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1. Introduction

A. Purpose and results. The aim of this paper is to improve the study of Nekhoro-
shev stability of elliptic equilibrium points, started in [1]. The common purpose is to
prove long—time stability of elliptic equilibrium points, without assuming Diophantine—
like conditions on the frequencies; this is indeed what Nekhoroshev conjectured in his
celebrated 1977 paper [2]. The Hamiltonian one deals with is a convergent power series

hy + hs + hs + ---, (1.1)

where any hjr is a homogeneous polynomial of degree k£ in the canonical coordinates
(p,q) € R*", and hy = %Z;‘L:1 w; (p? + qf) The problem of stability arises whenever
the frequencies w; have opposite signs, and this happens in connections with different
problems: among them, let us quote the stability of the Lagrangian equilibrium points
L, and L; in the three body problem, and (after a suitable reduction) the stability of el-
ementary configurations of a self-gravitating fluid (the so-called Riemann ellipsoids, see
for example [3,4]). Because of its relevance, the problem of stability of elliptic equilibria
deserved a certain attention in the literature, but while KAM-like stability was proved
rather soon (see for example [5], Chapter 5), instead Nekhoroshev stability was not fully
proven till very recently [1,6]. Partial achievements are indeed available: for example
in [7-9] Nekhoroshev stability is proved, but (due to the use of the isochronous system
hy as the unperturbed Hamiltonian) only in the assumption that @ is Diophantine; on
the other hand, in [10,11] such a strong assumptions is released, but then (due to the use
of action—angle coordinates) the stability domain does not include a full neighbourhood
of the equilibrium point.

Let us quickly illustrate the essence of [1], which is the starting point of our
present study; the comparison with [6] (that we received during the preparation of
this manuscript) is postponed to subsection D below. In [1] one starts with Hamiltoni-
an (1.1), and makes essentially two assumptions: (i) @ admits no resonances w-v = 0
with v € Z" \ {0}, |[v| < s — 1, for some s > 5 (here [v| = }_; |v;]); this allows one to
carry on perturbation theory up to order s — 1 (via s — 3 “Birkhoff steps”), giving the
Hamiltonian the form

h(w,z) = k(I)+ f(w,2) , (1.2)
where w, z are the usual complex coordinates
p;i — iq. i + iQ‘ .
wj:]ii\/ija zj:Wa 7=1...,n,
while k =@ - I + --- is a polynomial of order not exceeding (s — 1)/2 in the n actions
I; = iw;z;, and f is a power series in z,w starting with terms of order s. (ii) The

normal part k of h removes the degeneracy of the problem, namely & is convex. On the
basis of these two assumptions one proves the long-time stability of the origin, more
precisely stability for a time-scale

t ~ exp(1/e) , (1.3)
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where € is (up to a constant) the initial distance of the orbit to the equilibrium point.

Reference [1] was mainly oriented to consider s as small as possible — in fact,
throughout the paper s = 5 was used — and to reach stability times as long as possible.
Concerning the confinement of the orbits around the equilibrium point, our result was
instead rather poor, since within the above assumptions we could prove only I(t) ~ el/n,
Obtaining better confinement was indeed possible, but only on reduced time scales: for
example

N|H

I(t) ~ert2e  for t~ exp(l/e)? . (1.4)

As announced in [1], for s > 5 one can obtain significantly better results by means

of a suitably improved perturbative technique.Jr Such results are reported in the propo-
sition below, where we use the notation

|z|*° = .nl1ax lz;] , ze ",
j=1,...,n

H

and for R > 0
D(R) = {(w,2) € C" : |w|™,|2| < R} .

By ‘real’ values of the coordinates w,z we mean the case z = tw (so that p,q,I,h are
real), while 7wz stays for the n—tuple w;21,...,5wn2,; [.] denotes the integer part of
a positive number.

Proposition.  Assume that the Hamiltonian (1.2) converges in D(R..) for some R. > 0,
and that k is m-convex for some m > 0, namely

z-K(iwz)z >me-z Vz € R", V real (w,z) in D(R,) ,

K denoting the Hessian of k. Then there exist constants ¢, and T' such that any motion of
the system with real initial data (w®,z°) sufficiently close to the origin:

IO o0
€:= |R|2 < &y, I° = w2’
satisfies
1) < 2%R2 (1.5)
for s
1t < T exp [(%) " ] . (1.6)

For any s > 5 the confinement provided by (1.5) is better than the one obtained in [1].
Stability times improve instead with respect to (1.4) if s > 6, and with respect to (1.3)
if s > 8.

T As commented in [1], raising s within the simple technique used in [1] produces only minor
improvements of results.



For the sake of completeness, we remark that, for s < 4n and e small enough, the
*=% in (1.6) turns into
i—7- (This is obtained, see the remark at the end of section 2, by suitably excluding

the resonance of multiplicity n.) But the improved results are not worth, in our opinion,

above bounds could be improved, namely the small exponent
5—4

the annoying complications one should introduce in the proof.

B. On the constants characterizing the problem. For any R > 0 we denote by Agr
the set of all analytic functions u : D(R) — (€, which satisfy the reality condition
u(w, —iw) € R. As in [1], for functions u € Ag we shall write the ‘Fourier series’

u = z Uy uy(w,2) = 4,(I)e,(w,z2) ,

with 4, analytic in the polydisk |I|* < R? and

z; forv; >0
n |v; |

ev(w,2) = [[;oym)', ny; = ¢ 1 forv;=0
w; forv; <0

For u € A we shall use the norm

ulr = Y lwlF,  |wlF = sup  |u,(w,z)|.
veZ" (w,z)ED(R)

We shall denote

|/ |R.
R?

Besides R., m and F, we shall characterize the Hamiltonian h by two other constants,

namely

F=

Q= sup |lw(iwz)|| , || .|| = euclidean norm ,
real w,z€D(R.)

where of course w = %, and M > m such that
IK(iwz) 2| < M|z|™ Ve e C", V(w,z) € D(R.) .

Possible values of the constants entering the statement are

m \s-1 1 mR2\ 1
L= (T - MR po . 1.
= (531 (217ﬁ F ) 4y/nQ) (L.7)
C. On the proof. The proof shares with [1] the basic idea (in turn taken from [12]),

namely using the Cartesian coordinates w, z to overcome the problem of the singularity
of the actions at the origin (in spite of the fact that the problem is non—isochronous).
This idea however is now implemented in a more subtle way. The technical novelty is
as follows: let Ry = /eR.; we introduce a new parameter R < R, to be chosen in the
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geometric part of the proof depending on the resonance properties of w® = w(I°), and
we accordingly separate the initial actions /7 in ‘inner’ and ‘outer’ ones: that is

I; < R2 fOI‘j € Jin ) I; > R2 fOI'j € Jout ) Jin U Jout = {1,,?1}

(Jin could be empty). For j € J;, it is mandatory to use Cartesian variables, because of
the singularity I; = 0. For j € J,y¢ one instead safely passes to action—angle variables

(I;,¢;), namely

Z’U)] — \/Eei@j , zj = \/Ee_in fOI'j € Jout .

With some abuse of notation, we shall denote by (w, z,1,¢) the new mixed coordinates,
implicitly understanding that, in such a mixed combination, wj, z; have index j € Jiy,
while for I, p; one has j € Jout. The canonical transformation (w, 2,1, ¢) — (w, z) will
be denoted by C. Concerning the domain of the mixed variables, we shall take a small
neighbourhood of the initial datum, depending on R as well as on an ‘extension vector’
p = (Pw,PI;py), of the form

D,(I°,R) = {(w,2,1,9) :|wj|, |zj| <R+ pw for j € Jin;

. 1.8
[I; — I7| < p1, Img;| < p, for j € Jout} . e

Assuming

1 1
Pw S R ) PI S §R2 ’ Pe S ) R S §R0 ) (19)

N | =

one immediately finds

C(DP(IO,R)) c D(S), S = max(R + pw,1/R% + pre’*) < 2R, . (1.10)

At the same time, the outer actions are well bounded away from zero:
1_, )
\I;| > ER for 7 € Jous - (1.11)

We shall denote by A,(I°,R) the set of all analytic functions D,(I°,R) — €, which

are real for ‘real’ (z,w). The new Hamiltonian A = h o C belongs to A4,(I°,R) and has
the form

h(w,z,1,0) = k(I)+ f(w,z,I,0), f=FfoC. (1.12)

We shall work on A by the traditional tools of Nekhoroshev theory; as in [1,12] we shall
use our favourite Lie series method, namely the ‘vector field’ version originally described
in [13]. The use of Cartesian coordinates for the inner variables eliminates the problem
of the singularity of the actions at I = 0, while for the outer variables, because of
(1.11), the singularity problem does not arise. The essential gain with respect to [1],
where all variables are treated as inner ones (R = Ry), is the freedom in the choice of
R: the crucial point is that the ratio R/ R, is not fixed, but adapts to the resonance
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properties of the initial frequency w®, and in particular, for low resonant initial data,
it can be much smaller than one. In such a situation, the maximal oscillation of the
actions I1,...,I, in D,(I°,R), which is of order R?, is much less than R2; this makes
easier the control of the small divisors, and allows one to base the analysis of resonances
on the actual initial frequency w’, not on w as in [1]. This makes the difference.

D. A comment. As already remarked, Nekhoroshev stability of elliptic fixed points
has been recently studied also by Niedermann, in [6]. The results by Niedermann con-
cern explicitly the case s = 6, and are similar to the present ones, since for such value
of s he obtains (in our notations) ¢t ~ exp(1/ e)ﬁ; the confinement is also similar. Al-
though not explicitly stated, it is quite clear that Niedermann’s results generalize to
any s > 5, and are very similar to the present ones. On the contrary, they apparently
do not cover the results of [1] (better times with worse confinement), although, per-
haps, these results could possibly be reproduced by modifying some choices inside the
proof. Concerning the technique, our papers share the basic idea, namely using the
Cartesian variables to overcome the singularity of the actions. Besides this, they are
essentially different: indeed, [6] follows the method by Lochak [10,11] (often referred to
as method of “simultaneous approximation”), while we follow the traditional approach
by Nekhoroshev [2], with Poschel’s improved geometrical construction [14].

As is known, in the traditional Nekhoroshev approach one constructs normal forms
around resonances of any multiplicity (i.e., number of independent resonance relations
satisfied by w) between zero and n — 1; Lochak’s method is based instead on the con-
struction of a reduced set of normal forms, around resonances of maximal multiplicity
n — 1, that is around periodic orbits. As a general rule, the latter method leads in a
rapid brilliant way to stability results for exponentially long times; on the other hand
the traditional method, thanks to the details of the normal forms, can provide more
informations on the actual behavior of the system during the exponentially long times.
For the problem at hand of the stability of elliptic equilibria, the traditional approach
that here we follow can be useful to investigate, besides the overall stability times,
which particular energy exchanges among the n oscillators are allowed or forbidden, for
a given initial datum and for a given time scale. Among the possible applications, let
us mention the ergodic problem for the Fermi—Pasta—Ulam system: the latter is in fact
a case in which the frequencies w1,...,w, have the same sign, so that the (perpetual)
stability of the equilibrium point is trivial, and understanding the details of the energy

exchanges is the only relevant question.T

T In this connection, we would like to make a further comment on a claim in ref. [6]. Apparently,
one there suggests that the technique there employed, namely Lochak’s method implemented in
Cartesian coordinates, could be conveniently used to reproduce, possibly in a simpler way, the
results worked out in [12] concerning the stability of gyroscopic rotations. There is however a
point that needs to be stressed: in the study of the fast rigid body (in particular, but not only, in
the case of gyroscopic rotations), the most relevant question to be looked at is the motion of the
angular momentum m in space. But the qualitative features of this motion depend in a crucial
way on the resonance properties of the initial datum: if no resonances are present, then the unit
vector g = m/|m| moves (nearly) regularly along a well defined curve on the unit sphere, like
in the Lagrange top; instead in case of resonance, one ‘slow angle’ appears in the normal form
and couples with the degree of freedom describing the orientation of m, possibly giving rise to
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2. Proof of the proposition

A. Functions in mixed variables. Consider a function v = ), u, € Ag,, and let
u € A,(I°,R) denote its pull-back under C,

For any o = (0w,0r1,0,) < p (the inequality is intended to work separately on the
separate entries) we denote

@le = Y fwlE,  fElE = sup [T (w,2,1,9)]
veZ” (w,z,I,0)€D(I°,R)

Let now U = ([7“’1, e ,[7“9") denote the Hamiltonian vector field of u. We shall write

veZ"
where U, is the Hamiltonian vector field of u,, with components ﬁ;ﬂj,...,ﬁfj. For
vector fields we shall use the norm
e = > 1015,
veZ"
~ 1~ 1~ 1 ~; 1~
1015 = max ([T |52, —— |03 |52, — [T 5 |2, — |0 |
Pw w PI ¥

(pay attention to the normalization with p, not with o) where the index j is intended
to run in J;j, for the w, 2 components, in J,y; for the I, components.

Lemma 1. Let F be the Hamiltonian vector field of f in (1.12). If Ry < 1R, and

1 1
pw =R, PI:§R2a P¢:§7 (2'1)

then one has
4R,

R,

VEF, 1R, < (B r (2.2)

7lo < ( 7 (7

The easy proof is deferred to section 3. (Here and in the following, the choice (2.1) of
p, in place of the inequalities (1.9), has no deep meaning, and is made only to simplify
some analytic expressions.)

chaotic motions of p on the sphere (see [15] for an illustration). The method of simultaneous
approximation treats every initial datum as maximally resonant, so it ignores such a distinction.
This problem is typical of degenerate systems.
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B. Resonant regions.  Asin [1], we use the Nekhoroshev decomposition of the frequency
space into resonant regions, with the improved estimates provided by Poéschel [14]. For
any given N > 1 we consider all the d-dimensional sublattices A of Z", 0 < d < n, called
N -lattices, such that: (i) A is generated by d vectors v1,...v4 € Z" with |v;| < Nj (ii)
A is maximal (it is not properly contained in any sublattice of the same dimension).
We denote by 0 the zero—dimensional lattice, constituted by the null vector alone. The
cells of any lattice A # 0 have a minimal d-dimensional euclidean volume, which we
denote ||A||; we put ||0]| = 1. Moreover, we denote by Pyw the orthogonal projection of
a vector w onto a lattice A # 0.

The definition of the resonant regions depends on the cutoff N and on two positive
parameters b and §. Following [14], for any N-lattice A of dimension d > 1 one defines

)
6y = (BN)P —— (2.3)
[[A]]
for any N-lattice A of dimension d = 0,...,n, one then defines the resonant region By

as the set of all points w € R™ such that

[Paw]| < 64
|Parwl|| > 84 for any N-lattice A’ of dimension d + 1

(only the former condition for d = n, only the latter for d = 0). For any given N > 1
the resonant regions cover R”, and the following lemma holds [14]:

Lemma 2. Consider any N > 1 and assume b > /2. Then for any N-lattice A # Z",
and for any w € By, one has

lw-v| > ya YveZ" \ A, [v|< N,

with
v = 6, ya = (b—+2)Néy if A#0,2Z"

C. The normal form. ~ We shall construct a normal form for the mixed variables Hamil-
tonian h, adapted to any given N-lattice A, up to a small remainder. We assume that

the frequency w = % satisfies a nonresonance condition of the form

lw-v| > a YveZ"\A, [v/<N, (2.4)

in the whole domain D, = D,(I°,R) of h. By Iy : A, — A, we shall denote the
projection Ilyu = ) .\ %,. In the analytic lemma below the constants N and «
are free parameters, to be fixed, like the parameter R determining the separation of
coordinates between inner and outer ones, only in the geometric part of the proof.

Lemma 3 let 7L, R, D,, M be as above, with p as in (2.1). Given N > 1 and any
N-lattice A € Z", assume the nonresonance condition (2.4) is satisfied with some o > 0.
Ifr € IN is such that

27 SYFl, <1, r< N, (2.5)

1
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where MR
8
C=1+ , (2.6)

a

then there exists a real analytic canonical transformation ® : D
d(w',2',I',¢"), bounded by

— D,, (w,z,I,p) =

ip

2C

|C}_CJ|S:”ﬁHPPCa (=w,z,1,p (2.7)

(p2 = pw), which gives the Hamiltonian h' = h o ® the normal form

hM=k+g+e"f, g=1Il,g, (2.8)

g, f' and the Hamiltonian vector field F' of f' satisfying the estimates

g, <2, AP, <IFlos I, < IF, -

The proof of the lemma requires only minor changes with respect to [1], so we shall
skip most details. As usual, we construct the diffeomorphism ® as a composition of r
elementary steps. The single step is described in the following

Lemma 4. Let k, R, p, N, a and A be as in lemma 3; consider
H(w,z,1,¢) = k(I) +u(z,w,I,p) +v(z,w,I,p)

with w,v € A,, 0 < p, and denote by U, V the Hamiltonian vector fields of u and v
respectively. If x > 0 is such that zp < o, and v is small, precisely

1
ClV]es < g% C asin (2.6) ,
then there exists a real analytic canonical transformation ¥ : D,_,, — D,, bounded by
oo 20
|((I)_Id)C]|a—xpS :HVHUPC ) (=zw,1,¢p
such that the new Hamiltonian H' = H o U belongs to A,_,, and has the form

H (w,z,I,0) =k(I)+u'(z,w,I,0) +v'(2,w,I,p),

with
uw =u+ v
and 5
0'[o—2p < —(IU]lo + (1 + O)|V|o)lv]s + e 20|,
T (2.9)
! 40 1Ny
[Vllo—zp < —(IUlle +2(IV[I)I Ve + e 27 V]ls,

o



V' denoting the Hamiltonian vector field of v'.

Proof of lemma 4: We generate ¥ by the Lie method, that is as the time—one map
®F of a Hamiltonian vector field X of Hamiltonian x. Specifically, if x satisfies the

equation
{kx} = >, v, (2.10)
vEZ"\A,|v|<N

then ko & has the required form, with

v = R‘lx(u +v) + R‘ZX(k) + (1- HA)’U>N ; (2.11)
here v>V = Z|u|>1’\7 v, is the ‘ultraviolet’ part of v, while R;c = Z]ﬁp %Lf‘{ denotes
the p—th remainder of the Lie series, Lx being the Lie derivative (working on functions

and fields) associated to X.
Equation (2.10) is trivially solved by

x= >, Z.v” : (2.12)

w v
vEZ™\A,[v|<N

and the following rather standard lemmas are easily proved, see section 3:

Lemma 5. One has
1 C
|X|a S _|'U|o ) ||X||o S _HVHU ’ (2'13)
o o

with C is as in (2.6).
Lemma 6. If |X||, < iz, then % maps D,_,, into Dy, with
0":0'—mp—|—||X||p<0', (2.14)
and one has
R+ 9)loep < Il U+ VI,

4
B klo—zp < || X[lofols

4
|BE (U + Vllo=zp < X[ U + Vo

4
I1R2 Kllo—zp < Xl lVlo

(2.15)

where of course K denotes the Hamiltonian vector field of k.

On the basis of these lemmas the proof of lemma 4 is immediate, and practically reduces
to the estimate of the ultraviolet part of v entering (2.11). For this one easily finds

(1= Tx) vV g—zp < [0V ]gsp < €727,

) (2.16)
10 = ) VN sy < VN lomap < eVl 5
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indeed, for each v € Z", if the domain reduces from o to ¢ — zp, then any Fourier
component v, of v reduces in norm by (at least) a factor

R+ 0w —xpw\I¥i w vj
( + oy —zp )| |§(1—m P )l |
R+ ow R+ pw

for each index j € Jin, and by a factor e~ |¥il?P¢ for each j € J,u;. With the choices
(2.1) of p, the inequalities (2.16) are immediate. The conclusion of the proof of lemma
4 is straightforward. [ ]

We can now proceed to the

Proof of lemma 3. We perform r perturbative steps based on lemma 4, with equal
domain reduction zp, z = 21—T We assume inductively that after [ steps, 0 <1 <r —1,
we deal with a Hamiltonian

hl:k+gl+fla hlEAp—l:l:p,

with
g =Mx(fo +--- fi1)

and
|fl|p—lmp < e_l|f|p ) ”Fal—lep < e_l”F”p

(the assumption is trivially satisfied for I = 0 by go = 0, hy = 7L) One easily sees
that, for r satisfying (2.5), the induction can proceed one step further. Indeed, from the
former of (2.5) one knows that lemma 4 can be applied, with of course u = g;, v = fi,
and (2.9) holds. Now, from the inductive assumption one has

”Gal—lmp + 2||Fl||p—lmp < 2||F||p )

so that
80 I —1iINg
sl pqrnren < (SS NPl + €75 ) [l oto

using (2.5) the claimed estimate on Fji; is immediate. In the same way one works out
the estimate on f;;. Finally, the overall canonical transformation ¢ : D%p — D, is
easily estimated by summing a geometric series. [ |

D. The confinement of the actions. =~ We use here the normal form provided by lemma
3, together with the convexity of k, to produce bounds on the variation of the actions.
In lemma 7 below we refer to the Nekhoroshev—Poschel decomposition of the frequency
space illustrated above, see lemma 2; the constants N > 1, b > /2 and § > 0 deter-
mining the decomposition are still free, and will be conveniently fixed later. The same
holds for the constant R distinguishing inner and outer variables.
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Lemma 7. Consider any real motion of the Hamiltonian system (1.2), and let the initial
frequency w® belong to By for some N —lattice A. Assume the following technical inequalities
are satisfied:

10MR? < (b—+2)é4 (2.17a)
~ b—v2 1
< mi _ —— .
I1F] < min (*53=, 5) b (2.170)
2465 < mR? (2.17¢)
1
R < §R0 (2.17d)
~ = 5
m (R*||F||, + 5| f],) < §5i ; (2.17¢)

and let N > 6, r = [§N] > 1. Then one has

() - I°|* < R

N | =

for
™

(<1 2.1

Proof. We first show that the assumptions of lemma 3 are satisfied, with

1 1

Indeed, according to the definition (1.8) of D,, in such a set one has |I — I°|>* < 5R?,
andsoforv e Z\ A, [v| <N,

w-v| >y —5BNMR? ;

using (2.17a) one immediately finds (2.4). Concerning the former of (2.5), this follows
from (2.17b), after observing that, because of (2.17a) and N > 6, it is C < %. The
latter of (2.5) is trivially guaranteed by the choice of r.

So we can use lemma 3, and profit of the normal form (2.8), as far as £'(t) :=
(w'(),2'(t),I'(t),¢'(t)) remains in D%p. We now show that for ¢ as in (2.18), if £'(¢)
does not escape D%p, one has

(1) - I(0) <62 ; (2.19)

m

in turn this inequality, using (2.17c), implies (by the usual consistency argument) that
£&'(t) cannot escape Dy, for t as above. To prove (2.19) one uses energy conservation
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applied to the normal form Hamiltonian (2.8), together with the m—convexity of k.
Precisely, denoting

AI'=T(#)—I0), Ag=g(f'(®)—g€(0), AF =F(£®)-F(€0),

one immediately finds
1
STIAT? < [w(I'(0)) - AT'| + |Ag| +e7"|Af]

We now treat explicitly the case A # 0, but the conclusions hold for A = 0, too. One
writes
W(I'(0)) - AT'| < |0 - AT| + VaM|T(0) — I°| | AL'|
< | Paw’[[[AT']| + Q|(1 — Py )AT'|| + /nM|I'(0) — I°]* |AL]| .

But for assumption ||Pyw®|| < 64, while the second term, in force of the normal form

(2.8), is bounded by
Q||(1 — PA)AT|| < 4y/nQe" [t|R?(|F|, < R*|| F|, -

Using (2.7) to estimate |I'(0) — I°|*, and profiting once more of (2.17), one finally gets
lw(I'(0)) - AI'| < 28, ||AL’|| + R?||F||,- This leads to the inequality

m ~ —~
TIATI < 285|AT| + R F, + 5/,

(use was made of |Ag| < 2[g[s, < 4|f|p, e "|Af] < 2e_r|f|p < |f|p). Solving the
inequality, and using again (2.17), inequality (2.19) follows. One has finally
) 1
[I(2) — I(0)I;° < |AL'|? + |I(2) — I'(})I;° + [T'(0) — I(0)[° < SEA < gR*. (2:20)

(use was made of (2.7) and (2.17c¢)). [ |

E. Conclusion of the proof. ~ To conclude the proof of the proposition we must show that
one can conveniently choose R, N, § and b (in turn determining é4 according to section
2.B) in such a way that the technical inequalities (2.17) are satisfied, and moreover that
the confinement provided by lemma 7 corresponds to (1.5) and (1.6) in the proposition,
the constants being as in (1.7).

Inequality (2.17c) is satisfied as an equality by choosing R dependent on A, namely

R? =245—A )

m

Inequality (2.17a) is then satisfied, also as an equality, by the choice of b:
b—+/2=240 M/m .
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Inequality (2.17d), recalling the expression (2.3) of §4 and Ry = /eR,, turns into
24(bN)%-1

and is satisfied, in the worst case d = n and ||A|| = 1, by the choice of §:
96 (bN)""'6 =em R? .

Inequalities (2.17b,e), using lemma 1 and the expression (2.3) of é,, are both satisfied

if
52
A2

44/nm R2(16e)2 F < (bN)?9~2

In the worst case one has ||A|| < N¢; after the above choice of §, one then gets

]: 3—4 —9n
o (16)7 < (bN)~2" .

This is satisfied by appropriately choosing N,

1\ % m 1 mR2%\
N = ( ) , _ ( ) . 2.21
“1\16¢ 17 a0M \ 2T m F (2.21)

Correspondingly, using r = [3 N], one gets (1.6), with T’ and ¢, as in (1.7). The bound
(1.5) follows from (2.20), after the above choice of §. The proof of the proposition is
thus complete. [ |

Remark: as remarked in the introduction, results somehow improve if one excludes the
resonance of multiplicity n, and correspondingly considers, as the worst case, d =n —1.
The improvement is that % in (2.21), and thus in (1.6), is replaced by 4““7;_44. But this
requires imposing an extra consistency condition, namely (bN)""1§ < Q. One easily
sees that such a condition can be satisfied for any positive ) by keeping € small, only if

s is not too large, precisely if s < 4n.

3. Proof of technical lemmas

A. Proof of lemma 1. The former of (2.2) trivially follows from (1.10). Concerning the

latter, one writes |ﬁ,}”1 |50 = |% oo < %B‘I}O, and so by Cauchy inequality, also using
J J
pw =R,
o0
Lu;,;uj'oo < |fv 18R, _
Pw po= 2Ry\R
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The same holds for F=. For the I ; component one writes

8f, _ 8f, dw; | 0f, 025

FL — _ —
v dp;  Ow; Bp; Bz Dp;

but |29, 9% | < |, /I}| e, so that

B; By;
o0
Lt < 20k
o1 p R2
In a very similar way one finds
[e¢]
Lo < Wik,
Pe g RyR
The I; component dominates. By summing over v the conclusion is immediate. [ |

B. Proof of Lemma 5.  The former of (2.13) is trivial. For the latter one must estimate
the different components of X, = >, recalling of course that w in the denominator
is not constant but depends on I4,...,I,, with I; = tw;z; for j € Jiy. For the I;

component one immediately finds | X b | < a7? |V,,Ij |o°. For the ¢; component one has

instead
. /Al v - Ow
Xpi=—"——- Vzgvl—l-
w-v  i(w-v) — 0I;

But

Sv, Sv, -
2G5 — Wigy, forl € Jiy
Vivy, = ’

_i% = 'L'V,,I’ forl € Jout

and one easily concludes

Vells | 2M

1 o o - O oo
—| X7 < +§maX(2(R+pw)pw,pI) Vlle < — IVl

o «a

In a very similar way one works on the components wj, z; of X,, getting the estimate
pL|X;”|g° < %HV,,HgO, the conclusion of the proof is immediate. I

C. Proof of lemma 6. 'We limit ourselves to a sketch. Inequality (2.14) is trivial. The
estimates (2.15) on the remainders are based on the standard inequalities

1
|LX y|0'—mp S ;HXHO'—Q?P |y|a
1
1Lx Ylo—2p < —([Xllo—zp [Y]lo + 1 Xllo [Y]lo-2p)
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where y is any function in 4, and Y is the corresponding vector field (see for example
appendix B of [15]). From these inequalities one gets by induction (see again [15])

1 1/e ! 1 1,4 !
il vloap < (SIXN) Wlo s 31T Vloao < 5 (CIXIL) 1Y

and the conclusion is easy; as usual Ry k is estimated as Ry v, and similarly for Ry K.

[1]
[2]
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