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Abstract

It is proved that the matrix elements ﬁn,n-{-k between harmonic oscillator eigenvectors
of any smooth observable in the quantized Lobachevskii plane converge to the Fourier
coefficients Fj of the corresponding classical observable F(A,¢) at the classical limit
n — oco,h — 0,nh = A, k fixed, where A, ¢ are the oscillator action-angle variables.
The Wigner functions are then defined and, as a consequence of the above result, their
convergence to §(A — Ag)e™*? at the classical limit is proved when computed on the

harmonic oscillator eigenstates n and n + k.
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1 Introduction

Let H be the Schrédinger operator representing the quantization of a completely inte-
grable classical system in d-degrees of freedom. Let I be any quantum observable, and Fpun
its matrix elements among eigenstates of H. 1t is well known (see e.g. [LLL], §48) that at the
classical limit the matrix elements F,, are expected to converge to the Fourier coefficients
F,_m of F. Here F is the corresponding classical observable written in the action-angle
variable of the Hamiltonian H.

This means that if

PG = 3 B(A)et

k=—o00

is the Fourier series expansion of the classical observable F in the action-angle variables A, ¢
then, as k is fixed,
ng;%@ Frs Frgr) = Fr(A). (1.1)
nh—A
In particular, 1.1 entails that the diagonal matrix elements of F tend to the mean value of

the classical observable F’ on the d-torus labeled by A, i.e.

~ 2T
Llim (P ) = () = o [P0, (1.2
nh— A

Formula (1.2) has been proved in [C].

It is known that either, in Schrédinger representation and in the Bargmann one as well,
when the correspondence I — F'is the Weyl quantization, 1.1 is equivalent to the assertion
that the Wigner functions W, 41 (A, ¢) tend to §(A — Ag)e™"* in the sense of distributions,
ie.

lim Wik (A, 6) = 8(A ~ Ag)e™*?, (1.3)
b A

Formula 1.3, for k£ = 0, has been proved in great generality by stationary phase arguments in
[Bv] and [BB]; however the complete mathematical details for the general assertion 1.1 have
been so far obtained (see [R]) only when H is the harmonic oscillator, by proving directly
1.3 in the Bargmann representation.

The proof has been subsequently simplified in [DBR] using the anti-Wick quantization, always

in the Bargmann representation.
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In this paper we deal with the quantization on the Lobachevskii plane (see [BER1]) that,
according to the Poincaré model of hyperbolic geometry, is identified with the complex unit
circle D. It represents the fundamental example of quantization out of the Heisenberg group
representations. In this model the definition of the Wigner function is not a priori clear; here
we find its expression through the analogy between unitary representations of the Heisenberg
group on the Hilbert space of holomorphic functions on C introduced by Bargmann [BAR]
on one side and the SU(1,1) unitary representation on the Hilbert space of the holomorphic
functions on the unit disc in C with the Poincaré metric on the other side.

1.1 holds in each one of the three possible quantization procedures: covariant, contravari-

ant and Weyl. The result in Weyl case implies in particular 1.3.

2 Classical mechanics

The complex unit circle D = {z € C;|z|] < 1} is a homogeneous space for the group

SU(1,1) of motions of the Lobachevskii plane. SU(1,1) acts on D as follows

az+b
D . = =
el — gz bz+a
where
a b 2 2
g={ 3 - | €SUMY; abeC o =]b=1.

D admits a Kihler structure. The 2-form invariant under motions is

Q=i(1—22)"%dz A dz. (2.1)

The 2-form €2 defines a symplectic structure on ). In particular the Poisson bracket is

. 2 (0f Oy 3f39>
_ _ 2(¥YJ Yy YJI YT
{9} =i(1-=22) <azaz 920z)
If we set
_ z
e

then z and u form a pair of complex canonical variables: {u,z} = 1.

The harmonic oscillator in D is described by the Hamiltonian
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2Z
H(z,z) = = zu. 2.2
(7) = (22
The corresponding equations of motion are
=1z
z= -1z

and the phase trajectories are circle centered at the origin.

The action variable is given by

1 2020
A:—/ Q=—"—"—"=H(z)=F 2.3
27 Jiz|<|z0 | 1 — 2020 (20) (2:3)
where F' is the energy computed on the trajectory |z| = |zo|, and
A
7= —. 2.4
2z T A (2.4)

The angle variable ¢ canonically conjugate to A is solution of the equation

{A, ¢} =1 <2% - z%) =1

and can be put equal to

¢ = Argz. (2.5)
In these coordinates the hamiltonian takes the form
H(A,¢)=A

and the equations of motion become

A = const.

¢ =1+ ¢o.
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3 Quantization

The Hilbert space of quantum states for the Lobachevskii plane (see e.g. [BER1], [BER2])
is defined by

Fy=1f; f € L*(D,da); f holomorficin D}

where

da(z3) = (1 = 25" du(=,3),  du(=,3) = (1 _ 1) LU (1 _ 1) L dzdz
Here 1 < 1/h € N (see [BER3]).

The scalar product in Fj is given by

1 1

as = (3-1) 3 [ 105010 - 22) 2 dsd

s

A complete orthonormal system in Fj is defined by the sequence of functions

fulz) = (W)m "= <(1{j)”)1/2 2", n=0,1,... (3.1)

where (a), :=T'(a+ n)/T'(a).
A standard computation by means of the orthonormal system proves that the family of

elements

en(2) = (1 — zp)~'/" (3.2)

called coherent states, represent a supercomplete system of vectors in Fj. The Parseval

identity
(£.9) = [ (F.e) e g)do(o,0)
and the self-reproducing property

(fe) = [ F@aEda(z2) = [v) Vi€ F, WoeD

hold as in the standard Bargmann space [BAR].
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In 1974, F.A.Berezin (see [BER1]) introduced the covariant and contravariant symbols as
holomorphic functions of (z,2z) on D and their quantization as operators in F,. Since the
variables (z, z) are not canonically conjugated, the Weyl symbol cannot be the symmetrization
of the covariant and contravariant ones. The Weyl quantization is here defined by “reflection”
operation ([BER1], recalled in §3 below): this reduces to the standard Weyl quantization in
the case (R?"; Q = S dp; A dg;).

After recalling the three types of symbol-operator correspondences, we will compute the

classical limit 1.1 for all three cases.

1. Covariant symbol. Let I be a bounded linear operator in Fj. Its covariant symbol,

denoted F(z, ) is defined (see [BER1]) in terms of the operator F* by

(F e, e.)

(€,€2)

(3.3)

where e,; z € D is given by 3.2.
This definition shows that the covariant symbol is uniquely defined for any operator I

F(z,2) admits an analytic continuation:

<1?’ €y, €z)

(€v, €2)

F(z,0) = = (1—20)/"(F e,,e.), (z,v) € D x D. (3.4)

The action of the operator Fis given in terms of its symbol by the formula

(F1)(2) = [ 0P, 0)ese-)da(v, )

D

= [ sy (12 2) o),

1—2v

We denote Fyy the quantized observable whose covariant symbol is the classical observable

I and we denote the correspondence

F—)ﬁw

covariant correspondence.
It is proved in [GR] that, in the covariant correspondence, the operator corresponding to
the symbol
mgl

F(z,2) = Z cmlp(lzi_ (3.5)

_ p
m,l,p ZZ)
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is
p—1
~ hzo, + 1 h !
T (H ﬁ) [(hzaz + 1)-1;@} . (3.6)
m,l,p

q=0 1 + qh

In particular this implies the following (formal) quantization rules

chmzném — Z Com 2" [(ﬁz@z + 1)_1h(?z}m

i = ho),.

2.2 entails that the quantized hamiltonian of the harmonic oscillator in this correspondence
is

H = hz0,

Then the functions f,, defined by 3.1, are eigenfunctions of the operator H with eigenvalues
hn which become the action A at the classical limit.

We prove now that for a classical observable F' of the form 3.5, the matrix elements of
the corresponding operator ﬁw, given by 3.6, tend, at the classical limit, to the Fourier
coeflicients of I’ written in the action-angle variables. By linearity it is sufficient to prove the

following

Proposition 3.1 Let

Zmzl

(1—=zz)p
and the corresponding operator Fw given by 3.6. Then

1 2m

Yim (B fos Sy = 5= [ F(A,@)e™*%do, & fized (3.7)
n?i;)OA

where, by a standard abuse of notation,

_ A A s
F(A,¢):F<\/A+1e ’\/A-I—le )

is the function F(z,Z) re-expressed in the action-angle variables (A, ¢) through 2.3 and 2.5.
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Remark. By 2.4, the r.h.s of 3.7 can be written as

1/ A ()2 am n
o <A—+1> (A+1)p/0 elm=1=k)d g, (3.8)

Proof. Acting with the operator ﬁw, defined by 3.6, on the eigenfunctions f,, we easily

obtain
P f = (F(n+ 1/ﬁ))”2 ﬁ h(n = 1) +1+ gh ’H =0 ) mint (39
WIn =\ "Il (1/h) b 1+ gh Fhh(n—q)+1 7
because [(hzd, + 1)7'h,] 2" = Lz”_l
: : hln—1)+1

As k is fixed we have

— h(n—=0)+1+4qh hi(n — q) A !
lim H =(A+1)? and lim = < )
"o gmo  LHdh ",.,:?qu An—g)+1 AA+1
nh— A nh— A

After substitution in 3.9 we obtain

_ F(l/h+n)F(1/h+n+k)>1/2 . _l _
im (B fo, fosr) = | AYA 4 1)l pmAn=l ontky
nh—A nh—A

By Stirling’s formula (see [MO]) we get, at the classical limit

D(1/h+n)U(1/h+n + k) 1/2_ 1 ]2(A+ 1)+1/ht(k=1)/2
<n!F(1/ﬁ)(n+k)!F(1/ﬁ)> Vo T (1+om). @310

Hence

! Kl/2 (A+ ])”+p—l+1/ﬁ+(k—1)/2

im (Fyw fo, fasr) = lim (zmEn=l onthy, (3.11)

nes 60 /o n—Il+(k+1)/2
h_—))O h—)O 27 A ( )/
nh—A nh—A

Evaluating the scalar product (zm+”_l, z”"'k) in polar coordinates we obtain

(amnel ey <% B 1) QL /Qﬂ/l grmt k=21 _ )1/h=2i(m=1=K)8 gy g
T Jo 0
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Remembering (see [MO]) that

! r—1 y—1 _ F(‘r)F(y)
/0 PN = T R > 0 R() > 0 (3.12)

the last integral becomes

it e (1 | (14 (m+k—D/2)r(1/n-1)
(= ' >‘(E‘>§ U(n+1/h+ (m+k—1)/2)

2r
/ ez(m—l—k)q5d¢.
0

By Stirling’s formula, Va € R, at the classical limit

F(n—}—l—l—a)F(l/h—l) Anta+1/2
= V2t 14 0(n)). 1
F(n+1/h+a) " (A+1)”+1/ﬁ+a—1/2( +0( )) (3.13)
Hence
1 1 Ant(m=l+k+1)/2 2

. m4n—l _n+ky _ 1 i(m—I-k)¢

1%2" ¢ R h?r,r"l" V2r B2 (A + 1)”+1/ﬁ+<m—’+’“—1>/2/o ‘ 10

nh—A nh—A

To conclude the proof we substitute the last expression in to 3.11. This yields 3.8 and hence
3.7. |

2. Contravariant symbol. We recall (see [BER1]) that a function Ja (v, D) such that

~ 0

F= / P (0,8) Pyley, e2)da(v, 0) (3.14)
D
where P, is an orthogonal projector on e,, i.e.
P, = ol
(€v; €n)

is called a contravariant symbol of the operator F. One has

(FN@E) = [ (0,0)(f,es)e.(2)da(o, o)

=(3 1) [ Femie (3= ’;Z)”ﬁ du(v, 7).
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Unlike the covariant symbol, the contravariant one is not always defined for every bounded
operator, and when defined need not be unique (see [BER1]).
The relationship between the covariant and contravariant symbols F(z, Z) and P (2,2) of

the operator Fis expressed by the formula

F(z,2) = (o4 F)(2,2) (3.15)

where

o0 D)) = [ B (o) el

(€2, €z)
(3.16)
B o [(1-22)(1—-vd) 1/h _
= /D I (v, ) [(1 e Tr— dp(v,v). (3.17)

For differentiable functions f, the operator o, has the following asymptotic expansion (see

[BER1] for details)

(Uﬁf)(zvg) = f(Z,E) +ﬁ‘Af(Za 2) +0(h) (318)

where A is the Laplace-Beltrami operator on the Lobachevskii plane formally defined as

92
(1 _ -5\2
A= (1-z2) 565" (3.19)
Moreover o can be written in terms of the A operator through the formula
(o] 9 A —1
o = [1 —h 3.20
]EJ (14 kn)(1+4 (k—1)h) (3:20)

Given a classical observable F(z,Zz), we denote with Faw the operator obtained by the
contravariant correspondence. Then by 3.15 and 3.18 we deduce that if F'(v,v) is a classical

observable, the covariant symbol of F4w tends to F(v,v) as h — 0.

Proposition 3.2 Let F(z,%) be a smooth classical observable (say in C3°) and Fuw the

corresponding operator obtained by the contravariant correspondence. Then

n—o0,hi—0
nh—A

. ~ 1 27 _
lim <FAan7fn+k> = g/o F(A,¢)e k¢d¢
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where by a standard abuse of notation

_ A e A i
F(A,¢)_F(\/A+le ’\/A—I—le )

Proof. 3.14 yields

(Paw fas fath) = </D F (v, 0)(fa, ) €u(2)da(v,0), ftr)

./D F(Uv 7_)) <fnv €U><€Ua fn+k>d0‘(va TJ)

(=) e (M) o o

[ A :
Transforming into the action-angle variables, i.e. setting v = e 1,06“’S we obtain

~ 1 Atl 2m i
(Fawlo for) =5 [ [ Club o) F (oA, ) dpds (3:21)
where
_ (1 (1/h>n<1/h>n+k>”2 < A )/ ( A >"+l+k/2 nth/2
C(n’h’p)_<ﬁ_l>< nl(n+ k)! 1_‘4+1'0 A+ 1 p

and by the standard abuse of notation

A A :
_ o] —i¢
F(”A’@_F(\/AM“3 ’\/A-I—le )

Since I’ € C§°(D), to conclude the proof, by 3.21 it is enough to prove that, at the classical

limit (n — oo, i — 0, nki — A) the function C'(n, h, p) tends, in the sense of distributions, to

the Dirac measure supported on 1; that is

lim . C(n,hyp)=46(p—1). (3.22)
vy

We must therefore prove:
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1) lim C(n,hp)=00 for p=1.
n—00,hi—0
nh—A

2) lim C(n,h,p)=0 for p#1.
ahA

A41
A
3) n_)loi()n;_ll_)0 / C(n,h,p)dp=1.
nh—A 0

By 3.10 it follows that

1 A2 (A4 1)1/? 1/h
lim C(n,hp)= lim 5 pF/ 2112 [(4 +1- Ap)pA} .
n;z;;o_,)hzo n;:;o_,:zzo vV 2T (14 + 1 - 14,0)

If p=1then lim C(n,h p)=lim A'/? = 0o and this proves the first assertion.
n—)oo,hz(] h—0
nh—

Since the function (A + 1 — Ap)p? is less than 1 as p # 1 and it is equal to 1 as p = 1,
then for p # 1

lim C(n,h p)=lim [(A—I—l—A)Ar/ﬁ—O
n—o00,h—0 ! 7p - h—0 p p B )
nh—A

Concerning the third assertion we have, by 3.10 and performing the change of variable

t=——0p,

At1 -1/2 1/2—n—k/2 ;1
A h A
I b oVdp = i A (A / 1 — )/h=2gntk/2 gy
n_)()lor}:‘_)O/O C(??, ’p) ,0 n—n:or,r:z—w \/271' <A —|— 1> 0 ( )

nh— A nh— A

Then by the integral representation 3.12:

A+1

lim 4 C(n,h,p)dp
n—o00,h—=0
nh— A 0

i e (LAY - Dt k24
n—00,h—0 1/2771 A—I—l F(n—}—l/h—}—k/?) '

nh—yA

The third assertion follows now by the general formula 3.13 and this concludes the proof. m

3. Quantization by means of reflection. If a group of motions G acts on a phase space M

then the transformation in the algebra of the classical observables C*°(M) (a Lie algebra

with respect to the Poisson bracket)
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(ryI)(2,2) = F(g9-2,92) g€G (3.23)

is an automorphism of the algebra. Asis known, all automorphisms of the algebra of bounded
operators in a Hilbert space are internal. Therefore, the bounded operator which generates

the automorphism 3.23 exists in Fp,

<ﬁ‘1,ATZ/A{ €y €s) Ae 2y €gus _ _
g g :< 92169 >:A(g-z,g-z)=(7'gz4)(272)-

<€Z,62> <eg~27eg~z>

The operator Z:[;, is defined up to an arbitrary complex multiplier. If the indefinite multiplier
equals 1 in modulus, ¢ — L?g is a unitary, irreducible representation of G. In our case the

operator ﬁg has the following explicit form

N - az—b
o)) = o-bz+a) 0y (ZE22) ol =1,

If we denote U, (z, Z) the covariant symbol of the operator ﬁg we obtain

ug(z,z):M:¢<

(ez,€z)

1—z2z 1/h
a—azz+bz—bz>

(3.24)

Consider in D the reflection at the point v. The generating element g € SU(1,1) is

1 i(14 vo) —2iv
g(v,0) = ———
(1= o) 2it —i(1+ D)

The transformation

—(1+vD)z+42v
—2vz+1+vv

r(z) = g0, 7) -2 =

is indeed involutive and admits v as fixed point.
The operator ﬁg for ¢ = g(v,v) will be denoted U, 5. According to the general formula
3.24 the covariant symbol of the operator U, 5, up to the multiplier ¢, |¢| = 1, has the form

uﬁ(vv ’DlZ, 2) =

(1-22)(1- vﬁ)] L/ 1 (3.25)

(1=20)(1—-v2) s—v 51"

1+

1—-2zvl—2zv
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We fix the multiplier so that the covariant symbol of the operator ﬂm—, has exactly the form
3.25, i.e.

14 vo — 2uz> —1/h (—(1 +v0)z + 21])

U f)(z) = ( 20z + (1 + vv)

1—vov
The function

F(z,2) = 2Sp(FU, ;) (3.26)

is called the covariant Weyl symbol of the operator F and the function ]O-" such that
-~ 0 o~
P= 2/ F (0, 0)0hy 0 dpa(v, B) (3.27)

is called the contravariant Weyl symbol of the operator.

Recall that here F 75]?' because the Lobachevskii plane is a realization of a surface of
non zero (negative and constant) curvature; in the flat case, the standard Bargmann space,
F=F.

The connection between the contravariant symbol, 1% and the covariant Weyl symbol, F
and the connection between the contravariant Weyl symbol, ](i' and the covariant symbol, ¥

are given (see [BER1]) by the formulas

F(z,2) = (Th F)(z,3) (3.28)
F(z,2) = (Ty F)(z,2) (3.29)

where
(11)(2:2) =2 [ 10,000 (0,512, 2)dp (v, ). (3.30)

The T}, operator can be explicitly written in the form

(Thf)(z,2) = % (l — 1) ./D f(v,v) [E] —2z)(1 - m_’)]l/ﬁ 1 dvdv

h 1—20)(1 - v3) [ z2—v z—0 1" (1 -00)?

1—-2z2vl-—2zv

T, maps the constant function equal to one in to itself and, when acting on smooth functions

on D, has the following asymptotic expansion as h — 0

(Tf)(2,2) = (2,2) + 5 Af(2,2) + of#), (3.31)



Classical Limit on Quantized Lobachevskii Plane 15

where A is the Laplace-Beltrami operator. Since T, commutes with all transformations
f(z,2) = f(g-2,g-2) where g -z is a motion on the Lobachevskii plane then it can be
written through the Laplace-Beltrami operator A (see [BER1]) by the formula

Th= lﬁ) [1 P 2kh)(1i k= 1)h) h (3:32)
Comparing 3.20 with 3.32 we can deduce that
on =TT} (3.33)
where
T’gzkli - e AT eow i

The covariant Weyl symbol F and the contravariant Weyl symbols ](i" are related by the
formula

F=1T, P="T\(T;)"' F. (3.34)

The Wigner function for F,G € Fy is defined as
W(F,G)(2,2) = 2(Uy,» F,G). (3.35)

The Wigner function on the harmonic oscillator eigenfunctions can be used through 3.27 to

express the matrix elements of an operator P through its contravariant Weyl symbol, i.e.

(Fhus ) = [ F (0,000 (s f) (0, 9)dii(0, ) (3.36)

Formula 3.36 is the analog of the representation of matrix elements of the observables through
the Wigner functions valid in the canonical quantization case. The only difference is that

here the properly 3.35, which can be proved in the canonical case, is taken as definition.

Proposition 3.3 The Wigner function admits the representation:

T R = Ce R = IR

XF( ]+ 41 4v7v >
—-—n, — m,m-—mn T — =
241 ’h 9 ’(1+U1_J)2
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if m >n and

W (fuy fon) (0,0) = 2 (F(mJ“ ]/h)"!>1/2 ((_]):)! (1 - ”?)w (1 ha m_]>m_n (3.38)

['(n+1/h)ym! m — 14 0o v

><F< 1+ 41 4vv )
—m, — n,n—m LT —
241 7h ) 7(1-|—U1_))2

if m < n, where oIy is the hypergeometric function (see [MO]).

Proof. We have

W i) 000) = 2o ) = 2 (2= 1) (UL 00y

h n! m!
_ _ —1/h — n
X / <71 +vv —_21]2) / <—QU — (} - mi)z> (1 - zi)l/ﬁ_dedé
D 1—vv 14+ vv 4+ 20z
where in general (a), =['(a+n)/I'(a) .

Performing the integral in polar coordinates we obtain

W (fn, fm)(v,0) = ; (1 - 1) (Wﬁ)” (l/h)m>1/2 (1—op)/m1, (3.39)

h n! m!

where

2m 1 . —1/ﬁ_n \n ) ) 1 /ns
! :/ / (1 + 0o — 27‘;pel¢> (27; — (1 -I—?n‘;)pequ) ot e—zm¢(1 —p?) = dpdo.
o Jo

Since

A\ Cifhem (—1/h—n+1) 20 *
1 _9 ) 1 l/h —-n ( )
( + vo vpe ) = (1+vv) Zklr (=1/h—n—k+1) ]+me

and

(20— (14 vv)pe’ ) zn:( ) (1 4 vo) ple? (20)~!

=0

we have

= /0%/0 > FI( 1;éh—_nn—+k i ) ( ] ) (=D)"H(L 4 op) 7P 20)F (20)

k=01=0
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Xpm-l-k-l-l-l-] (1 . p2)]/ﬁ—2€i(l+k—m)¢dlod¢.

The integral is non zero only for [ = m — k and k € [max{0, m — n}, m]. Hence

i I'(—=1/A—n 1 n m ~N=1/h=—n—=2k+m
I=2n Y k!F((—l//h—n——I_k-)Fl)(m_k)(_l) (1+v0)™"/ +

k=max{0,m—n}

1
X(Qﬁ)k(Qv)n—m+kL pZm(l _p2)1/ﬁ—2dp

. i m!(1/h— D)I(=1/h—n+1) ( n ) (=)™ (3.40)

k=max{0,m—n} k'F(m+1/h)F(_1/h_n—k+1) m—k

% (1 + ’UTJ)_] /hi—n—2k+m (QE)k(QU)n_m-Hc.

If m > n with the substitution £k — k& 4+ m — n we obtain

L miT(1/h—1)

I=m(=1)"(1+vo)" /"= (20)" S 177

2 N(=1/h—n+DI'(n41) 4ot \*
szlr(—m— kit Ol tm—nt Dl(n—k+ D \(It00)2/) °
= k! m m-—n n Vo
Since from Gamma function properties (see [MO])

WU(=1/h4+ 1I(=1/h)
r(/h+n)

T(-1/h—n+1) = (-1)

i L (=1/h4+1)T(=1/h)

Pt/h=m =kt 1) = ()™

and

I'n+1) LL(=n+ k)
okt Y Ty

substituting / in 3.39 and remembering the definition of the Hypergeometric function we
obtain 3.37.

3.38 follows from 3.40 by analogous computation. [

Remark. In the particular case n = m we have

— oo\ P (=n n o5
W(fn,fn)(v,@):Q(—w(l > (=n)k(1/h+n)r  (4vd)
k

14 vo = kk! (1+ vv)?k
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Proposition 3.4 If F' € C§°(D) then

i [ W fora) (08Pl )0, ) = o [P0, 0)e e,
0

n—o0,h—0 1 27T
nh—A

Proof. Let F € C°(D) and let Fyry be the corresponding operator obtained through
contravariant Weyl quantization given by 3.27. Let I%ﬁ be the contravariant symbol of the

operator Fyy. Tt follows by 3.34

0 h—0

Fa= (T)7'F 28 F

and by 3.36
n_)ljong_)o W(fna fn+k)(va Q_J)F(Uy @)d,u(v, ’TJ) = nquon,}_,ﬁﬁAWf”’ fn+k>
nhi—A D nh—s A

then by Proposition 3.2

lim D W(fn7 fn+k)(v7 ID)F(U7 @)du(v, ?7) = lim i /2# l%ﬁ(A, ¢)e_7j]g¢d¢
0

n—o0,h—0 n—o0,h—0 Qﬂ'
nh—A nh— A
LT R e
= — € D
27 0 ’
This concludes the proof. [
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