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Abstract. We extend the invariant manifold method for analyzing the asymptotics of dissipative partial differential
equations on unbounded spatial domains to treat equations in which the linear part has order greater than two. One
important example of this type of equation which we analyze in some detail is the Cahn-Hilliard equation. We analyze
the marginally stable solutions of this equation in some detail. A second context in which such equations arise isin the
Ginzburg-Landau equation, or other pattern forming equations, near a codimension-two bifurcation.
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1. Introduction and statement of results

In this paper, we extend the methods developed in [W1], [W2], [EWW], to study the asymptotic
behavior of marginally stable non-linear PDE’s. These are PDE’s such as

Ou = P(—iV, )u+ W'(u),

where u = u(z,t), withz € R¢, and where P is apolynomial. In the papers cited above, we
have treated essentially parabolic problems, i.e., the case where P(¢) = —£2. In this paper,
we extend the problem to non-parabolic cases such as P(¢) = —¢*, where P(—iV,) has
continuous spectrum al the way up to 0. We deal in particular with the stability analysis of
the Cahn-Hilliard equation [CH] in an infinite domain. Where appropriate, we indicate how to
formulate the assumptions for more general differential operators and non-linearities.
The Cahn-Hilliard equation models the dynamics of a material with the following 3 prop-

erties:

i) The material prefers one of two concentrations that can coexist at a given temperature.

i) The material prefersto be spatially uniform.
iii) Thetotal massis conserved.

The first point above means that we should consider a potential with 2 minimawith equal
critical values, and for concreteness, we will choose W (1) = (1 — u?)%.* The Cahn-Hilliard
equation isthen

Ou = A(—Au+ W' (u)), (1.2)
or, expanding,
Ou = —A%u — 4Au + 4Au3 . (1.2)
We will be interested specifically in the non-linear stability of the spatially uniform states,
u(z,t) = uy.

It is obvious that constants are solutions of (1.2), for any u,. Furthermore, it is easy to
check that these solutions are (locally) linearly stablefor |uy| > 37%2 and linearly unstable for
lug| < 37Y/2. We concentrate our analysis on the remaining case, namely u, = +3~Y/2, Inthis

case, linearizing about u, = 372 |leads to the linear equation
v = —A%, (1.3)
which has spectrum in (—oo, 0] and corresponds to the case P(¢) = —&*. For this linearized

problem, bounded initial datalead to solutionswhichtendto O as¢ — oo and the purpose of this
paper isto study under which conditions the addition of the nonlinear terms does not change the
stability of the solutions. Thisis difficult for two reasons. First, as we have said, the spectrum
of the linearized problem extends all the way to 0, and second, the nonlinearity does not have a
sign.

Considering the Ginzburg-L andau equations (on R),

Oyu = 0%u +u — ulul?, (1.4)

* In our example, the curvatures of the two minima are equal. This does not seem to be necessary for our proofs.
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we can construct another example of asimilar nature. It is provided by those time-independent
solutions of (1.4) which are exactly on the borderline between being Eckhaus stable and Eckhaus

unstable. These solutions are
_ ,igx 2
u,(z) = e"¥V1-¢?,

with ¢ = 1/+/3, cf. [EG]. We believe that the asymptotic behavior of solutions for this problem
is of the same nature asthat of the Cahn-Hilliard equations. Here, we describe a program which
we believe would lead to a proof. The first part of the analysis of this problem would follow
rather closely that given in [EWW)] for the Swift-Hohenberg equation. Letting u™* = u, for the

critical value ¢ = 1/+/3, and writing u = u* + v, the equation for v is
v = 0%v+ v — 2vu*? — o(u*)? + O(v?). (1.5)

It hasalinear part whichislikeaSchrodinger operator in aperiodic potential (theinhomogeneity
u*). This can be handled by going to Floquet variables, namely setting

q .
v(z,t) = / dk e vy (z,t) ,

—q

where vy, ism/q-periodicin z:

vp(z,t) = Z My (2) -

meZ

The linear part of (1.5) leaves the subspaces spanned by the v, invariant, and has discrete
spectrum in each such subspace. The spectrumisino < 0and thelargest eigenvalueis —(‘J(k“)
when ¢ equals its critical value ¢ = 1/+/3 (which is the case we discuss here). In this sense,
the problem of the marginal Eckhaus instability resembles the problem of the Cahn-Hilliard
equation. At this point, the discussion of the problem follows the techniques we devel oped
in [EWW]. We would like to rescale as we will do below for the Cahn-Hilliard equation and
its generalizations, but the problem will be more complicated because the Brillouin zone is
restricted to k£ € [—q, q]. We then have to check that the non-linearity is “irrelevant” in the
terminology developed below. Again, asin [EWW], we believe that this will not be quite the
case, but the saving grace will be that the projection of the potentially non-irrelevant modes
onto the eigenstates corresponding to the —O(k4) term vanish to some higher degrees because
of tranglation invariance of the original problem, cf. [EWW, Section 4], and [S].

In fact, as T. Gallay pointed out to us after afirst version of this paper was completed, one
can probably avoid the use of Floquet variables in this example by defining a new dependent
variable through u(z,t) = /1 — ¢2e"%* (1 + v(z, t)). Then the linearized equation for v(z, t)
has constant coefficients and one does not need to introduce Floquet variables to study its
spectrum. As in the previous argument, the spectrum of this linearized operator behaves like
—O(k*) when |k| is near zero, (and ¢ = 1/+/3), and hence we expect that the analysis which
follows would allow one to study the long-time behavior of the full nonlinear equation.
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We place our examples in the following more general setting. Consider equations of the

form
ou

o =
where the multi-indices o satisfy |a| < 2n — 1, and z € R?, ¢t > 1. Furthermore, F is a

polynomial in » and its derivatives. We wish to study the asymptotics of the solution « of (1.6)
ast — oo. First, one introduces scaling variables by defining

~1)"M A"y + F(u, {0%u}) , (1.6)

1 x

u(z,t) = 1/ (2n) U(tl/(Zn)’Iogt) :

(1.7)

Introducing new variables ¢ = z/t¥®™ and r = logt, the initial value problem (1.6) with
initial dataat ¢t = 1 istransformed to the non-autonomous problem

1 d n . a
%:p@wm@+%e%w5#+&#mWﬁm@45”@@,u&
withinitial dataat 7 = 0. The analysis of this equation involves two steps.

i) Ananalysis of the linear operator

i) A determination of which non-linear terms are relevant.

Aswewill see, theterm 1/(2n)¢ - V¢ plays an important role in the analysis of thislinear
operator asit allows us to push the continuous spectrum of the operator more and moreinto the
stable region by working in Sobolev spaces with higher and higher polynomial weights. These
weights force the functions to decrease more and more rapidly near |z| = oc. Taking Fourier
transforms on both sides of (1.8) we obtain:

~ 1 n T [e3
? == p)"0 =5 p-V,0+ CRITF (e F i, (=W (—ip)®5)),  (L9)
T

where F* isthe polynomia F', written in terms of convolution products, (see the discussion of
the non-linearities below).
Wewill discusstheform of the non-linear terms bel ow, and consider first the linear operator

L1
L=-p"~5PV,. (1.10)

A straightforward calculation shows that £ has the countable set of eigenvalues

i
A= -2 =0,1,2,... 111
7 2’”,’ .7 bt B I ( )

with eigenfunctions (written in multi-index notation),

Pal(p) = poe” D) (1.12)

and || = j.
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If we consider £ as acting on the Sobolev spaces
a,,, = {17 : 1p*05%]|2 < oo, forall |a] < £,|6] < m} ,

there exists a constant o, > 0 such that £ will have continuous spectrum in the half-plane
Re\ < —o,, inaddition to the eigenvalues above. Sinceo,,, isincreasing to oo with m, we can
force the continuous spectrum arbitrarily far into theleft half-plane by choosing m appropriately,
and the dominant behavior of the linear operator will be dictated by the eigenvalues with the
largest real part.

Remark. In order to switch back and forth from the Fourier transform representation of £
to the un-Fourier transformed representation of this operator with ease, we aso consider the
Sobolev spaces

Hyp = {o 10257012 < o0, forall [a| < £, (8] <m} .
Note that Fourier transformation is an isomorphism from H, m0H, ..

Note that £ is not sectorial, and therefore we know of no way to bound the semi-group
generated by £ by spectral information alone. However, in Appendix A, we develop an integral
representation of the semi-group and we then show that it satisfies the estimates needed for the
invariant manifold theorem.

We next discuss which terms in the non-linearity are “relevant.” Consider amonomial

s

a=T] (2" ) o (113)

=0

wherethe o) aredistinct multi-indices. After changing variablesasin (1.7), and taking Fourier
transformsin z this becomes

i n 51l
A= e () e (‘Z(znw)’“ﬂ)

=0

(1.14)

(S){)) *k, )

< (i) ) o w e (i)

Here, * denotes the convolution product. If we combine the powers of 7 in the exponential, we
seethat if

2n+d <> (D] +d)k;, (1.15)
=0

then the coefficient of this term will go to zero exponentialy fast in 7, and hence it will be
irrelevant from the point of view of the long time behavior of the solutions.

Definitions. A monomial like (1.14) iscaled irrelevant if it satisfies the inequality (1.15). It
iscalled critical if thel.h.s. of (1.15) isequal to ther.h.s, and relevant in the remaining case.
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These definitions are suggested by the following which is our first main result:

Theorem 1.1. Assume all termsin the non-linearity in (1.6) are irrelevant. For any solution
u(z,t) of (1.6) with sufficiently small initial conditionsinH, ,,, (with£ > (2n — 1) +d/2 and
m > 2({+d+ k+ 1)), thereis a constant B*, depending on the initial conditions, such that
for every e > 0,

im (5 —<) B _
A, e el ) = ey S (t1/<2n))HLw =0
Here,
* 1 ip€_—(pp)"
£ ) = 7(2700[/2/ dip e te= (PP (1.16)

Remark. Thistheoremisaspecial case of amore detailed analysiswhich will be given below.
That analysis will allow us to compute, in principle, the form of the solutions of (1.6) up to
O(t_k), for any £ > 0. We note that if one only wanted the first order asymptotics of the
solution, one could also use the renormalization group analysis of [BKL].

We now apply Theorem 1.1 to the Cahn-Hilliard equation. Writing u = 37Y2 + w, the
function w is seen to satisfy

ow

o = — A% + 4V/3A(w?) + 4A (W) . (1.17)

Upon expanding A (w?) we obtain two types of terms—those of the form w (8§i w) and those of
the form (8, w)?. In both cases,

> (e +d)k; = 2d+2.

Sincen = 2inthisexample, thesetermswill beirrelevantif 4+d < 2d+ 2, that isin dimensions
d > 2. Also, the term A (w®) isirrelevant for d > 1. Thus, as a corollary to Theorem 1.1 we
get immediately

Corollary 1.2. Solutions of the Cahn-Hilliard equation in dimension d > 3, with initial
conditions sufficiently close (in H, ,,,, with £ > 3 + (d/2), and m > 2({ + d + 2)) to the

constant solution v = 3~Y/? behave asymptotically as
1 B* ., 1
U(:E,t) = 31/2+td/4f (t1/4)+0(m) . (118)

Remark. We will examine below what happensinthecasesd = 1,2. Thecased = 2 is of
particular interest because its non-linearity is critical in the renormalization group terminology.
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2. Invariant manifolds

Note that spectral subspaces corresponding to eigenvalues of £ are automatically invariant
manifolds for the semi-flow defined by the linear part of (1.9). The aim of this section is to
demonstrate that the full non-linear problem has similar invariant manifolds in a neighborhood
of the origin. This then shows that the conceptual understanding of what is happening can be
gained purely from a knowledge of £, (and the scaling behavior of the non-linearity).

We begin with a proposition concerning the linear semi-group generated by L.

Proposition 2.1. Let P, denote the projection onto the spectral subspace associated with the
eigenvalues {21 }%_, and let Q;, = (1~ P) (in H,,,). If m > 2(£+d + k + 1), then there
exists C,, > 0 such that the semi-group generated by L satisfies

Cy E+1
b < gz P,

1Qke™ Q]

olly—gm-a=0,1,...,2n — 1. (2.1)

Proof. Theproof, whichispresentedin Appendix A, ismodeled on the proof in [EWW!] which
treatsthe casen = 1.

Given such estimates on the linear evolution, the construction of invariant manifolds is
straightforward. Denote by y the coordinates on the (finite-dimensional) range of P,, and let
z=Q,0. Findly letn = e~™/(2") = =1/(2") Then, applying the projection operators P, and
Q4 10 (1.9), it can be written as the system of equations

?) = Aky+f(77ayaz),

z2=Qplz+9g(n,y,2), (2.2)
ﬁ = _%T]a
where“ " " denotes differentiation w.r.t. 7. We next need a bound on the non-linearity:

Lemma 2.2. Assumev € H,,,, with? > 2n — 1+ d/2, and assume
2n+d <> (|a¥|+d)k; .
§=0
Then the non-linear term (1.14) hasH,_,,, ., ,,, Norm bounded by
8 K
Cﬂp H ”U“E,Jm = C’I’]p“’l)”fm ’
§=0

withp = 325_o(|a¥| + d)k; — (2n +d), K = Y 5_ok;, and C = C(d, {k;},{aP}).

JY

Proof. Taking theinverse Fourier transform of (1.14), and substitutingn = e =™/ ™) Eq.(1.14)

becomes ,
7) k;
n” H (8? ’ v) T
j=0
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The result then follows from the Sobolev embedding theorem to each factor, and observing
that the choice of £ guarantees that each factor isin fact in L°°. Note that the lemma has the
immediate corollary (because F' is apolynomial):

Corollary 2.3. Under the hypotheses of Lemma 2.2, for every » > 1, the non-linear term in
(1.9)isaC" functionfromR x H,,, t0Hy 5,1 -

Thiscorollary inturnimpliesthat thetermsin (1.14) and (2.2) aredl C" functions. This, in
conjunction with the estimates on the linear semi-group is sufficient to establish the following

Theorem 2.4. Supposethat? > 2n — 1+ d/2andm > 2(¢ + d + k + 1). Suppose further
that all terms in the nonlinearity satisfy

2n+d <> (|a¥|+d)k; . (2.3)
7=0

Then there exists aC e function h(n,y), with o > 0, defined in some neighborhood of the
origin in R x RY™@9e(Ps) ' g ch that the manifold z = h(z, y) is left invariant by the semi-
flow of (2.2). Furthermore, any solution of (2.2) which remains near the origin for all times

k+1l—e

gpproaches a solution of (2.2)—restricted to the invariant manifold—at a rate O (e s T) :

Proof. Theexistenceof theinvariant manifold, given the assumptions on the linear semi-group
and the non-linearity, seems, to our knowledge, not to be explicitly spelled out in the literature.
Theformulation which comes closest to our needsisthe onegivenin[H], where the assumptions
on the non-linearity are those we have in our case, but the semi-group is supposed to be analytic.
However, Henry’s construction of the invariant manifold only uses certain bounds on the decay
of the semi-group, and not the stronger assumption of analyticity. Those bounds are true in our
case, by Proposition 2.1.

To be more precise about exactly how one constructs the invariant manifold, note that we
are looking for afunction h(n, y), whose graph {(n, y), h(n, y)} isinvariant with respect to the
semiflow defined by (2.2). A standard calculation then showsthat /# should satisfy

h(n,y) = —/O_oo dr (Qre " Q) g (e, (n,y), ho v, (n,y)) (2.4)

where ¢_(n, y) isthe flow defined by
) 1
T="2" (2.5)
g =My + f(n,9,h(n,y)) -
To provethat h exists, one finds a fixed point of the map (h, ) — (F(h, @), G(h, ¢)) defined
by

F(h,o)(n,y) = —/0 " dr (Qre ™" Q)9 (e, (m,y), ho v (n,y)) ,
(2.6)

t
G(h, @), (n,y) = (e_t/z"’n, eA’“ty+/0 ds e+ =) f(p, (n,y), ho g, (n, y))) :
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From this point we follow closely the argument of Gallay [G, pp.257-258]. Let d, be the
dimension of the range of P,,, and define £ to be aneighborhood of theoriginin R & R%, and
let £° be a neighborhood of the origin in the range of Q). (equipped with the H ¢,m NOrm). We
assume that h and ¢ are elements of the metric spaces

H, = {h:€°— &°|h(0,0)=0;
15(n,9) = b (71 Ol g < o (In =71l + [ly = 71D}

Kg = {¢ Ry x & = &% po(ny) = (n,9); (2.7)
¢,(0,0) = (0,0) foral ¢, ¢, iscontinuousint ;
e, (n,y) — (i, §)|| < De**(In— 71| + lly — 7l|) forall t € R},

where we use the ordinary Euclidean norm in R%: for y, and « is a positive constant, smaller
than (k/2n). We now apply the contraction mapping theorem to prove that F' and G in (2.7)
have fixed points. The only difference with the estimates of [G] are that in the present case the
nonlinear terms “loose” derivatives and we must take advantage of the smoothing properties of
the semigroup Q,.e™*Q,. to recover them.

Wefirst show, following the estimate of [G, p.258] that F'(h, ¢) isin H ,, paying particular
attention to the way in which our case differs from Gallay’s. From Corollary 2.3 we see that
the nonlinear term g in (2.2) is a Lipshitz function as amap from & ® €° to H,_,,, ;4 ,,, and
if £, isthe Lipshitz constant of g, one can make ¢, arbitrarily small by restricting (n, y, 2) to a
sufficiently small neighborhood of the origin. We can estimate

1E(h, ) (1, 9) = F(hy 0) (1, 9) | ,m

< /O_Oo dr |1(Qre™ " Qy) (9((@, (m, ), ho o, (1,9)) — (2, (7 7). ho @, (71, 7)) |

tm
§C'/_OO d7'|7'\_275;16_kZ_J:LllT|
0
x |9 (e (m,9), oo, (0,9)) = 9(. (1, 5)s h o 0, (7,9 || g1 m
SC/_OO dT|T|_2157:16_kz_illT|
0
x Ly (ller(m,y) = o, DI+ ko . (ny) = ho o, (iH,7)lgm)
<0 [T arir T E e S (14 0)e (= il + ly = i)
< ety )=+ = ) o

Thus, wefind that F'(h, ¢) isin H_ provided

C(n,k)
a—(k+1)/(2n)

t,(1+o0)<o.
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which we can insure by taking (7, y, z) in asufficiently small neighborhood of the origin (since
as we noted above, thisresultsin £, becoming small).

Note that the only difference between this estimate and the corresponding estimate of [G,
p.258] isthat we used the smoothing property of the semigroup that comesfrom Proposition 2.1,
while Gallay did not assume that his semigroup was smoothing. The proof that K (h, ¢) € Kg
and the proofsthat F' and G are contractionsfollow asin [G, pp.258-259], with the one change
that we must use the smoothing property of @ ke“Q .. to overcome the loss of derivativesin g.

Once we have shown that F' and G are contractions, the fixed point 4 gives the invariant
manifold whose existence is asserted in Theorem 2.4, though this shows only that A is Lipshitz,
not C1™* asclaimed. To provethat h isinfact C1™*, onefollowsthe proof of [G, Lemma2.10],
again with the sole change that when one estimates the factors of Q,.e”~"Q,. which occur in the
mappings F' and G, one must use the smoothing of the semigroup.

Once one knows that the manifold exists, it is also easy to show that any solution which
remains near the origin must approach a solution on the invariant manifold (see, e.g. [C]). Note
that even though our non-linearity is quite smooth, we cannot hope, in general, to obtain an
invariant manifold whose smoothness is greater than 1%, since this smoothness is related to
the gap between the spectrum of A,, and that of Q,LQ),., (see, e.q. [LW]).

3. Applications

Here, we show how the existence of the invariant manifold implies Theorem 1.1 and related
results. To prove Theorem 1.1, we assume that all terms in the non-linearity are irrelevant.
This means that (2.3) holds. Suppose further that £k = 1 and that £ > 2n — 1+ d/2 and

> 2(£ + d + k + 1). These hypotheses guarantee that Theorem 2.4 applies and hence any

solution near the origin must approach a solution on the invariant manifold, at arate O(eZE_nET)
inH,,,.

The equations on the invariant manifold can be written as a system of ordinary differential
eguations:

9o = (@5 f(y, h(n,y),m))

V5 = —amyy + (P51 (kO w)om)) s i=1,...d, (3.1)
7.’ = _%77,
where g and 7 ; are the projections onto the spectral subspace of A, and A; = —1/(2n),

respectively. Note that A, has ad-dimensional spectral subspace.
The important observation to make at this point is that since the non-linearity is assumed
to be irrelevant, there exist constants C, and C'; such that

(ol f (ws h(n,y),m))| < Con® s [{@ilf (w, h(n,y),m))| < Con?

for somep > 1. Sincen(r) = e‘T/(Z")n(O), this implies immediately that solutions of (3.1)
behave as
Yo(r) = B*+0(e” /M),

y1,5(r) = 0”7/ V).
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Furthermore, because the nonlinear terms are proportional to »*, for some p > 1, the
function h whose graph givesthe invariant manifold will aso be proportional to n”. Thismeans
that asT — 0 (i.e,, n — 0), the center manifold becomes “flat” —that is, it coincides with the
eigendirections corresponding to the eigenvalues A\, and A;. The eigenfunction with eigenvalue

0of £ ise~®P", or taking inverse Fourier transform, f*, cf. (1.16). Thus, in H,, solutions
of (1.9) behave as

(p,T) = Bre®P)" | (‘)(6_7/(2")) .

Reverting from scaling variables to the unscaled variables u(z, t) and using the Sobolev lemma
to estimate the L* norm in terms of the H,,, norm, we obtain Theorem 1.1. Since we
observed above that the non-linearity in the Cahn-Hilliard equationisirrelevant when d > 3, we
immediately seein thiscasethat (1.18) holdsfor initial conditionswhich areclosetou = 37%/2,
which yields Corollary 1.2.

4. The critical case

We now consider the Cahn-Hilliard equation in dimension d = 2, which is the critical case
in terms of the renormalization group terminology [BKL]. This means that in some non-linear
terms the inequality (1.15) becomes an equality.

In the Cahn-Hilliard equation, when d = 2 (and n = 2), we see that the quadratic termis
critical, and the cubic term isirrelevant. Note that Theorem 2.4 still implies the existence of an
invariant manifold tangent at the origin to the eigenspace of A,. This means that when written
in the form of (2.2), the non-linearity can be written as the sum of 2 pieces—one quadratic in
y and z which is independent of 1 (and hence critical) and a cubic piece in y and z which is
linear in 7 (and henceirrelevant). Thisimpliesthat the Egs.(3.1), when reduced to the invariant
manifold, take the form

do = {251/ (ys h(n,9),m)) + (@51 (v, h(n, y),m))
gy = —3un, + (ot 1 F P h(nw),m)) + (o1 1 F D (y, h(n,y)im)y, =12, (41)
. 1
n= —371-

We now exploit the form of the non-linear term in (1.17), namely 4v/3A (w?) + 4A (w?),
plus the fact that the eigenfunction ¢j = 1. Thusif we integrate by parts, we find that

{031 F P (y, h(n,y),m)) + (0§ f P (y, h(n,y),n)) = 0,

so that in (4.1), y, = 0 and thus y,(t) = y,(0). This means that the invariant manifold contains
a curve of fixed points, and that any solution near the origin approaches one of these fixed
points with a rate (f)(e‘T/ 4). Note further that since the quadratic term in the nonlinearity
is independent of n in this case, the center manifold will not be “flat” as it was in the case
of an irrelevant nonlinearity. Thus, while to lowest order, the fixed points in the invariant
manifold will be proportional to the eigenvector with eigenvalue zero, there will be higher order
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corrections which can be computed perturbatively by computing the terms in the Taylor series
for the invariant manifold.

Since from (4.1) we also seethat y; ; = O(e‘T/ 4), we find upon reverting to the unscaled
variables the second main result:

Theorem 4.1. Ford = 2, if theinitial conditions of the Cahn-Hilliard equation are sufficiently
closein Hy ;4 to the Stationary statew = 3~ 1/2  then the solution behaves asymptotically as

1 1 ., @ 1
’U,(.T,t) = 31/2+t1/2f (t1/4)+o(tg/T€)7

where f* is one of the fixed points on the invariant manifold. We denote it by f* to indicate
that to lowest order it is equal to the function f* which is the eigenfunction of the operator L
with eigenvalue zero, but it will have higher order corrections coming from the curvature of the
invariant manifold.

Remark. Note that this result implies that in contrast to the situation in d > 3, the long-time
asymptotics are no longer given be the solution of the linearized equation—nonlinear effects
enter even at lowest order.

5. The relevant case

Here, we consider the case of d = 1 where one term of the non-linearity is relevant. This
necessitates a change of strategy, because the quadratic term is proportional to = and hence
the non-linear termsin (2.2) are not smooth enough to apply the invariant manifold theorem. In
order to circumvent this difficulty, we choose a scaling different from (1.7). Consider again the
Cahn-Hilliard equation, (1.17), withw = 3~2 + w. Ind = 1, we get

Hw o 92 0?
B0 = Taa T V3 () T 455 () 51
Now let w(z, t) = t~Y2W (z/t*/*, logt). Then W satisfies
oW 1 1
oo = W+ 1€ O W + SW + 3Y20(W?) + e T2Z (W) . (5.2)

Proceeding asin the other cases, we define the linear operator —Bg' + %585 + % whichin Fourier
variables becomes

Ly = —p*— 300, + 3,
so that it has eigenvalues u; = 2%, j = 0,1,.... Thus, unlike the operator £, we have one

eigenvaluelying in theright half-plane. Let 7 = e~ 7/8 and let Yo and y, denote the amplitudes
of the eigenvectors with eigenvalues p, and ;. Then (5.2) takes the form

Yo = %yo"‘ foWo, v, y™)
Y = fl(?Janla”?,yL)
n o= —gn,

gt o= Qﬁ*lyL + fL(QOa Y1515 ?JL) .

’ (5.3)
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Here, @ is the projection onto the complement of the eigenspaces corresponding to 4, and
py, y= = QW, and f,, f,, and f+ are the projections of the non-linearity onto the various
subspaces.

Since the spectrum of QL@ liesinthe half-planeRe x < %1, we can construct an invariant
manifold for (5.3) which is the graph of a function &= (y,, y1,7), and every solution of (5.3)
which remains in a neighborhood of the origin will approach this manifold at a rate O(e‘T/ 4).
What is more, the equations on the invariant manifold are extremely simple in this case, since
the projections onto the “0” and “1” components correspond to integrating with respect to the
functions 1 and z, respectively. Applying these projections to the non-linearity and integrating
once, resp. twice by parts, we see that these projections of the non-linear terms vanish. Thus,
the equations on the invariant manifold of (5.3) are ssimply

yoz%y07 91207 ﬁ:_%ﬁ

Note that these equations again imply that thereisaline of fixed pointsin theinvariant manifold
corresponding to y, = 0 and y; = y,(0). Just asin the two dimensional case, these fixed points
will be tangent at the origin to the eigenvector of £, with eigenvalue zero, and higher order
correctionsto thisfirst approximation can be computed perturbatively from the equation for the
invariant manifold. Thus, as long as the solution of (5.3) remains in a neighborhood of the
origin, it will be of the form

= e_T/Sﬁ(O) ’ (5-4)

yH(r) = 0(e/),
and we see that the solution either leaves the neighborhood of the origin, or it approaches one

of the fixed points on the invariant manifold. Note that the solutions that remain near the origin
must have y, = 0. Thus:

Theorem 5.1. Suppose that the initial condition of the Cahn-Hilliard equation is of the form
ug = 372 + wy with wy small in the H,,,, norm for some ¢ > 4 and m > 15. Assume
furthermore that [*°_ dz wy(z) = 0. Then the solution is of the form

1 1 .., 1
sz T et (t1/4) + O(W) ;

u(z,t) =
where f** is one of the fixed points on the invariant manifold.

Proof. The proof is an obvious modification of the one of Theorem 1.1, taking into account
the special form of the eigenfunctions corresponding to the eigenvalues p, and p;,.
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Appendix. Bounds on the linear semi-group

In this appendix, we sketch the proof of Proposition 2.1. The proof is quite similar to the
estimates on the linear semi-group in Appendix B of [EWW], (which was given for the case of
aone-dimensional Laplacian, or in the present notation n = d = 1) so we concentrate only on
the points where the present argument differs from the onein [EWW].

We begin with the representation

(eTLv) (z) = ;::d /ddzg Z,T)v (eZn (z+2)), (A.1)
where
g(z7) = / Ak &% exp(— (k- k)" (1— e7)) . (A.2)

Asin [EWW], the action of the semi-group is analyzed by considering separately the behavior
of the part far from the origin and that close to the origin. The new difficulty here is that we
do not have an explicit representation of g asin the case n = 1. However, the technique of
estimating the long-time behavior will remain essentially the same. Let x , be a smooth cutoff
function which vanishesfor |z| < R andisequal to 1 for |z| > 4R/3. We start by studying the
region far from the origin. The analog of Proposition B.2 of [EWW] is

Proposition A.1. Forevery? > 0 andeverym > 0, thereexistay > 0andaC'(¢, m) < oo
such that for all v € H, ,, one has

M Z)d+e) [ —rmj2 | —yR/ZY
e = (alr) & G ) Il

forq=0,1,...,2n— 1. Herga(r) =1—e".

(A.3)

L
HXReT v ”E—q,m ’

The crucia step in proving this estimate is to derive the asymptotics of g(z, 7) for large
z. Thiswill replace the explicit (Gaussian) estimates for thed = 1, n = 1 case analyzed in
[EWW]. This estimate is provided by the following

Proposition A.2. Thekernd g(z, T) decays faster than any inverse power of z for |z| large.
In fact, one has the estimate

_d " 1
l9(2,7)| < Ca(r)™% exp(—(|z[*" /a(r))71) (A.4)

for some~y = v(n,d) > 0.

Remark. If n = 1, we recover the explicit bound on the Green’s function:

_ O edSar)
a('r)d/(zn)
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Proof. We need to estimate the quantity
d 2\ . d
ot = [ e (S8 S A9

By rotational symmetry, it suffices to bound the preceding expression for z = (z4,0,...,0)
with z; > 0. Setting z; = 2na(r)z*", and k = (p,q), withp € R, and ¢ € R4, this
means that we must bound

X = /dp di—1q exp(—a(T) (p2 +q-9" — Zinpa(’r)zzn_l) .
If we rescale the variablesas p = zt, and ¢ = zs, then we have

X =2 / dt d* s eXp(—a(T)zZ"((t2 +s-5)" +2int)) .

Remark. Note that the polynomia (£* + s - s)™ — 2int isindependent of z.

We will bound X by taking advantage of the fact that the integrand is an entire function
and trandlate the contour of integration so that it passes through at |east one critical point of the
exponent. These critical points occur at s = 0 and the roots of t2*~% = —j —that is, at the
pointst, = exp(i%), k=0,1,2,....2n— 2.

Inserting this expression into the exponent of the integrand of X', we see that the value of
the polynomial at the critical pointsis

Ca(r)e® (ap(i%’i;)) — 2ni exp(i%))
= (2n — Da(r)2*" exp(i%) :

In particular, if wetake k = O, then the real part of the critical valueis
(2n — 1)a(r)z*" cos(m/2+ m/(4n — 2)) = —a(r)z*" - z

when n islarge (and is negativefor all n > 0). Integrating over the region R + ¢, and observing
that there is only one critical point on this line, we get, using standard techniques of stationary
phase:

X ~ a(T)—d/(Zn)e—Cna('r)zzn

I

withC > 0and C,, — /2 asn — oo, when z — co. Reverting to the original variables, this

leadsto

2n/(2n—1) 1/(2n—1)
~ _d/(zn) _Dnm /G‘(T)
L4~ a(r) e

I

where D, = C, /(2n)Y?"=D_ This completes the proof of Proposition A.2.
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We now consider the action of the semi-group on functionslocalized inside aball of radius
R. A key observation hereisthe following lemma. Let ¢ (x) denote the eigenfunction (written

in position space) of £ with eigenvalue 0 and let T'(z) = ¢, (z)Y/? (note that py(z) > O for all

Lemma A.3. The operator H = T~ LT is self-adjoint on (a dense domain in) L?>(R?) and
has the same eigenvalues as L.

Remark. The domainsof £, T and H have to be chosen carefully here. The correct choices
have been explained in detail in [EWW, p.197].

Proof. The proof is a straightforward calculation. We note further that if ¢, are the eigen-
functions of £ then the eigenfunctions of H are s, (z) = (T~ ', ) (z).
If we take the inverse Fourier transform of the eigenfunctions ¢, (p) of (1.12), we see that

a _2n
|@a(@)| ~ Cla|'™ exp(—y|z|"T),

for some v > 0, using the same sort of estimates as those used to bound the kernel g of the
semi-group. Thus, for |z| sufficiently large, we get

a _2n
[$a(2)| & Clz|* exp(—37|z(7T) .

The usefulness of introducing the operator H isthat it is sectorial, since it is self-adjoint
and bounded below. Therefore, the associated semi-group can be estimated from spectral

information alone. In particular, if P,§°> denotes the projection onto the spectral subspace
spanned by the eigenfunctions with eigenvalues 0, —-=, >2,..., 3£, and Qg’) is defined by

T2 2n 2

cho) =1- p,§°>, then we have a bound on the operator norm of Qéo)eTH ,(co)

1™ Q| < CjemmkHD/@n) (A.6)

We can use this information to bound the semi-group associated with £. Note that if we denote
by P, and @, the projection associated with the spectral subspaces of L (aswedid for H), then
we have the identity:

eTLQkU = eTLQk(l— XRr)V + eTLQkXRv }

Since x pv islocalized away from the origin, it can be studied with the help of Proposition A.1,
so we focus on the other term. There we get

||6TLQk(1 - XR)UHe,m = ||TT_167LTT_1Q1@TT_1(1 — Xgr)
= HT(eTH I(cO)) (T_l(l - XR)”) He,m

kE+1 _
o )”T 1(1_XR)”He,m'

Zm

< Cexp(—T
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Using now theboundson ¢, weseethat |7~ (z)| < Cexp(fy\x|%) andthat (1—xzv)(z) =0
when |z| > 4R/3, we get

17711 = x)v]l,,, < Cep(v(4R/3)77)|[v,,,
so that finally
k

+1
)l

eT’;Qk(l — XR)V

. <C exp(7(4R/3)%) exp(—r

El

lm *

Thus we have proven:

Proposition A.4. Under the hypotheses of PropositionA.1, there exist constantsC (£, m) >
Oand~y > O, suchthat for dl v € H, ,,, one has

k

_on +1
< Cexp(v(4R/3)1) exp(—7 on vl

GTLQk(l — XR)V p

lm *
b

We now return to the;

Proof of Proposition 2.1. Asin [EWW] it is only necessary to consider the term with
highest derivativein ||XReTLv||L,,m. All other termsare easier to estimate. Also, asin that paper,
we use the fact that

Dle'rﬁ, _ eTE/(Zn)eTLDE , (A?)

where D¢ isashorthand notation for aproduct of derivativesw.r.t. the z ; Of total degree. Thus,

7/ (2n)

e'rﬁ; E’U ) =
( D )( ) (27T)d

/ d?z g(z,7) (DZ’U) (e7/CM) (x4 2)) . (A.8)

First consider the ¢ = 0 case of (A.3). Then

er/ () d m ) 7/(2n)
LmS—@@r/dﬂﬂaﬂvaﬂDﬂ@ (+2),. (A9

Ixge™ ]

where w isthe operator of multiplication by (1+ z - z)%/2. Notethat the conclusions of Lemma,
B.4 of [EWW] do not depend on the exact form of g and so it aso holds in the present situation
and we have

Lemma A.5. One has the bounds

Ce ol iflzl < TR/S,

r (el @ 2 <
o xav(e (+”W2—{cu+vmww&miﬂa>nw&

Remark. Notethat the proof in [EWW, p.199] is also unaffected by the dimension d in which
we work.
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Now use Lemma A.5 to bound the integral in (A.9) by writing it as an integral over
|z| < 7R/8and anintegral over |z| > 7R /8. Theintegra over |z| < 7R/8isbounded with the
aid of LemmaA.5 as

er/(Zn) 2 Y
CW/||<7R/8‘9(Z,T)‘6 ||’U||£’m S C(n)eZne 2n ||IU||E,ma (Alo)

where the last step used the estimates of Theorem 4.1 to show that [ dz|g(z,7)| < C, with C
independent of 7.

To estimate the integral in the outer region, we use the second part of LemmaA.5 and then
bound it by

7d/(2n)
€ m T n 2n
i /| o AT < e ) (R ol
z[>

(A.11)
for some vy > 0O, where, again, we have used the estimates of decay in Proposition A.2 both to
extract the factor of exp(—fyR%) aswell as to bound the integral over z. Combining (A.1),
(A.10), and (A.11), we get the ¢ = 0 case of (A.3).

We next indicate how to treat the ¢ > 0 cases of (A.3). Consider the case ¢ = 1. We can
rewrite (A.8) by integrating by parts once w.r.t. one component of z, for example z;. Then,

er/(Zn)e—'r/(Zn)
(eTLDev) (x) = 2n) / ddz(Dzlg) (z,7) (Dg_lv) (e (z+2)). (A.12)

Differentiating (A.2) w.r.t. z; gives
(D,.9)(z,7) = / Ak ik, expliq - =) exp((k - k)" (1— ™)) . (A.13)

To estimate (A.13), first replace & by p,; = a(r)"/*k;, where, as before a(r) = 1—e ™",
Then,

1

(D.,9)(27) = o7 a(T)i/Qn) / d’ppyexp((p-p)") exp(ip-z/a(T)/ V) . (A.14)

We estimate thisintegral by using the method of stationary phase as in the proof of Proposition
A.2. Theextrafactor of p; does not cause any trouble asit is easily offset by the exponentially
decaying terms.

One now uses the Schwarz inequality to rewrite

rd/(2n)
, e
Ixre™ Dl < = / .

.92 7)| |[u™xa (O 20) (€. +2)) |, (A.15)

and then proceedsasinthecasewhen g = 0, breaking theintegral over z into the sametwo pieces
as before. These two pieces are then estimated with the aid of Lemma A.5. Note that while the
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factor a(7)~% (™) of (A.14) will be absorbed when one integrates w.r.t z, the remaining factor
of a(r)~Y ") will remain in the final bound of (A.3). The boundsfor ¢ = 2,3,...2n — 1
follow in asimilar fashion.

To complete the proof of Proposition 2.1, first rewrite

eTLQk — eTL/Z keTL/Z — eTL/ZQkXReTL/2+eTL/ZQk(l_XR)eTL/Z- (A16)

The second of these termsinvolves an estimate of the action of e™*/@Q,. on afunction localized
near the origin, so by Proposition A.4, we get a bound

T T 4R n n— k + l
e/ %Qu(1=x)e™ P0ll g < C,exp (fy(?)z e 7) el - (A-17)

We use Proposition A.1 to bound the first term of (A.16):

. rm 2n/(2n—1)
Cm) gera) (=5 4 o) )y

q

rs (A.18)

||£—q,m :

Asapreliminary step, we note that if wefirst choose m and R such that

o % (t4d) (e_% N e_’YRzn/(znfl)) < Ce—H(k+1)/(2n))7 7

then for sufficiently small  (roughly speaking p ~ 3 (1 + (4/3)%*/=1)=1), the Eqs.(A.17)
and (A.18) imply

C kt1 C

- K n —pulx
€™ Q| < W@ Tl k= Wﬁ X417 ||y

”E—q,k .

Remark. Notethat thisrequiresthat we choosem > 2(¢ + d+ u(k + 1)), which iswhere the
restriction on m in Proposition 2.1 (and hence Theorem 1.1 ) arises.

This shows that the projection of the semi-group onto the complement of the eigenspace
spanned by the first & eigenvalues decays with arate proportional to the eigenvalue A, ;. We
can sharpen the decay rate so that we obtain arate like exp(—(1 — €)|A,_,|) by the techniques
of [EWW], (see Eg. B.14 and following) and this completes the proof of Proposition 2.1
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