ((T),b(z, D)y (T)) + / re (1h(t), c(z, D)(t)) dt
(28) 0

= re (40, b(z, Do) + / re (), (e, D) — e)ep(t)) dt .

The first concern is whether suitably microlocalised moments of the solution ¢ (t),¢ > 0
can be controlled in terms of the analogous moments of the initial data. Consider
a symbol pair (bo(z,€),co(z,€)) € SO (p,8) x SVE=L(p,d), with p < §, such that
(z0, &%) € supp (cg) C supp (bg) = & C €_, and such that

bo(ic,f) >0 3
(29) co(x, &) = —{a,bo}(z,£) 2 0,
—{a,(z)"Kby} >0 for |z|>R.

Such symbol pairs can be constructed when additionally p + 6 > 1. The error terms
of the right hand side of (28) satisfy 0;b = 0 and e = e(1)(z, D) + R(1), where e(y)
is a symbol in the class S©K=200=,)(p §) and R(y) is bounded on L?*(R™). Therefore
the K-th moments of the solution (z,T'), microlocalised within £, are bounded in
terms of microlocalised K-th moments of the initial data, and K — 2(6 — p) moments
of the solution, in a slightly larger neighborhood &;. Since K — 2(§ — p) < K, an
iteration on an increasing sequence of neighborhoods of the backwards bicharacteristic
{(z,€) = p(5;20,€°) : s<0}CECE ---En C EO® = supp (so) serves to prove that
the K-th moments of the incoming components of the solution v (z,t) are bounded in
terms of K-th moments of the initial data g(z). This is the statement of the following
theorem.

Theorem 9. Suppose that (xo,&%) € E_, then there is a symbol so(z, &) € S%%(p, d),
with 0 < p<§ <1,1< p+ 8 such that s(x,£°%) =1 and bo(z, &) = si(z, &) satisfies

—{a,bo}(2,6) >0,

(30) —{a,bo(z) Kz, &) >0 for |z| >R .

For initial data 1o (x) € L?(R") such that its microlocal K -th moments within supp (so) =
EO) are finite,

(31) (0, sgso(z, D)o) < +o0 ,
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then there is a neighborhood £ C £O) containing the backwards bicharacteristic pass-
ing through (xq, &%) such that for all T > 0,

(32) sup_ e (¥(t),b(z, D)p(t)) < +oo

for all b(zx, &) € SOK(p, 8) with supp (b) C EM).

That is to say, for ¢ > 0 the microlocal K-th moments of the solution (z,t) are
bounded on slightly smaller neighborhoods of the backwards bicharacteristic through
the point (xo,&°). In fact, this statement of [6] is new even for the free Schrédinger
equation (5).

The second task is to use again the identity (12) to recursively exchange moment
information of the solution within £_ for microlocalised estimates of derivatives. For
this purpose we consider symbol pairs (b(z, ), c(z,&)) € S™F(p,d) x SmTLE=1(p, ),
with supp (¢) C supp (b)) € £ C £_ such that they satisfy relationships (13). Using
the operators tPb(x, D), tPc(z, D) in the identity (12), the result is that

re ((T) TPb(z, D)y(T)) + / re (4(2), Pe(z, D) (t)) dt
(33) 0

= re (o, tP|1=0b(x, D)1o) +/0 re (¥(t), (pt?~'b(z, D) — tPe)y(t)) dt .

When p > 0 the first term of the RHS vanishes, and the identity does not depend
explicitly upon the initial data 1o(x). For the n-th induction step, take m =n, p=n
and k = K — n, whereupon the LHS of (33) is bounded in terms of time integrals
of quantities involving lower numbers of derivatives and lower powers of ¢, but higher
moments. The result is paraphrased in a theorem which states the gain of microlocal
derivatives of the solution in terms of the microlocalised moment properties of the initial
data.

Theorem 10. Suppose that (zo, &%) € T*(R™) is not trapped backwards by the bichar-
acteristic flow of the principal symbol a(x,€&). In appropriate slightly smaller neigh-
borhoods £32) C £1) C E_ of the backwards bicharacteristic through (xq,£°), consider
symbol pairs (bi(z,€), cx(z,€)) € SKO(p,8) x SE+L=V(p,§) (with v > 1), such that
relationships (13) are satisfied. Consider initial data 1o(x) such that

(34) (¥0, sgso(z, D)o) < +o0 ,

then for allT >0 and K' > K (K' = K if K is an integer),

sup  t%re ((t), b (z, D)(t)) < +o00 ,
o<t<T

(35) T
/0 " ve (4(t), cxc(z, D)W(2)) dt < +o0 -
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This statement makes precise the additional microlocal smoothness that one may
expect near nontrapped points (xg,£%), in terms of the microlocal moment properties
of the initial data within the neighborhoods £(") C £(© of the backwards bicharac-
teristic through (zg,£%). This result, which appears in [6] is also new even for the
free Schrodinger equation (5). In cases where (zg,£Y%) € £_ is also not trapped by
the forwards bicharacteristic flow, a similar induction argument is available which gives
bounds on the asymptotic growth at spatial infinity of the derivatives of the outgo-
ing components of the solution. In this case it is necessary to consider symbol pairs
(bn(z, ), cn(z,8)) € S;n’k(l, 0) x S;n+1’k_1(1, 0), with the induction using n = m < K,
p = n and with k¥ < —n negatively weighted in (z). Indeed, the solution is as smooth
as the number of incoming moments allows, however the size of the derivatives of the
solution grows in (z).

Under the involution £ — —¢&, the sets £, and £_ are exchanged, and under analogous
conditions, the same results hold for ¢ < 0. A simple modification of the proof works
for the equation (4), under the conditions on the two symbols m(z, &), vo(x, &) that
m1(z, &) is real, and that for some p < 1,

0208 m (2,€)| < Cap(€)~Pl(a)P=lol |

36
9 050 vo (@, €)| < Cap (&)1l (zyr—t71el .

A real potential v(z) which satisfies |0%v(x)| < Cq(z)P~1?l is permitted by hypothesis
(36), as it satisfies the estimates for mq(x, ). This is discussed in references [6], [3] and
[4]. Further information on the growth rate of the potential terms and the smoothness
of the kernel for Schrodinger’s equation is given in the discussion in [3].

There have been some recent results addressing the expected lack of smoothness of
solutions to (1) corresponding to trapped classical orbits. In particular S. Doi [7] has
shown that if (x¢,£0) is recurrent under the flow ¢(s), then estimate (23) cannot hold
for all s(z,€&) € S'/2 supported in a neighborhood of (zg,£°). He has further proved
that (23) holds along nontrapped classical orbits for both asymptotically euclidian and
asymptotically hyperbolic noncompact manifolds. Perhaps the best heuristic argument
for the existence of singularities of solutions along recurrent orbits is the explicit solution
for the circle. Consider equation (5) for z € [0, 27), with periodic boundary conditions,
where the Schrodinger kernel is

1 (o) —ik?
Sp(z —y,t) = %Zelk(a’ Vemikt/2
k

At rational times t = P/Q, use the euclidian algorithm to decompose each momentum
k=2aQ + b, with a € Z and 0 < b < Q. The Schrodinger kernel is therefore

1 . . 2
Sp(z —y,P/Q) = o Z Z e21aQ(z—y) ,i(b(z—y)—b" P/2Q)
a€Z0<b<@Q

_ L S e P2Q (- Iy

0<ji<Q Q
0<b<2Q
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which is singular at () many points equally spaced about the circle. Even worse, at irra-
tional times ¢ the Schrodinger kernel S, is not even a measure (personal communication

of C. Bardos, P. Gérard and J. Rauch).

§3. Estimates in Sobolev spaces

In this section we will derive the basic mapping properties of the evolution of the
Schrodinger equations (1) and (4), on the standard Sobolev spaces and weighted Sobolev
spaces. The estimates are global, in the sense that the inspection of solutions and their
derivatives does not employ cutoff functions nor microlocal techniques. Furthermore,
the estimates are basic; even so they do not appear in the present literature, so far as
I know, for the variable coefficient equations considered in [3], [4], [6] and this paper.
The hypotheses that we impose on the coefficients of equation (1) are that

(37) ~3 ) 0,07 ()0s, = a(x, D) + a1(z, D) ,
7,4=1

where the pseudodifferential operators have symbols a(z, &) the principal symbol given
in (3), and a1(z,§) = =, 0,07 (z)&. In terms of symbol classes, we ask that
a(z,£) € 82°(0,1), so that ay(z,£) € SH=1(0,1), and that the ellipticity condition
holds,

(38) é\gﬁ < a(x,€) < Cle]? .

This is weaker than (9) in terms of decay rates, although it still requires the matrix
(a?*)~! to be asymptotically flat. The requirements for the lower order coefficients of
equation (4) are that mq(z,€&) € S9(0,1) and is real, while vg(z,&) € §%9(0,1). Tt is
conceivable that these requirements can be weakened to those of (36), but we will not
pursue that here.

Theorem 11. Solutions of equation (1) conserve probability and conserve energy, that
18,

9 (z,t)||z2 = [[*ollz2 and

(39) Z / a7(2)8y, bz, t)dz = (1(t), Ap(t)) = (o, Atho) -
7,

Suppose that my(z, D) + vo(x, D) is formally selfadjoint on L?(R™). Then solutions of
equation (4) also conserve probability and energy.

Proof. These facts have already been mentioned above, and the basic idea of the proof
is that in the identity (12), the operators B = I and B = A commute with A. Of course,
solutions are not necessarily smooth, so the complete proof involves approximations of
L%(R™) by smooth solutions and a limit argument. The energy for equation (4) is the
inner product (¢ (t), (A+ mi(z, D) + vo(x, D))y (t)). O

The analogy of Theorem 1(iii) for solution of equations (1) and (4) is the result that
evolution preserves the classical Sobolev spaces H" (R").
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Theorem 12. Solutions of equation (1) preserve the Sobolev estimates on the spaces
H"™(R"),

(40) 14 (@, )|l < C(r)llo(@)||ar -

When mi (z,€) € S19(0,1) is real and vo(z, &) € $%°(0,1) then Sobolev estimates hold
for solutions of equation (4);

(41) 19z, )|z < e“O*lltpo(@) |- -

Just as moment requirements such as (7) give information about the localisation of
the position density | (z,t)|?dz = dP;(x), Sobolev estimates give moment informa-

tion about the momentum density |4 (&, t)|2d¢ = dP,(¢). Theorem 12 states that the
2r-moments of dP;(£) are bounded in terms of 2r-moments of the initial momentum

density dPy(£), whereas the parallel statements for position density are not true. It is
natural then to ask for sufficient information so that spatial moments of the solution
are controlled; this is the result of the next theorem.

Definition 13. The weighted Sobolev space W"(R") is the Hilbert space that is the
closure of S with respect to the norm

(42) B@) e = Y / 2P0 (z) 2da .

lee|+]B8]|=r

Theorem 14. Solutions of equation (1) preserve the weighted Sobolev spaces W' (R™).
Indeed, they satisfy the estimate

(43) [ (z, t) lwr < e o (@) e -
Solutions of equation (4) will also satisfy (43) when, as before, my(z,€&) € S¥9(0,1) is
real and vo(z, &) € $%°(0,1).

Note in particular that the variance, [ |z|?|¢(z,t)|?dz, of a solution is finite for every
t € R if the initial data has both finite initial variance and finite initial energy, but not
necessarily otherwise. In fact, the solution operators for (1) and (4) also preserve the
Hilbert spaces based on the norms

0<|BI<s

We can also see that the character of the norm (42) is necessary by the following
examples of gaussian wave packets. Consider initial data for (5) of the form

(44) to(z) = exp(—3(z, az) +i(k, ) ,
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with a = a” real and positive definite. Then dPy(z) = exp(—(z, az))dz and |[¢o(z)||%.

= /7" /det(a) (we have not bothered to normalise g, so that dP, is not a probability
measure). Moments of dPy(x) are

(45) /xm|w0(x)|2dx: /xm exp(—(z, ax))dzx ,

which are independent of k. Furthermore, weighted Sobolev norms of 1o(x) can be
expressed:

(46) ()P 030 (x)lIz> = / ()" Py(z, k) exp(—(, az))dz

with P,(z, k) a monic polynomial in k of maximal degree 2|g|. The solution of (5) with
data (44) is the gaussian wave packet ¢(z,t) = [ S%(z — y,t)¢o(y)dy, for S°(z,t) the
free Schrodinger kernel, and this solution is explicitly

1

V/@rit)n det(1 + t2a2)

(47) Y(z,t) = exp(—1(z — kt,a(1+t*a®) "' (z — kt))) exp(i®)

where the phase is ®(z,t) = « ((z,z) — (¢ — kt, (1 + t?a®)"*(z — kt))). The position

2t
density is therefore
1
dP;(z) = —(z — kt,a(1+t*a®*) " (z — kt))) d
t(:c) (27Tt)n det(1+t2a2) exp( (.’L‘ ,CL( +t7a ) (.’L‘ ))) €T,
which has 2|r|th moments
1

(48) / " [2dPy(z) = ) / (e + k)" 2 exp(—(z, —a(l + £a®)))de

(27t)" det(1 + t2a?
and these grow in |(kt)"|2. The conclusion is that (48) will diverge in k faster than (46)
unless explicitly || > |r|, hence moments of the solution |[(z)"(z,t)||2. will not be
bounded in any Sobolev norm of the initial data which does not refer to at least 2|r|
many moments and 2|r| many derivatives.

Proof. (of Theorem 12) Ellipticity of A implies that the norms constructed from the
operator A,

(A2, AT29) + ||9]|32 (v even)

49
(49) (A(T+1)/2¢,A(r_1)/2¢> + ||1p||i2 (r odd) ,

are comparable to the Sobolev norm of H"(R™). For equation (1), the standard estimate
is to take b(x, D) = A" in identity (13), and this of course commutes with A, giving that
O (¥ (t), Am(t)) = 0. Of course, the typical element ¢ € H"(R™) is not smooth, but the
usual argument of approximation by smooth functions goes through in this setting, and
proves that the quantities in (49) are preserved by the evolution of (1). When lower
order terms are included, the same proof goes through, with modifications for the effects
of the perturbations.



SCHRODINGER’S EQUATION 15

Lemma 15. For mi(z,£) € S9(0,1) a real symbol and vo(z, &) € $%°(0,1),
[AP, m(z, D)] = %{ap, my}(z, D) + e()
(50) (APmy(z, D) — mi(z, D)A?) = +{a?,mi}(z, D) + (2
[AP v (z, D)] = %{a”, vo}(z, D) + e(s)
with {a®,m1}(z,€) € §?771(0,1), {a?,vo}(x,€) € S*~171(0,1), and with 1), e(2)
bounded from L*(R™) to H*®~'(R"), e(3) bounded from L*(R™) to H**~?(R").

Proof. The operators A = a(z, D) + a1(x, D), mi(z, D) and vo(z, D) are formed from
symbol classes S™F(0, 1), which have a well behaved symbol calculus (see [4] and [5,
section 5]). This makes the proof straightforward. O

To finish Theorem 12, suppose that my(z, D) and vo(z, D) are as required. Then for

r even, the analog of the identity (13) with b = A" states
sy PR e 1A AT ey (A ma (e, D) = mi 3, D)A)
+ §(A"vo(z, D) — vg (2, D)A"))¢) =0 .

Of course, [A, A"] = 0 and we estimate the remainder as
re (¢, 3 (A"m1(z, D) — mj(z, D)A"))
(52) = —re (Ar/21/), (A"?mq (z, D) — m}(z, D)A/?)y)
+re (AT/2¢, ;(A"/2m1(x, D) — my(, D)Ar/2)7,[)> .
The quantities in (52) are the first two expressions in (50) of Lemma 15, and therefore
I(A™/?my (2, D) — m (, D)A" )|l < C(r)|¥lla-
I(A™/?m1 (2, D) = ma (2, D)A™* )|z < C()|[Wlla- -

A simpler estimate holds for the term involving vo(x, D). Identity (51) therefore gives
a differential inequality for (1 (t), A™¢(t)) which implies (41). The case r odd is similar.
We remark that if m(z,£) = 0 and vo(z, £) is real then (41) holds with a bound which
is constant in ¢ rather than growing exponentially, since (¥, (A + V)"¥) ~ ||9||%.. O

Proof. (of Theorem 14) We will consider equation (1), as the proof for equation (4)
involves only extra error terms in the analysis. Given a solution ¢(x,t), then

(53) 10y ({z) ) = A((x) %) + [(2)?, A4 .
Calculating the commutator term,
[(2)?, Al = — 3 Z(% 9o’ () 0,9 — Z(%a” 2; (2)?)

(54)
Zaﬂ (02,02, (z >)¢.

Since a(z,£) € $%°(0,1), an inspection of the decay rates of the coefficients in (54) gives
the following lemma.
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Lemma 16.

107[¢2)?, Alllz2 < C(r, ) (I{2) 707 ¢l + (=) 5abllze + -+ + [[(2)* Pl z2) -

This is not sufficient to use in (53) for a differential inequality for (z)951, but it
gives the information needed for the induction step for Theorem 14.

Lemma 17. Suppose that 1 (z,t) satisfies the estimate
(55) )70 (2, t) || L2 < exp(Clg — 1,7 4+ 1)t) ()4 ol grar

then
(56)
(@) 2054 (x, 1) |2 < exp(C(g, r)t) ([[{x) 10580 (2)| L2 + Cg — 1,7 + 1)|[{x) T *ollmr) -

The proof, as usual, involves the Gronwall inequality for (53), applied to A"/?4, and
the estimate of Lemma 16 to bound the error terms. The induction to prove Theorem 14
starts with the statement of Theorem 12 for H"(R"), and proceeds with descending r
and ascending ¢ to give the desired result. [

§4. Non selfadjoint problems

The results of [6] are almost entirely confined to the case where the operator on the
RHS of (4) is selfadjoint (only excepting zero order terms which decay in large (x)).
It is natural to ask the extent to which the selfadjoint property is required for the re-
sults of dispersive smoothing. The approach in this section involves a so-called gauge
transformation, and it is interesting that these transformations are given by pseudodif-
ferential operators based on the symbol class Sg’o(l, 0). In this section, we will consider
the general second order equations with variable coefficients, which for convenience are
written in the following form:

(57) 0y = (a(z, D) + a1(z, D))y + (ma(z, D) + ici(z, D))y + vo(z, D)y .

Both first order symbols mi(z,€) and c¢;(z,£) will be taken to be real, a(xz,D) +
a1(xz,D) = A is selfadjoint as above, and the new term in the problem is the non
selfadjoint first order contribution ic;(z, D). Equation (57) is not necessarily compa-
rable to itself under time reversal, in contrast to equation (1), and our convention will
be to continue to discuss the case ¢ > 0, however with the warning that it is no longer
true that the same results hold for ¢ < 0, simply by invoking the involution & — —¢&
of T*(R™). The easiest non selfadjoint result for (57) is if there is a dissipative sign
condition imposed on ¢ (z, §).

Theorem 18. Suppose ci(z,§) € SVP(0,1) is real and satisfies c1(x, &) > 0. Then for
t > 0 the conclusions of Theorem 3, Theorem 7 and Theorem 10 hold for solutions of

(57).
Proof. For simplicity, set mi(z,&) = 0 = vg(z, £). The identity (13) is modified to be
Oere (1, b(z, D)y)+re (¥, 7[a(z, D) + a1(z, D), b(z, D))
+(, 3(ber(z, D) + ci(z, D)b)yp) = re (v, 0pbyh) -
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Instead of being a difficult term, the quantity %(bcl + ¢ib(z, D)) is positive to principal
order due to the hypothesis on the sign of ¢ (x, ). For b(z,§) € 52’0(1, 0) which satisfies
the geometric condition (21),

(58) 3 (¥, (b(z, D)er(, D) + ci(x, D)b(z, D))y) > clls(z, D)Yl72 + (¥, o)

where e is an operator bounded on L?(R"). Use this to control the extra term which
will appear in the proof of Theorem 7, and the conclusion (27) will follow. Similar
considerations can be used in the induction steps in Theorem 10, whence its conclusion
and that of Theorem 3 will also follow. [

More interesting analysis comes into play when the symbol ¢;(z, ) in equation (57)
is not assumed to take a particular sign. We may assume that ¢;(x,£) = 0 for [{| < 1 by
modifying the term vg(z,£). Consider the transformation p(z, D)y = ¢, and its effect
upon the equation (57);

i0vp = (a(z, D) + a1(z, D)) ¢ + mi(z, D)p + vo(z, D)

(59) .
+ ([, a] + ip(z, D)er(z, D)) + [p, (a1 + ma + vo)]¢ .

The idea in [11] is to choose the transformation p(z, D) so that the highest order term
of [p, a] + ipc; vanishes, leaving only a zero order term which is controllable in L2, and
then our analysis goes through. This strategy dictates that

(60) {a,p}(x’ E) +p($a f)cl(ar, f) =0,

which is to say that,

(61) p(z, &) = exp(bo(z,§)) , and —{a,bo} = c1(x, &) .

The equation for by (z, £) is precisely the cohomological equation of the dynamical system
(3), whose recurrence properties affect the solvability of (61). There is clearly little hope
of simplifying (57) through such transformations, unless the bicharacteristic flow is not
trapped on the support of the symbol ¢;(z,&). Continue, then, under the assumption
that supp (¢;) C €4 U E_. From our previous experience of quadrature, we have the
following knowledge of the nature of the symbol p(z, §).

Proposition 19. The symbol by(z, &) obtained from quadrature from ci(x,§) is in the
symbol class 52’0(1,0). Furthermore, it follows by the Leibniz rule that the symbol
p(z, &) = exp(bo(z,§)) is in 52’0(1, 0) as well.

This class of operators has been studied in [6] and in [4], and here they arise very
naturally again, in a new setting. In order that p(z, &) satisfy the geometric condition
(21), we will adopt the very restrictive assumption that m,supp (c;) is compact in R".
It is very likely that less stringent hypotheses may be taken, however we will not pursue
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that here. We will now assume the following conditions on the coefficients of equation
(57).
a(z,€) is elliptic and asymptotically flat,
mq(z, &) € $V°(0,1) and is real,
(62) vo(z, &) € §%°(0,1), and
c1(z, &) € §9(0,1), with supp (¢1) C EL UE_,
mesupp (c1) CC R™ ,e1(z, &) =0for €] < 1.

Theorem 4.5 of [6] addresses the question of composition of an S;n’k (1,0)-based operator
with the more classical S™+*1(0,1) kind, with the following conclusions in our case.

Proposition 20. The following list of operators are bounded on L?(R™).

p(z, D)a(z, D) — a(z, D)p(z, D) + ip(x, D)ci(z, D) ,
p(z, D)ai(z, D) — a1(z, D)p(z, D) ,

p(xz, D)my(z, D) — my(z, D)p(x, D) ,

p(z, D)vo(z, D) ,

vo(z, D)p(x, D) .
Denote for the interim the terms of (59) which explicitly involve ¢ by f, that is,

f(z,1) :([p(l', D), a(z, D)] + ip(x, D)ci(x, D)
+ [p(x, D), a1(x, D) + my(z, D) + vﬂw,D)])gb(w, t),

and assume that ||¢(z,t)||r2 is finite. It is then relevant to study the inhomogeneous
equation

idyp = (a(z, D) + a1(z, D))y + mi(z, D) + vo(z, D) + f(z,1) ,
¢(,0) = po(z) € L*(R") , f(z,t) € L*(R").

This has a treatment in L?(R") (or indeed in H"(R") if f(x,£) permits) as the homo-
geneous case (4), and the analog identity to (13) is that

(64)

dire (p,b(z, D)) +re (¢, ;[a + a1, b(z, D)]p)
(65) +re (@, 3 = ((b(a:, D)my — mib(x, D)) + (b(z, D)vo — vgb(z, D)))<p>
=re (¢, Otb(x, D)y + (b(x, D) — b*(z, D)) f) .

Under assumptions (62), or even more lenient, this gives Sobolev estimates of solutions
of (64) in terms of po(z) and f(z,t). In particular, if we set b(xz, D) = I, then

(66) Ocllp(z, )IZe < Collle(e, O)lIze + llolz, )l Ll £ (z, 1) 2) |
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therefore

t
(67) le@IIZ> < e“*llwoll7s +/0 e f(z, 7)l|72dr .

This is not an estimate of (59), since f(z,?) is a linear function of ¢ through the relation
p(z, D)y = . Furthermore, we expect the inverse p~1(z, D) to be ¢ ~ exp(—bo(z, D)),
however since there is no pseudodifferential calculus for 52’0(1, 0) this relationship be-
tween exp(—bg(x, D)) and p~!(z, D) is not guaranteed. Under the hypothesis that
p(z, D) is boundedly invertible on L2?(R"), we do have the following result.

Theorem 21. If the operator p(z, D) is boundedly invertible on L*(R™), then there
exists a solution p(z,t) of equation (59) in L?(R™), and it satisfies the estimate

(68) le@)llzz < e llwollz=

where Cy depends upon Cy as well as the operator norms of p~'(x, D), [p,a] +ipc1 and
[p, a1 + m1 + vg]. In this case, v = p~1(x, D)y and satisfies the equation (57).

Proof. In outline, use an iteration for ¢,(¢) which is the solution of (64) with f =
f(¥n_1), where ,_1 = p~lp,_1. Straightforward estimates show that this inhomo-
geneous equation has solutions in L?(R"), and an equally straightforward construction
argument involving estimate (67) over a short time interval shows that the sequence
©on(x,t) converges in C([0,T]; L>(R™)) to a solution of (59). O

The identity (65) can be used again to demonstrate a microlocal smoothing estimate
for solutions of equation (59), similar to the estimate (23). Assume as above that the
coefficients of (57) satisfy (62).

Theorem 22. Suppose that p(z, D) is boundedly invertible on L?(R"™). Consider c(x, &)
a classical symbol in S' such that supp (¢) C £, UE_. Then for all T > 0, the solution
to equation (59) satisfies the microlocal smoothing estimate

(69) / re (o(t), e(z, D)p(t))dt < Cllol s -

In this case, the solution v(z,t) = p~'(x, D)p(z,t) satisfies the smoothing estimate

(70) / re (4(t), &z, D) () dt < Cllboll2a |

where &z, §) = |p(x,§)*c(z, £).

Proof. Using identity (65) and solving (14) for b(z, &) € 53’0(1,0) given c(z,&) € S*
with supp (¢) C &4 U E_, we can follow the procedure of the proof of Theorem 7 to
conclude (69). To obtain (70), we can use the result from [4] that the composition of
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S;n’k(l, 0) with a classical symbol (with 7 supp (¢) compact) is well defined and gives
rise to an asymptotic series with a well behaved remainder term. Therefore,

<90a C($, D)Q0> = <’¢,p*($, D)C(.’E, D)p($, D)¢>
= (¥, &(z, D)) + (¥, e9) ,

where e is an L2-bounded remainder term. [

We only lack a reasonable criterion for p(x, D) to be boundedly invertible in L?(R").
Without a symbol calculus we cannot simply make corrections to the natural choice
p~L(z, D) ~ exp(—bg)(x, D). An easy criterion however, is to ask that c;(z, ) be small,
and to use the resulting smallness of by(z, D).

Theorem 23. If ¢i(x,&) is sufficiently small, in the sense that for all |c|, |B| < L the
constants Copg of the estimate

(71) 8200 c1(2,€)| < Caple) 1Pl (z) 1o

are sufficiently small, for some sufficiently large L, then the operator p(z, D) = exp(bg)(z, D)
is boundedly invertible in L?(R™).

Proof. Small constants in (71) imply that the bo(z, &) given by quadratures (13) and
(22) is also small, which in turn means that the decomposition

p(z,&) = exp(bo(z,£)) = 1+ pa)(,€)

gives the symbol p(1)(z, ) € 83’0(1, 0), which is small. This results in an operator which
is bounded on L?(R™), with small operator norm (see [6], section 4). Thus p(x, D) is a
small perturbation of the identity, and hence is clearly invertible. Notice that neither
of the results Theorem 21 or Theorem 22 require any knowledge of the inverse in terms

of pseudodifferential operators and their symbol properties, only that the inverse is
bounded on L?(R"). O

. . 0,0
§5. Mapping properties of S;"(1,0)

The transformation p(x, D) of Section 4 involves symbols p(z,£) € S°(1,0), and after
transformation, the equation (59) involves coefficients with symbols in this class. This
motivates the question of the boundedness properties of these pseudodifferential opera-
tors, on the classical Sobolev spaces and on the weighted Sobolev spaces that are used
in previous sections of the paper. The two results below answer this basic question,
and illustrate the role played by the special vector fields X, defined in (17) and the
geometric condition (21) on the support of such symbols.

Theorem 24. Consider p(z,§) € 82’0(1, 0) which also satisfies the geometric condition
(21) on its support. Then the operator p(x, D) is bounded from H" (R™) to itself for all
integers r.
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Proof. For p(z,&) € 53’0(1, 0) and () € S,

9.p(z, D)p =0, / / €@V p(z, €)p(y) dyde
_ / / €€ (8,p(z, €)p(y) + plx, €)8,0(y) ) dydé |

As p(z,€) € 52’0(1, 0), so also is 9, p(z, &), and the support condition (21) is also shared.
Hence, under the hypotheses of the theorem, the operator p(z, D) maps H'(R") into
itself, and the rest follows by induction. [J

The same question is natural when weighted norms are involved. Define the weighted
Sobolev spaces H™*(R") with the norms

19(@) |3 = /\ (z) dz

Theorem 25. Given p(x,§) € 52’0(1, 0) which satisfies the support condition (21), the
operator p(x, D) is bounded from H™*(R™) to itself. Furthermore, p(x,§) € S;n’k(l,O)
satisfying (21) gives a pseudodifferential operator which maps H™*(R™) to H™~™~F(R").

Proof. Starting from p(z,&) € 82’0(1,0) and ¢(z) € S, the multiplicative weights
against p(z, D) have the following result.
(73)

2%p(z, D)p(z) = |a? / / €@ p(z, ) (y) dydé
'y / / (& — 1) p(z, €)p(y)dydé + o - / / 69 (e, €)yip(y)dyde
- / / @iz . dep(e, €)p(y)dydé + o - / / (e, ) (y)dyde .

When p(z,£) € S3°(1,0), then iz - 9¢p(z,&) € S~1(1,0) due to the property (18)
with respect to the vector field X5. Therefore, when p(z, &) also satisfies the support
condition (21), the Theorem 6 gives an estimate on L?(R")

Jef?
(74) I

which implies that p(x, D) is bounded from H%!(R") to itself. The rest of the statement
of the theorem follows by induction. [

p(z, D)gllz < C(lle(@)ll> + llze(z)lL2)

The final comment is on the necessity of the conditions (17),(18) and (21) for symbols
of pseudodifferential operators, in order that they behave well on L?(R™). This is based
on L. Hérmander’s discussion in [8].
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Theorem 26. There are symbols q(z,&) € S%°%(p,d) with § < p such that q(z, D) is
not bounded on L*(R").

Proof. In reference [8], Corollary 5 gives examples of symbols r(z, &) € Sf;), ,» the symbol
classes introduced by Hérmander (that is,

1020 7(w,€)| < Cag(K)(£)PlI=21A1

for z € K for any K compact) where 0 < § < p < 1 and r(z, D) is not bounded from
L2, (R*) to L2 _(R™). Without loss of generality, we may take m supp (r) C K, some

comp loc
compact set. Certainly r(z, D) is not bounded on L?(R"), nor will be any extension

of it outside of K. Set ¢(z,&) = r(&,z) for x € R, £ € K, and extend ¢(z,&) to
be homogeneous of degree zero in £ exterior to a large ball containing K, such that
q(z,&) € 8%%p,d), the classes of Definition 5. Now g(z, D) cannot be bounded on
L?(R™), because otherwise ¢*(x, D) would be also, and then for any ¢ € L?(R"), we
would have

Ir(z, D)ell> = llg* (=, D)@llz> < Cligl|L2 -
U
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