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FORM PERTURBATIONS OF THE SECOND QUANTIZED
DIRAC FIELD

BERNARD HELFFER AND HEINZ SIEDENTOP

ABSTRACT. We give a criterion on when a form perturbation of the free Dirac
operator defines a form perturbation of the second quantized free Dirac field.
Moreover, we show that the potentials allowing this quantization are regular
in the sense of Klaus and Scharf. Furthermore we prove that only non-local
potentials allow for this construction in three dimensions. In two dimensions,
though, all local potentials with finite Dirichlet norm are allowed.

1. INTRODUCTION

The construction of Hamiltonians in quantum field theory, is one of the challenges
of mathematical physics. Various elaborate procedures have been invented to mod-
ify a formally given expression in a physically meaningful way (renormalization)
with the aim to end up with a mathematically meaningful object. However, the ba-
sic strategy of quantum mechanics for finitely many degrees of freedom (N-particle
quantum mechanics), namely to define the Hamiltonian as a (form) perturbation of
a positive operator, has attracted relatively low, in fact too low, attention for the
quantum mechanics of infinitely many degrees of freedom (quantum field theory).
The purpose of this paper is to investigate how far this straightforward strategy is
bearing.

This problem is — in general — rather difficult for interacting quantum field the-
ories. The simplest non-trivial case is the external field problem in quantum field
theory to which we will restrict our attention. We will study the second quantized
Dirac Hamiltonian Dy and perturbations of it.

In fact, even in this simple case there are only very few results known: Rui-
jsenaars [12, 13, 14, 15] and Thaller [17], Chapter 10, present the external field
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Hamiltonian in a concise way. (To enhance readability we will follow the notation
of Thaller’s book although we will introduce the basic notation in Section 3.) The
condition for the existence of a perturbed Hamiltonian — without any renormal-
ization — which can be found, e.g., in Thaller’s book, namely that the one-particle
perturbation is trace class (see (35)), is rather strong. Including the normal order-
ing with respect to the free field allows a weaker hypothesis. The presently known
best results in this context were given by Carey and Ruijsenaars [1] under a certain
Hilbert-Schmidt condition on the underlying one-particle operator (see the end of
Subsection 2.5) and by Fredenhagen [3]. Our first result is a further weakening of
the requirement on the one-particle potential (see Section 3, Theorems 1 and 2).
In fact we will show that our condition is not only sufficient but also necessary for
relative boundedness.

Naturally the question arises: What is the relation between the way of Section 3
to define the Hamiltonian of a quantum field and other approaches — in particular
the second quantization in the Furry picture'!? A particular class of Hamiltonians
of interest in the Furry picture are those Hamiltonians that have a ground state
— called the dressed vacuum — which is an element of the Fock space of the free
field. External electro-magnetic potentials (and if local, the fields defined through
them) that have this property are called regular. An early treatment of this problem
was given by Moses [9, 10] (see also Friedrichs [4], Chapter 28). Later, Klaus and
Scharf [7] showed that it is sufficient and necessary for a potential V to generate a
regular external field that the difference of the projections onto the positive spectral
subspace of the free Dirac operator and the Dirac operator perturbed by V is a
Hilbert-Schmidt operator. They also show, that potentials with singularities of the
type 1/|z|Y with 0 < v < 1 are allowed. That v = 1 does not yield a regular
field was shown by Klaus [6]. This problem is addressed in Section 4. The first
result of this section, Theorem 5, can be stated loosely speaking as follows: all
external fields that allow for the constructions of external field Hamiltonians of
Section 3 are indeed regular fields. (Note, that this is not a trivial statement, since
the Hamiltonian defined from V' through the procedure of Section 3 is — in general
— not unitarily equivalent to the one constructed in the Furry picture.) The second
more important result of this section is, that the weakened condition — as compared
with Carey and Ruijsenaars [1] and Fredenhagen [3] — still does not allow for local
potentials in dimension three. The situation is different, though, in two dimensions
as will be shown in Subsection 4.3.

2. SOME BASIC NOTATION

In this section we fix some notation — following largely Thaller [17] — in order to
formulate our results in a precise way. The reader familiar with the tenth chapter
of Thaller’s book can proceed immediately to the next section.

2.1. The Dirac Operator. We start from the free Dirac operator Dy
h

(1) Dy :=ca - =V +mc’g,
i

where the a = (a1, a2,a3) and 3 are the four Dirac matrices, self-adjoint 4 x 4
matrices in standard representation (Thaller [17]), and ¢, the velocity of light, and
h, the rationalized Planck constant, are positive physical constants that we will
take equal to one in the following. The operator Dy can be self-adjointly realized
in § = L?(R®) ® C*. Tts domain is H'(R®) @ C*.

In the Furry picture the Hamiltonian is defined through a renormalization different from
normal ordering with respect to free electron and positron subspace: the initial normal ordering
with respect to the free field has been replaced by the one given by the perturbed Dirac operator.
(See also the remarks below Equation (4))
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The Dirac operator for an electron in the electric field V¢ and the magnetic field
V x 2 is given by the general Dirac operator

(2) cha-(?V—i-eQ[)—}—chﬁ—e(p

where e is the electronic charge. In the following, we will always assume, that D
is self-adjoint. We will also use the notation V := —ep. The operator D can be
self-adjointly implemented in ), in fact, for not too singular potentials its domain
agrees with the domain of the free Dirac operator.

2.2. Relevant Hilbert Spaces. We fix now a Dirac operator D. Its spectral
subspace fixes the notion of electrons and positrons: The subspace

3) FV =94 = Pu(9)

is the electron state space. Here Py := X(0,00)(D) is the orthogonal projection onto
the positive spectral subspace of D.
To define the positron state space we denote by C' the anti-unitary transformation

C’QZJ = iﬁazi/_}.
Then
(4) S(_l) =CH_

is the positron state space where $)_ := P_(9) := [X(—o0,0)(D)](9).

In passing, we remark that in the special case that D is the free Dirac operator,
one says that one describes the resulting quantum field in the “free picture”. If
normal ordering with respect to the given external potential is used, one says that
one describes the resulting quantum field in the “Furry picture”. Many other
intermediate choices are possible. — Although the word “picture” suggests that these
procedures describe the same physical situation, it should be noted at this point
that it is not clear that Hamiltonians resulting from various analogous constructions
in these pictures are unitarily equivalent. In fact, it might not be possible to define
Hamiltonians for all choices. Which of these “pictures” is suitable to describe the
physical situation at hand is not merely a mathematical problem but mainly a
physical one. Some hints in this direction can be found in Sucher [16], Chapter 3.

We now continue our constructions of Hilbert spaces and turn to the definition
of the multi-particle spaces. As usual, they are given as the antisymmetric tensor
products of these spaces, i.e., the n-particle space for electrons is

C n=>0
1’3’(") = n
+ /\ ,S’J+ n €N
v=1
and the m-particle space for positrons is
C m =10
gmi={m

ACH meN
v=1

The space F™™) of n electrons and m positrons is the tensor product of these two,
ie.,
g =31 @ 3T
Accordingly we have the electron-positron Fock space
(o ]
v= @ 5
n,m=0

2.3. Creation and Annihilation Operators.
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2.3.1. Particles. For any f € $), we define in § the “particle annihilation operator”
a(f), which maps each subspace %™ into F™),

6) @U@ i)
4
= v”+12/ d3X(P+f)($)¢(n+1’m)(xaxla"'axn;yla"'aym)a
o=1 R3

where z = (x,0). We observe that the map f — a(f) is anti-linear.
We also set —in slight abuse of notation — a(p) := a(p, s) := a(e’Pu,(p)/(27)3/?)
for s = 1,2. For fixed p the vectors us(p) are defined as eigenvectors

(a-p+mpPus(p) = £E(p)us(p)

with the plus sign for s = 1,2 and the minus sign for s = 3,4, i.e., solutions of the
Dirac equation in Fourier variables. These vectors can be picked as

1 0
ur(p) i= /TEE® [ ) wn(p) = /el | L
S R ol PR\ miEey |
p1tip2 —q3
(6) m+E(p) m;igg)
—Pp1 2
i A
us(p) = /) | TR | us(p) = /5 | THE®)
0 1

Note that a(p,s) and its formal adjoint a*(p,s) are not defined as operators into
the Fock space. Loosely speaking we can view a*(p, s) as creation operator of a
free electron with energy E(p) and spin s.

Next we define the “particle creation operator” as the mapping F™~ ™) into
§(m) given by

(7)
(a*(f)p) ™™ = —— Z DLy f(@) ™) (@1, 85y s sy Ym).

As usual the hat indicates that the corresponding argument is omitted. The oper-
ator a*(f) is the adjoint of a(f) and the map f — a*(f) is linear.

We then have the standard “Canonical Anti-Commutation Relations”, or short
CAR , where the braces are the anti-commutator

(8) {a(f1),;a(f2)} = {a*(f1),a*(f2)} =
9) {a(fr),a*(f2)} = (fi,Pyfo)l,

where (f1, f2) is the scalar product in L?(R?*)*. Moreover, a*(f) is — as the notation
suggests — the adjoint of a(f). Because we are in a fermionic situation, a(f) and
a*(f) are bounded operators on §, in fact we have

(10) la(HIP + lla* (Hl* = (&, {a(f),a*(H})s = 1P IR

For the vacuum state 2, a unit vector spanning F*°, we obtain
(11) af)Q=0e3
and

P+f (n,m) = (170)
0 otherwise.

(12) (a*(H )™ = {
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2.3.2. Anti-Particles. We first define the “anti-particle annihilation operator” by
(13) (b)) ™™ (@1, -, Tas Y1, -+ Ym)
4
= (OIS [ O e i)

and the “anti-particle creation operator”

(14) @ ()™ (@1, -, Tns 1, -, Ym)

(\_/]%n ;(_1)k+1 [CP—g] (yk),(/}("’mil)(xl) v T Y1, - 7:0]67 s 7ym)

We observe that, due to the anti-linearity of C, the map g — b(g) is linear and the
map g — b*(g) is anti-linear.
The “CAR” for the positron creation and annihilation operators are

(15) {b(g1),b(g2)} = {b™(91),b%(g2)} =0,
(16) {b(g1),6%(g2)} = (92, P-g1)1
analogously to the one of the electron operators.
Let us denote by an operator with superscript  either the operator itself or its
adjoint, i.e., b* = b* or b and af = a* or a, we have
(17) {t¥(9),a*(f)} = 0.

As before b(g) and b*(g) are bounded operators on F. We note that b depends
linearly and b* anti-linearly on g. For the vacuum state {2 we obtain analogously
to (11)

(18) b(g)Q=0€F
and
I L

We observe that the equations a(f)¥ =0, b(g)yy =0for all f € H; and g € H_
imply ¥ = af) for some complex «. This gives the uniqueness of the vacuum up to
a constant of modulus one.

In analogy with a(p) and a*(p) one can also introduce the corresponding opera-

tors b(p) and b*(p).

2.4. The Field Algebra. As in Subsection 2.2 assume that the Hilbert space can
be written as a sum of two orthogonal subspaces, i.e., § = Hy & H_. This is
actually the case for ) := L?(R®) ® C? with our choice made in (3) and (4), if zero
is not in the spectrum of the Dirac operator D in (2), which we will assume in the
following. Recall, that we denote the projections on $)4 by Py. For any f € §, we
define the “field operator” ¥(f) on the Fock space § by

(20) ¥(f) = a(f) +b°(f).
This field operator is bounded on § and depends anti-linearly on f. The adjoint
operator ¥*(f) is also bounded and depends linearly on f. We have

(21) T (f) = a*(f) +b(f)-

In terms of the fields operators, the CAR become

(22) {®(A),¥(f2)} = {¥(f1), ¥ (f2)} =0,
(23) {B(A), ¥ ()} = (f1, o)1,

for f1,f2 € 9.
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We have also

(24) 1T+ 1T (Nl = @, {2, T (H})s = I IP 117,

and hence (after some computation)

(25) NeHI = 11e=(HIl = I£1l-
We remark that ) satisfies the equations

(26) T(f)2=0, Vf € H,
and

(27) () =0,VfeHn_.

This also characterizes the vacuum state up to a constant of modulus one.

2.5. Second Quantization of One-Particle Observables. In this section we
will “second quantize” linear self-adjoint operators A in the underlying one-particle
Hilbert space $). We will assume that the form domain of the operator A is invariant
under Py. Given the orthogonal decomposition $) = $; @ ) as given through (3)
and (4), we can identify A with the matrix

— (A A
o aim (e Ao
where Ay = PyAP, Ay =P AP A , =P AP, and A__ = P_AP_ occur.
We have A% _ = A_, because of the self-adjointness of A. In the case where the

subspaces $)+ are left invariant by A, i.e., in the case that A, = A_, = 0, this
can be easily done and is very much the same as in the situation were no anti-
particles are around. Our prime interest is thus directed to the situation where the
off-diagonal terms do not vanish.

At this point we would like to begin to define the second quantization of A. We
start with the formal expression

+oo 400 o]
(29) AT*T =Y (e, Aej) U () U(e;) = Y T*(Ae;)T(ey),
i=1 j=1 j=1
where the e, es,€3,... form an orthonormal basis of §).
Writing (29) in terms of the operators a and b gives a sum of 4 terms
(30) AT*T = Ag*a + Aa*b* + Aba + Abb*,

where each term is defined in the following way, after choosing orthonormal bases
{f;} and {gx} of $H4 and $H_,

(31) Aa'a =3 (fi, Afy)a" (fi)alfy) = Asra®a,
i

(32) Aa*b* = zkj(fz-, Agi)a* (fi)b* (gx) = Ay —ab’,

(33) Aba = ;(gk, Afblgr)a(f;) = A1 ba,

(34) Abb* = %:(gk, Age)b(g)b*(ge) = A-_bb*

where the elements of the matrix representation (28) of A occur.
An elementary but essential question is, whether the so defined operator has the
vacuum vector in its form domain. Computing (2, AT*¥Q) gives

(35) (Q, AT*TQ) = (Q, Ab*bQ) = tr A__.
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Hence, if A__ is not trace class, not even the vacuum belongs to the
domain of the formally defined operator A¥P*¥ or to the formm domain of
AT*T,

The latter expression represents, in the case of the Hamiltonian the energy of
the electrons with negative energy. According to the idea of Dirac these should be
filled and their energy should be discarded. This “rule” is implemented by what is
called “normal ordering” or “Wick ordering”:

e In each product all creation operators are moved to the left of the annihilation
operators

e For each transposition which is necessary to perform the rearrangement the
product is multiplied by a factor —1 (according to the CAR).

This procedure is denoted by double dots

(36) AL == (gk, Agi)b* (91)b(gr)-

Kl
Using the canonical anti-commutation relations, we have : Abb* : = Abb* —tr A__
and the effect of this renormalization is that

(37) (Q,: AT*T : Q) =0,

which shows that normal ordering really implements Dirac’s idea. Thus one is
motivated to define the second quantization of a self-adjoint operator on ) formally
as

(38) A = A\I’*\I’ = A.H_a*a + A+_a*b* + A_+b6l — A__b*b.

Our aim, which we will tackle in Section 3, will be, to give this formal expression
a meaning in the case where A is a perturbation of the free Dirac operator, i.e.,
A=Dy+V.

The diagonal elements can be treated as for Hamiltonians defined on the multi-
particle spaces ™9 and ™). The non-diagonal terms are more difficult but have
also been previously treated. In this context the results of Carey and Ruijsenaars
[1] are to be mentioned who show that A can be second quantized with the domain
of the number operator ) (a(f,)*a(f,) + b(g,)*b(gv)), if A4— € S,. (Here and
in the following we will denote the Hilbert-Schmidt operators over a Hilbert space
£ by 62($). The compact operators will be denoted by G (). [In case where
there is no confusion possible, we will drop the reference to the Hilbert space.] The
corresponding operator norms will be denoted by an index 2 and oo.) Moreover,
Fredenhagen’s work has to be mentioned here, who starts off in the same spirit as
we but restricts to bounded operators. His work is closest to what we will do.

3. PERTURBATION OF THE FREE SECOND QUANTIZED DIRAC HAMILTONIAN

In this section we are interested in perturbations of the free second quantized and
normal ordered Dirac operator I)y. We assume that the one-particle operator A of
Subsection 2.5 to be second quantized is a perturbation of the free Dirac operator,
i.e., we make the choice A := D := Dg + V. Throughout the rest of the paper,
we shall always assume, that V is a symmetric quadratic form such that the form
domain Q(Dy) of Dy is contained in the form domain of V' and that the quadratic
form

defines uniquely a self-adjoint operator D with Q(D) := Q(Dy) such that for all
¥ € Q(Dy) the identity (¢, D) := (v, Do) + V1, 4] holds. We continue to write
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P, and P_ for the spectral projections onto the positive and negative spectral
subspaces of D.

Moreover, we specify the Dirac operator that defines the notion of electrons and
positrons and the field algebra, i.e., the Dirac operator that is the basis of the
constructions of Section 2 and in particular of Subsection 2.3, to be the free Dirac
operator. To distinguish from the above operator, we will add a superscript 0,
ie., we write P{ for the orthogonal projection onto the positive and P? for the
orthogonal projection onto the negative spectral subspace of the free operator and
we write 9. for the corresponding subspaces.

In other words, D is the operator to be second quantized, whereas Dy defines
the meaning of electrons and positrons.

We wish to generalize Carey’s and Ruijsenaars’ result in such a way that we
no longer require Dy _ € G,. As we will be able to show, our weakening of the
conditions of Carey and Ruijsenaars will be as far as one go, if one wants to keep
the property that we have a form perturbation of Dy (see Subsection 3.2). The
price we are willing to pay for this is, to give up any control on the domain of
the second quantized operator, i.e., we will be concerned only with the operators
defined through the corresponding quadratic forms in the spirit of Friedrichs. This
is actually in spirit similar to Fredenhagen’s [3] approach. We carry it, however,
out relax the requirements and proof a stronger statement.

3.1. Condition on the One-Particle Potential. We abbreviate
E(p) := (p? + m>c")'/2.

By F we denote the Fourier transform

(FHp) = (2#)_3/2/ e~ P f(x)dx.
R3
Our first result is

Theorem 1. Let D = Dy + V be the Dirac operator with potential V. Pick
the subspaces that define the field algebra as 99 := X(0,00)(Do)(9) and H° :=
X(=00,0)(Do)($). Assume that V is such that the operator K with integral kernel

(39) K(p,p') := (E(p) + E(p")) /> (F ' PAVPLF) (0, p)

is a Hilbert-Schmidt operator. Then, for all f € F with finite kinetic energy, i.e.,
all f in the form domain of Dy, the estimate

(40) (£, D T f)| < 2'2||K||2(f, Do f) 2|

holds, where we have used the notation from (28).

Let us remark the following:
e The estimate (40) can be replaced by

(41) (£, DT T )| < (f, Do f)? | E(=iV)~2 PLVPY ] £,

if the asymmetric condition E(—iV) 2 P° VP € G, is fulfilled. In fact the
proof of this estimate is simpler; it essentially requires only the first part of
the proof given below.
e Theorem 1 implies in particular, that the operator D, _¥*W¥ is form bounded
with respect to the kinetic energy Dy with arbitrarily small positive constant.
e In the case, that V is a measurable function the Hilbert-Schmidt hypothesis
of the theorem means explicitly that

,IVp p)? (,_p-p+mict
(42) | ' g+ B )(1 E(p)E®) >< '
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e Although we have D_ = PV P%, we prefer to leave Dy_ on the left hand
side of (40) to emphasize that we are aiming for an estimate of the off-diagonal
terms of the second quantized Hamiltonian.

Proof. We start from (29) for A := D, _
(43) Dy W0 =Y (fu, Dg,)a" ()" (g.)

2114

where fi, fa,... and g1, 9g2,... are orthonormal basis of ) and §_ respectively
which will be picked suitably, later. We analyze this operator in Fourier represen-
tation. As already mentioned in the above remarks, we have Dy_ = PJEVPE. By
Vi—(p,p') we denote distribution kernel of ' PV P9 F, i.e., the kernel of POV P
in the Fourier representation. Recall that p = (p, o). Now set

Vi_(p,p") Ipl>I|p'|
0 Ip| < [p/|

and Vi_ o(p,p') := Vi_(p,p') — Vi_1(p,p"). Correspondingly we decompose the
second quantization of Dy _ =D _ 1+ Dy_ > with

@) (D v e =Y [dp [ Vi 000,00 @)1 0)0)

V+—,1(p7p,) = {

where [dp:= Y3_, [-sdp. Note that the integration for this part of the integral
kernel can be restricted to |p| > |p'| because of the support properties of Vy_ ;.
We now rewrite (44) in the form

(45)
" _1 1 N
1:Dv w90 = [ [ @ BE) Ve 0,006 (B D) a1 (0
The hypothesis that the kernel of K — and therefore also the kernel K (p,p') :=
E(p)~2V,_1(p,p') — is a Hilbert-Schmidt kernel, implies that we can find a se-
quence of nonnegative numbers A, (the singular values of K; which are square

summable), an orthonormal basis g, of £, and a corresponding orthonormal basis
fv in $H_ such that

[ 0K (0,8)9,6) = o).
Inserting this in our expression (44) yields
(040w 00) = 3 [ Ao\ £ O E® alp)f,5'(9)1)

(46) . _
- / ap(E@) a®)f, 0" (3 A F(0)9.)f)-

Thus we can estimate
(47) |(f, Dy T f)| < /dpllE(p)%a(p)fll 15*(> A Fo(p)gw) £

The next step is to apply the Cauchy-Schwarz inequality with respect to the p-
variable

(48)

\(f, D 1 T T £ < ( / |E(p)|||a(p)f||2dp)2 ( / IIb*(ZAufu(p)gu)fll"’dp) .
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Let us now estimate [ [|b*(3°, A\ fu(p)gv) f||?dp. Using that b* has norm one, we
get

) B CNEI < I AL PP = SRR

Integration over p gives the estimate

[N

(50) (£, Dy— 1 T Tf)| < Ty (f (ZV) £l

where

D= ([ 1Bl s1Pap)

which is the kinetic energy of the electrons. This gives

(51) [(fy D T Tf)| < Ty (f (ZAQ) I£1I-

Since 37, [Av|* = [[Vi- 1[5 < 2/ KI5 we get
(52) |(fs D T )| < 22K |2 Th(f) 1]

Now we treat the case that |p’| > |p|: the equivalent of (45) is
(53) (f, Dy— 20" ¥f)
= [ [ aBE) Ve a6 ()1 EE) Y 6))

where f, f5,... form an orthonormal basis of ). The last factor in (53), the
scalar product can also be written as

—(E®)'?b@") f,a*(f,) ).

Then following the steps of the previous case with changing the role of p and p'
and a and b and observing that the adjoint of a Hilbert-Schmidt operator is again
a Hilbert-Schmidt operator with the same norm yields

(54) |(f, D -2 T* T )| < 22| K|l T-(f) || £

where T (f) is the kinetic energy of the positrons.
Adding (52) and (54) yields the desired result. O

As a corollary of this theorem we obtain

Theorem 2. Under the hypothesis of Theorem 1, the assumption that the form
domain of the symmetric quadratic form V contains H/2 (R*) ® C* and that the
negative part of PgVPg and the positive part POV P° are relatively form bounded
with respect to |V| with form bound less than one, there exists a uniquely determined
self-adjoint operator D on the Fock space, such that its form domain contains the
form domain of Dy and that for all vectors f in the form domain of Dy the identity
(f,Df) :=(f,: DO*W : f) holds.

Proof. The result follows immediately from Theorem 1, the remark thereafter (form
boundedness of the off-diagonal elements with arbitrary small constant), and the
fact that the diagonal elements leave each N-particle subspace of the electron and
positron subspaces invariant. [l
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3.2. Optimality of the Hilbert-Schmidt Condition. We showed that, if K €
&, then we have the inequality

(55) (D4 T f, )| < 22K ||a|| £11v/ (Do £, ).
This implies the weaker inequality
(56) (Dy_T*Tf, f)] < |E(=iV) "2 POV PY||2(Do £, f).

Due to the fact that (56) is weaker than (55), one might think that our assump-
tion that K € § is merely technical to obtain the relative boundedness claim in
Theorem 2. However, this is not the case, the Hilbert-Schmidt condition on K in
the hypothesis of Theorems 1 and 2 is in fact also necessary:

Theorem 3. Assume V as in Theorem 1 and Theorem 2 except for the Hilbert-
Schmidt condition on K but keeping the property that K has a kernel given through
(39). Assume in addition that the off-diagonal elements of the second quantized
Dirac operator are relatively form bounded with respect to the kinetic energy. Then
K € 6,.

Proof. The hypothesis implies that there is a constant ¢ such that for all f € §

(57) UD- T f, ) < c[(Do f, f) + (f, F)]-

Pick f := A2+ [dp dp'p(p,p')a* (p)b* (p')Q where Q is the vacuum state as defined
in Section 2.3.1 and p = (p, o) and p' = (p’,7) and where p € S(R® x {1,...,4} x
R? x {1,...,4}). Using this choice we find that there is exists a constant C' such
that

(59)
‘A / v+(p,p'>so(p,p'>dpdp" <o (1P + [ dparl(Be) + E(p'))w(p,p')ﬁ) ,

for any A € C and any ¢. (Note that [ dp and [ dp’ means integration and sum-
mation.) Let us define g(p,p') = (E(p) + E(p'))'/? ¢(p,p'). We can rewrite the
previous inequality in the form

/\/V+—(p,p') Eo) +1E(p,))1/2§(p,p')dpdp" <C (AP +(9,9)

(59)

for all A € C and all g € S(R® x {1,...,4} x R® x {1,...,4}).
Taking A = /(g,9), we obtain

I/K(p,p’)g(p,p’)dpdp'l < 2C|g]l-

But, if this is true for any g, this will imply

(60) / K (p,p")Pdp dpf < o0

which is the wanted Hilbert-Schmidt condition. O

4. RELATION TO OTHER QUANTIZATION SCHEMES AND DISCUSSION OF
ALLOWED POTENTIALS

4.1. Regularity of External Fields. We wish to discuss the relation of the direct
approach to second quantize a one-particle Dirac operator as presented in Section 3
with the quantization and renormalization in the Furry picture. In particular, it
is interesting to know, if our class of potentials are regular external potentials as
defined by Klaus and Scharf [7, 8]. For convenience we remind the reader again
(see also the Introduction) of the definition of regular external fields.
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Definition 1. Given a potential® ¢ = —V . Consider the second quantization D of
the perturbed Dirac operator D := Do+V in the Furry picture, i.e., the field algebra
is defined with respect to the subspaces $H+ of the perturbed operator D itself. An
external potential ¢ — and if local the corresponding electric field Vo — is called
regular, if the vacuum state of D is an element of the Fock space of the free Dirac
operator.

It is often easier to state and to investigate regularity through an equivalent
characterization found by Klaus and Scharf [7].

Theorem 4. A potential V' is regular, if and only if
(61) Q= P) — Py € 6:(9).

To show this Hilbert-Schmidt property for the potentials allowed in Theorem 3
we follow partly Nenciu and Scharf [11]. The starting point is the following formula
for the projection of a self-adjoint operator H for which 0 is in the resolvent set

1 1 [, -
(62) X(0,00)(H) = 5 + o= [ (in+ H)™'dn.

2 27 J_o
This formula can be found in Kato [5] (VL5 (Lemma 5.6)) and is meant as the
Cauchy principal value

1 1 +7r

(63) Py =5 +g- lim B R(in)dn,
in the strong topology. Note that the convergence of the integral follows directly
from the formula

4 P—1 11' +THH2 2ty = 1, 1 c>OHH2 7
60 Pr=g+g-tim [ HE o = g5 [ AU 0

We will apply (62) for the operators Dy and D and will denote the corresponding
resolvents by Rg(z) and R(z). We now want to compare, under assumption that 0
is not in the spectrum of D, the projectors P, and PJ‘:. The starting point is the
following formula

L[ : :
(65) Q=5 [ Ro(n)VRGn)dn
This formula transforms ([11]), Lemma 1) into
1 [ . .
(66) Q=5 / Ry (in)[PYV P_ + P2V Py ]R(in)dn.

This yields ([11], Lemma 2)

- Q =% /_ _ Ro(in)[PYV P + PPV PY|R(in)dn
+32(PE =) [ RV QR(n)an

We want to prove that the first term of the right hand side of (67) is Hilbert-
Schmidt under the condition that K € &2($) with K from (39). To this end we
proceed as after (44) and assume that we can decompose P° VPfl as the sum of
two operators

P°VP) = By + Bs,

where B; has the property that
(68) |Do|™1B; € &,

2We assume that 2 vanishes, since there are no regular magnetic fields (Klaus and Scharf [7]).
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with §; = £ and where B, fulfills
(69) Bs|Dy|™% € G».

The analogous decomposition then holds for the adjoint operator.
Thus, we want to prove that (68) and (69) already imply

“+oo
Ro(in) Bj R(in)dn € &
—o0
forj=1,2.
The claim for B; is easy. We skip the proof and concentrate on B;. We have

+o0 +oo
/ Ro(in) BaR(in)dn = / Ro(in) (B2 | Do|~*") (| Dol R(in))d.

—0
The desired Hilbert-Schmidt property follows from
(70) [[[Dol** R(in)|| < const (n)**~*.
To prove (70) we write down the resolvent equation
R(in) = Ro(in) — Ro(in)V R(in).

It is clear that

l|Do|%* Ro(in)|| < const < i >%~1 .
Thus it remains to prove that V R(in) is uniformly bounded in 5 in the operator

norm. To this end we observe the following two facts: R(in) = R(0)DR(in) and
DR(in) is uniformly bounded by the spectral theorem. This yields

[[1Do|* Ro(in)|| < const <5 >+,

The claim follows now, since V R(0) is bounded which is equivalent to Do R(0) being

bounded. The latter is clear, since we know that the domain of D is H'(R?,C*)

which follows, if we assume that there exists a 65 € (0, 1) such that [Dg| %2V € G,
All in all, we have proved

Theorem 5. Assume

(H1): Zero is in the resolvent set of D.

(H2): There exists a 6, € (0,1) such that P°V P can be decomposed as the
sum of two operators By and Bs with |D0|_‘51 B; € 65 and BQ|D0|_61 € B,.

(H3): There exists a 62 € (0,1) such that |Dg| %2V € G

Then V is regular.

We remark the following:

e That the Coulomb potential is excluded follows because of two reasons: Firstly
from the claim, since Klaus [6] showed that the Coulomb potential is not
regular. Secondly, directly from hypothesis (H3).

o In the case when & = % the condition (H2) is implied by the symmetric
condition of Section 3.

o We recall that there is a natural conjecture for the regularity of the external
fields proposed by Nenciu and Scharf. They conjecture that

/ds /ds IV p q)” E(@)E(q) —’p-q—m’c

00
E(q))? E(p) + E(q)
is necessary and sufﬁc1ent. The condition (H2) is implied by
/d3 /d3 IV p QP E@E@Q-c¢’p-q-m?
E(q))* E(p)E(q)
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As shown in [11], the last inequality is sufficient for regularity for any §; < 1
and necessary for any d; > 1. Furthermore this inequality is for §; € (%, 2)
equivalent to the more explicit inequality

Ay /ﬁ% )P <o
with @ = 2(1 — §;) (see (1.6) in [11] and Subsection 4.2 of this paper).

4.2. Non-Locality of Potentials . As mentioned already in the introduction,
our hypothesis of Theorem 3 is a further weakening of the hypothesis of Carey and
Ruijsenaars and also of Fredenhagen. Of course the question arises, if this allows
for Coulomb potentials or for other local potentials, since these are used most
frequently in physics. Our answer will be dimension dependent. We begin with a
negative result in dimension three. The two dimensional case will be discussed in
the following subsection.

To focus on the reason for this fact, we first remind of a positive fact: Let us
suppose, that the external potential is purely negative. From Evans et al. [2] we
know that the Coulomb potentials of the form V = —c|x|~! satisfy the hypothesis
on Py VP, of Theorem 1 for ¢ < 2/(n/2 + 2/m). The same holds for all potentials
that can be bounded by this potential plus a constant. In other words, the claimed
negative answer cannot stem from the second quantization of the diagonal terms,
at least not, if the c is small enough.

However, the Coulomb potential is immediately excluded by the conditions of
Theorem 2 as mentioned in Subsection 4.1. In fact a much more drastic result is
true.

Theorem 6. Assume V € S'(R®), its Fourier transform a measurable function,
and the operator K defined in (39) in G, then V = 0.

Proof. As shown by Nenciu and Scharf (see (2.5) and the argument before (2.32)
in [11]), it suffices to show that the integral

(71) [ B o) V)
is finite for e = —1. Here
(72)
+oo +1 K2 k2 — k? + 4m?
Be(kl) = 271’/ dk‘Q dz 2 < (1 -2 L )
0 -1 (%\/a—l—bz—l—%\/a—bz)2Jr va? —b%2*

with @ = k% + k% + 4m? and b = 2k; k2. We remark that the integral is well defined
— with possibly infinite value — since the integrand is positive.
When € > —1, then the function B.(k;) is positive continuous and

1
lim —B.(k;) = const,

k1—0t k2
and
li k1) = t.
0 e el = cons
This was used in [11] for € close to zero. We are interested in the case that e = —1.
Our desired result follows now from the following lemma. O

Lemma 1. For any ki > 0, we have B_1(k1) = +oc.

Proof. We first observe the inequality

%(\/a+bz+\/a—bz) <+a
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by concavity of ¢ — vt on Rt. Consequently we get the lower bound
K2 LB
(3Va+bz+35vVa— bz)2Jr€ ~ (Va)te
On the other hand, we have
(1_ k% — k2 +4m2) S 1 (1_ (k2 — k2 +4m2)2)

(73)

Va2 — b222 2 a? — 222
> 1 a? —b?2% — (k3 — k? + 4m?)?
- 2 a?
201 _ 2 212 _ (2 _ 12 242

> %(b 1-2*)+a ba2 (k3 k1+4m))22(1—22)kf-k§-a_2.

Thus, finally
2 [T e [ ke

(74) Be(kl) Z 47Tk1(/_1 (]. -z )dZ)/O dez
Since v/a ~ k2 at 0o, we get that the integral becomes infinite when ¢ = —1. |

4.3. Local Potentials in Dimension Two. We would like to end with a positive
result. We observe that — although we developed all of our constructions for three
dimensions — everything except for the no-go result for local potentials goes through
also for two space dimensions. The latter, however, is dimension dependent: The
quantity corresponding to B. (ki) becomes finite for ¢ = —1. The condition for
regularity of a potential V' which Nenciu and Scharf derive becomes the analogous
condition

(75) / dp—2"_ |V (p)? < o0

R2 PT+ p| P

whereas the Hilbert-Schmidt condition for K becomes now for local potentials — as
opposed to the three dimensional case — equivalent to

(76) / dpp? |V (p)? = /R ATV (9P < oo,

Potentials of the form y(x)/|x|* with y decreasing rapidly enough at infinity and
y(0) = 1 fulfill these conditions for @ < 1/2 and o > 0.
We conclude with two remarks:

e In contrast to our construction, the hypothesis D;_ € &y of Carey and
Ruijsenaars excludes local potentials also in two dimensions.

o The difference between the two and three dimensional case reflects the general
folklore, that quantum field theories in lower dimensions can be studied more
easily perturbatively then in three dimensions.
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