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Abstract

The intersection exponent for Brownian motion is a measure of how likely Brownian motion
paths in two and three dimensions do not intersect. We consider the intersection exponent
E(N) = &a(k, \) as a function of A and show that £ has a continuous, negative second derivative.
As a consequence, we improve some estimates for the intersection exponent; in particular, we
give the first proof that the intersection exponent £3(1,1) is strictly greater than the mean field
prediction. The results here are used in a later paper to analyze the multifractal spectrum of
the harmonic measure of Brownian motion paths.
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1 Introduction
Let Bl,...,B* W', ... ,WJ, be independent Brownian motions starting at the origin in R%. Let
T! = inf{t : |B}| = "},
Si = inf{t : [Wf| = e},
and let A,, ©, be the random sets
An = BTy, T,]U--- U BT, Ty,

On = Wl[Sé’S’rlL] U---u WJ[S(J)’S’%,]

If d > 4 [10], @

while for d < 4,
lim P{A, NO, =0} =P{Ax N Oy =0} = 0.
n—o0

The intersection exponent £ = €4(k, ) is defined for d < 4 by the relation
P{A,NO, =0} ~ e,

where & means that the logarithms of both sides are asymptotic. It can be shown by subadditivity
(see e.g. [12]) that the exponent ¢ is well defined, and in fact [15, 16|, that ~ can be replaced with <
where < means that either side is bounded by a constant multiple of the other. Sometimes, ( = £/2
is defined to be the intersection exponent; it can be shown that as ¢ — oo,

P{(B[0,t]U---UB*0,#) n (W[0,t] U---UWI[0,#]) = 0} <t ¢,
If d =1, it is easy to see that

P{A, C (—,0),0, C [0,00)} P{A,NO, =0}

<
< 2P{A, C (—0,1],0, C [-1,00)}.

Both sides can easily be estimated using the “gambler’s ruin estimate” to show that
P{A,NO, =0} <e Uthn,

ie., &(j,k) = j+k. This paper will consider dimensions 2 and 3 where the values of the intersection
exponents are not known.

One of the reasons that properties of intersections of Brownian motions have been studied is
that the properties are analogous to those in a number of models in equilibrium statistical physics.
There is a critical dimension, four, above which the problem is easy and below which there are
interesting nontrivial critical exponents, in this case the intersection exponents. Methods from
(mostly, but not exclusively, nonrigorous) mathematical physics, such as renormalization group
[1, 7, 11] and conformal field theory [8] have been applied to this problem, and the problem seems
like an interesting, nontrivial problem that might be tractable, and hence is a good test problem
for these techniques.



We restrict ourselves to dimensions two and three in this paper because these are the only
dimensions in which the intersection exponent is defined and nontrivial. However, in d = 4 there is
an interesting problem if we consider the probability

P{dist(An,O,) > 1}.

For d > 4, this probability tends to a positive constant as n — oo, while for d = 4 it tends to zero.
The power of decay is given by

P{dist(A,, ©,) > 1} < (logn)~*/2,

Actually, we do not know if a proof of this fact has been written down. However, Albeverio and
Zhou [2] have given a proof in the case j = k = 1 and the analogous problem for simple random
walk for all j, k has been solved [13]. What happens in four dimensions is that the events

Up = {dist(B'[Tg, T,,), W' [Ty, T,]) > 1}
and
Vi, = {dist(B2[T}, T, WHT}, TH) > 1}

are independent up to a constant in the sense that
P(U,NV,) <xP(U,)P(V,).

This is analogous to the “mean field” property of models in statistical physics; in general, one expects
in critical phenomenon for the mean field property to hold at the critical dimension, but not below.
One of the purposes of this paper is to show rigorously that the mean field property does not hold
below the critical dimension.

There is a slightly different way of looking at the intersection exponent that will be useful for this
paper. Fix k and suppose B?,..., B* are independent Brownian motions defined on the probability
space (£2,P), again starting at the origin. Suppose B is another Brownian motion starting at the
origin, defined on the probability space (21, P1) with stopping times

T, = inf{t: |B1| = €"}.

We write (Q, P) for (Q x Q;,P x P1), so that B',..., B¥, B are independent on (Q, P). Define the
random variable Z, on {2 by
Zn = P1{B[To, Ty] N Ay = 0}.

Note that if ©,, is defined as above,
P{A, N O, =0} = E[Z]],
and hence the intersection exponent & = &;4(k, j) satisfies
E[Z)] ~ e ™.

We can define the intersection exponent ¢ = £(k, \) for any positive A > 0 by the relation E[Z}] ~
e~"¢. Tt is also well defined for A = 0 if we make the convention 0° = 0, i.e.,

P{Z, > 0} ~ ¢ ¢k:0),



For d = 3 the probability on the left hand side is one, so £3(k,0) = 0. For d = 2, this is not true;
the exponent &(k,0) is called the disconnection exponent (Z, = 0 if and only if A,, disconnects the
origin from infinity.)

Other than £3(k,0), the only value of the intersection exponent that is known rigorously is
€4(2,1) = &4(1,2) = 3 —d. Some bounds are known. For the disconnection exponent £ = &3(k,0),
we have [4, 25]

1/2r < €< 469, k=1,

1/ < €< .985, k=2.

Duplantier (see [9]) conjectured using nonrigorous conformal field theory that £2(1,0) = 1/4. The
exponent £2(2,0) is related to the Hausdorff dimension of the frontier or outer boundary of Brownian
motion; it has been proved [17] that the dimension of the frontier is given by 2—¢&5(2,0). Mandelbrot
[22] conjectured that this dimension is 4/3 and hence has conjectured that £(2,0) = 2/3. This is
consistent with numerical simulation, see e.g. [23].

For &€ = £4(1,1), the following rigorous bounds are known [4].
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The lower bounds are obtained from interpolating the exact values and bounds for £4(1,2) and
€4(1,0) using concavity as we now describe. If r > 1, then

E[Z,] <EB[Z]'/",
and by Holder’s inequality, if A = aA; + (1 —a)Ay with 0 < a < 1, then
E[Z,] < (B[Z3'])"(B[Z32) .

Hence,
§d(k7 )‘) > T_lé-d(ka T)‘)a (1)

Ea(k, A) > a&a(k, A1) + (1 — a)éa(k, A2)- (2)

The upper bound for two dimensions uses the Beurling projection theorem (see Lemma 3.2). Nonrig-
orous conformal field theory predicts that £2(1,1) = 5/4 [8, 9], and this is consistent with simulations
[5, 20]. For d = 3, there is no reason to believe that £3(1,1) is rational. Simulations [5, 19] indicate
that it is slightly less than .58.

The values of &;(k,A) for k = 2 are closely related to the harmonic measure of a Brownian
motion path, i.e., the hitting measure of another Brownian motion starting away from the path.
To see this intuitively, note that at a typical point £ = B; of a single Brownian path, there are
two independent Brownian motions starting at £ — the path of Bs for s < ¢ and the path of By
for s > t. Probabilities of starting a Brownian motion near x and avoiding the path can be seen
to be related to probabilities that another Brownian motion hits the first path near = (reverse the
time). The exact value for £4(2,1) can be obtained by studying a simple property of the harmonic
measure. One other exponent inequality which was proved using this relationship [14] is

£2(2,2) < 3.
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This is obtained by using the £2(2,1) = 2 value and a theorem of Makarov [21] about harmonic
measure of connected subsets of the plane. This theorem states that the harmonic measure is carried
on a set of Hausdorff dimension one. The results in this paper are used in [18] to establish that
the frontier of a Brownian path is multifractal; moreover, the multifractal spectrum can be derived
from £4(2, \).

In this paper, we fix d and k and consider the function &(\) = £4(k, A). By (2), € is a concave
function of A. One of the main goals of this paper is to show that £ is strictly concave. In fact we
show that for A > 0, ¢ has two continuous derivatives and

£"(\) < 0.
In particular, (1) and (2) can be replaced with
Ealk, ) > 7 ealk,TX), > 1, 3)

€k, \) > aba(k, M) + (1 — a)&q(k, A2), a € (0,1), ad + (1 —a)ra = A. (4)

As a corollary we improve three of the known inequalities for the exponent to strict inequalities:

1 1
62(1a1) >1+ Ea 63(17 1) > 5

2a 62(232) <3.

The first two of these two inequalities follow immediately from the known estimates and (3) and
(4). The third is not so immediate, and we will discuss it in the next section where we derive the
more general estimate

E(2,\) <1+A, d=2, X#1 (5)

The inequality for £3(1,1) is important. This is the first rigorous proof that the exponent does not
take on its “mean field" values of 1/2. Mean field is not a well-defined notion, but if the mean field
theory were to hold, then we would expect

P{B[0,T,] N (B'[0,T}] U B?[0,T}]) = 0}

~ P{B[0,T,] N B*[0,T.] = 0}P{B[0, T,] N B*[0,T2] = 0}.

Note that if this were to be true, then £(2) would equal 2£(1). As previously noted, the intersection
exponent is analogous to a number of critical exponents in statistical physics for which mean field
values are not taken on below the critical dimension.

We will make the following convention about constants in this paper. We will start by choosing
0 < A1 < A2 < oo and considering A € [A1, A2]. Constants c,c1,c,... and § are positive constants
that depend only on d, k, A1, A2. The value of ¢, c¢1, ¢z, 8 may change from line to line; the values of
other constants will not change.

Some of the work in the paper was completed while the author was a visitor at Ecole Normale
Supérieure. I would like to thank Wendelin Werner for useful conversations. I would also like to
thank J.-P. Eckmann and an anonymous referee for comments and corrections.



2 Main Results

In this section we give an overview of the main results of the paper. As we will see, analysis of
the intersection exponent is essentially the same as determining the large deviation behavior of the
random variable —log Z,,. It will be convenient to look at a slightly different random variable than
the Z, discussed in the first section. (In this paper we will look at a number of slightly different
versions of Z,; they all will have the same exponents.) Let u denote the unit vector in R whose
first component is 1 and let 4 denote the set

y={-tu:0<t<1},

Assume we have k Brownian motions B, ..., B¥ starting at —u defined on the probability space
(Q,P). As before we set
A, = B0, T} U--- U B*0,TH.

Suppose we have another Brownian motion By defined on (€24, P). Let

Zn, =P1{B(0, T,]Nn(FUA,) =0 | B(0,To] Ny =0}.
The conditioning is on a set of probability 0; however, it is not difficult using the theory of h-
processes (see, e.g, [6]) to make rigorous sense of this quantity. Let

1
640 =~ log B[2)).
Our first theorem, proved in Section 4, shows that &, () converges to £()), the intersection exponent
as defined in the previous section.

Theorem 2.1 For every 0 < A1 < Ao < 00, there exist 0 < c1,co < 00 such that for all n and all
>\1 S A S )‘2:
cre ™ < E[Zg‘] < e ™.

In order to make the notation more typical of that in large deviations let

\Iln = - log Zna
so that
E[e_’\q’”] = 6_6()‘)",
and 1
En(N) = —= log E[e™ 7],
n

For a fixed n, we can see by direct computation that

57’1(>‘) = %En[qln]a
"X = 1V v
n( )_ _E arn[ ﬂ]a

LB, (03] - 3B, [02]E, [T,] + 2(B,[T,)")

n

III()\)

n



where E,, and Var,, denote expectation and variance, respectively, with respect to the probability
measure Q, = Q) with density
(E[e*A‘Pn])*le*A‘I’n )

We will show in Section 8 that there exist a = a(\) and 02 = 2()) such that
, 1
€N =a+0(h),

10 = —o% +0(),
III()\) S C.

n

The uniform bound on the third derivative allows us to take the limit in the first and second
derivative and conclude

¢\ =a,
g'(\) = —o’.
While it will not be obvious from the expressions for o2()\) that it is strictly positive, we will be
able to show more directly that
Var, [¥,] = oo,
and this will imply o2()) > 0.
The way to obtain such convergence results is to analyze the measure Q,,. One of the main goals

of this paper is to show that the measures Q, converge to an invariant measure. We describe the
result here briefly; see Sections 5 and 7 for more details. Let Cy be the set of continuous functions

7v:10,8] = R,

with v(0) =0, |y(s)| =1, and 0 < |y(¢)| < 1,0 <t < s. We allow s to take on any positive value.
Given 9 = (v,---,7%) € Ck, we start Brownian motions B',..., B¥ on the unit sphere at the
endpoints of these curves. Let

Zn =P1{B(0,T,] N (0 UA,) = 0] B(0,Ty] N7 = 0}.

Here we have written 4y for the union of the images of the ’yg, and we assume that the 7y is
sufficiently nice so that the conditioning on B makes sense as an h-process (this is a very weak
assumption, and unions of Brownian paths satisfy this). If we start with any distribution pg on C(’)“,
concentrated on such nice paths, and consider the probability measure

Zp
E[Z3]

we can obtain another measure u, on Cé“. In this measure, the paths are 77 with BI[0, T3] attached,
scaled (using Brownian scaling) so that they are elements of C5. What we show is that there is a
unique measure 4 on C(’,“ that is invariant (that is, if pg = p then p, = p for all n). In fact, if we
start with any pg, then very quickly the measure on paths is very close to . In particular, we show
that for any initial uo, there is a C' = C(ug) such that

E,[Z3] = Ce ™1+ O(e™ VM),
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Let F, be the o-algebra generated by
FoU{B]:j=1,....k 0<t<Ti}.
We define ; \
™ E[Z, F
R, = lim ¢ Znsm | Fnl

m—00 Zﬁ‘ ’

and let i be the measure on paths whose density with respect to p is Ry. Then j is the invariant
measure for the Markov chain on C§ with transition density

R,Ryte™ 7).
In other words, iz gives a stationary measure. We will see that
a = Eﬂ [‘1/1],

Var[¥,,] = o?n + O(1).

Note that o2(\) > 0 implies that a()) is a strictly decreasing function of A. In particular, the
measures Qg ) for different A become singular with respect to each other. We will also write a) for

a(X). We define
ag = I;ﬁ)l aj,

ax = lim ay.
A—00

Since a is a decreasing function, these limits exist and are nonnegative.
Proposition 2.2

W 1/2, d=2,
710 d=3.

Proof. The Beurling projection theorem (see Lemma 3.2) implies that there is a constant ¢
such that for d = 2,

v, > - —c

n
2
Since

a(}) = En[¥n],
we see that ay > 1/2, if d = 2. In [4], it was shown that for every e > 0 there exists C, M such that

1
P{T, < (5 +en} > Ce ™™, d=2,

P{¥, <en}>Ce M d=3.
Hence,
1
N <G +egn+M, d=2,

EN) <en+ M, d=3.



This and the fact that ay = &'()) is a decreasing function give the lemma. O

In Section 9 we prove that for d = 2,
ap < 00.

For d = 3, we have no proof, but we conjecture that ay < oco.
We have a one-to-one function

a:(0,00) = (aoo, ao)-
We can invert this function and consider the inverse as a function
A (G0, a0) = (0,00).

We will write either ay) or A, depending on whether we are considering the function or its inverse.
Consider another function
b: (a0, @0) — (0, 00),

defined by saying if b = b(a), then
P{¥, <an} ~e ",

The existence of such a b will be shown in the following proposition.
Proposition 2.3 If a,, < a < ag, then
bla) = §(Xa) — ada.
Proof. By Chebyshev’s inequality, for any A > 0,
P{¥, <an} < e®"Ele "] < ce mEN A0,

Hence,
b(a) > sup&(N) — aA.
A

The supremum is taken on when &'(A\) = a, i.e., when A = A,.
Now let A = A,;. By the estimate of the variance and Chebyshev’s inequality, we see that there
exist ¢y, ¢y such that

Ele Y an—civn < U, <an+ c1v/n| > coe” (6)

Hence,
P{¥, <an} > exp{—nX —c;v/nA+an}. O

We note that we do not expect for a < ay, that
P{U, <an} < e

but rather we conjecture that
P{U, < an} < n~2et",



This would follow if we could prove the following weak form of the local central limit theorem,

1
E[e_)‘“q’"; an < ¥, <an+1] < —e ™.

Jn

This is very plausible from (6), and, in fact, central limit theorems for stationary processes can be
used to show that n='/2(¥,, — an) under the measure

E[Z3] 'Z,

approaches a nontrivial normal distribution. However, we do not know at this point how to go from
the central limit theorem to a local central limit theorem. Note that

b'(a) = & (X)X (a) — Ag — a) (a).

But &'(Aq) = a. Hence
b(a) = =X,

Proposition 2.3 is a “Legendre transform” relation. The following gives the dual relation. It follows
immediately from Proposition 2.3.

Proposition 2.4
E(A) = b(ay) + Aay.

The case k = 2 is related to the multifractal spectrum of harmonic measure of a region bounded
by a Brownian path. The multifractal spectrum F'(a) is the dimension of the set of points at which
the harmonic measure looks like an a-dimensional measure (see [18] for the appropriate definitions).
In [18] it is shown that the multifractal spectrum is given by

Fla+d—2)=2—b(a),

at least for all a with £(),) < 2. From Makarov’s theorem [21] we know that for any subset of the
plane F(1) = 1. Hence for k = 2,d = 2.
b(1) = 1.

In this case we also know that £(1) = 2, and
¢(1) =ay = 1.
Since € is strictly concave this means that for d = 2,k = 2,
EN) <14+ X#£1L

This gives (5).

Let us give a summary of the remaining chapters. Section 3 consists of preliminary lemmas that
will be used in this paper; it is recommended that this section be skipped on a first reading and
referred to as necessary. The main purpose of the next section is to derive Theorem 2.1 and some
necessary consequences for the convergence result. The basic structure of this section is similar to
that found in the corresponding sections of |15, 16, 17|; unfortunately, we cannot use directly the
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results of those papers and instead derive the necessary propositions and lemmas from scratch. The
next three sections discuss the convergence to equilibrium. The basic idea is similar to that in [15]
where an invariant distribution is given on Brownian motions starting at the origin conditioned to
have no intersection. The idea is to approximate by subMarkov chains that depend only on the last
part of the path A,. A technical complication arises in this approximation. Let 0 < m < n, and
suppose we want to approximate the random variable

Pl{B[O,TnH] N (o UAnt1) =0 B[0,Tn] N (o UA,) = @}

by a random variable that depends only on
A(man + 1) = BI[TT}wTﬁql—l] U---u Bk[TrlﬁwTrch—H]'

The error in replacing A,4+1 with A(m,n+ 1) is not too difficult to estimate using estimates derived
in Section 4. However replacing A, with A(m,n) in the conditioning is a bit tricky. Section 6 is
devoted to proving a lemma which allows for this substitution. We call it a Harnack-type inequality,
because it is similar to boundary Harnack principles (unfortunately, a region bounded by a Brownian
motion path is too rough to allow one to quote existing boundary Harnack results). Sections 5 and
7 describe and prove the main results about the invariant measure. With the invariant measure
in hand, Section 8 does the necessary moment calculations. Section 9 proves that the intersection
exponent is continuous at A = 0; this is not difficult for d = 3, but requires work for d = 2.

3 Preliminaries

We collect here a number of facts about random variables and Brownian motion that we will use.
Much of this section may be skipped in a first reading and referred to as necessary. Let B(t) denote
a Brownian motion in R? and as before let

T, = inf{t: |By| = €"}.

Let S, denote the sphere {|z| = e®}. The first lemma is essentially a version of the gambler’s ruin
estimate.

Lemma 3.1 There ezist constants c1,cy such that if 0 < e <1/2, z € S_, then
cre <PHT 1 <Tp} < cqe.

Proof. Let G(z) = log|z| if d = 2 and G(z) = |z| ! if d = 3. Apply optional sampling to the
martingale G(Bia;) where 1 =T_1 ATy. O

The next lemma gives two estimates about planar Brownian motion that we will refer to as the
Beurling estimates, see, e.g., [3, V.4].

Lemma 3.2 Suppose d = 2. There exist constants cy1,co such that the following holds. Suppose
v :[0,1] = R? is a continuous function with |y(0)| = 1,|y(1)] = e",7 > 2. Then if |y| =1,

Py{B[OaTl] N ’7[07 1] 7é (0} > c1,
PY{B[0,T;] N~[0,1] = 0} < cre™"/2.

11



The unique harmonic function in {z € R3 : |z| > 1} with boundary value 1 on the sphere of
radius 1 and boundary value 0 at infinity is f(z) = |z|~!. The next lemma follows immediately
from this.

Lemma 3.3 Ifd=3,y € S,,r >0,
PY{Ty < oo} =e".
For any § > 0 let As be the closed infinite cone

x

As={0U{zeRe: |2 —u <6}, (7)

]

where u is the unit vector whose first component is 1.

Lemma 3.4 For every § > 0, there exist a,b > 0 such that for all 0 < |z| < 1,||z| "tz — u| < §/2,
P*{B[0,Ty] C Ag} > bl (8)

Proof (sketch). Let 7 = 75 be the first time that the Brownian motion reaches SoN{y : |y —u| <
d/2}. Let ¢ = q(d) > 0 be the infimum over all z € S_1 N{y : |ey — u| < §/2} of

P*{BI0,75] C As}.
If we let p(r) = p(r,d) be the infimum of the probability on the left hand side of (8) over all
z€S_N{y: |y —u| <§/2}, then p(r) > gp(r — 1). Iterating this gives the lemma. [

The exact value a = a(d) can be calculated exactly for d = 2 using conformal mapping. It is
not so easy to calculate the value in d = 3, but we will not need it. We will use the easily verified
fact that a(d) — oo as 6 — 0. The following lemma handles the complement.

Lemma 3.5 For every 0 < 6 < 1, there exist a,b > 0 such that
P “{B[0,T,]NnAs =0} > be ™.
Moreover, a = a(6) can be chosen so that

, [ 1/2, d=2,
}5%“(5)_{0, d=3.

Proof. The existence of such an a can be proved in the same way as the previous lemma. For
d = 2, the Beurling estimate gives that a(0) = 1/2, and the limit above can be proved by conformal
mapping. For d = 3 let ¢ = ¢(d) be defined by

q=PY{B[Ty, T1] N As # 0},

It is easy to see that ¢ — 0 as § — 0; in fact, one can see that for every € > 0 we can find § = §(e)
sufficiently small such that for all z € Sy with |z — u| > ,

P?{B[0,T1] N As # 0} < e.

12



Let V,, be the event {B[Ty, T,,] N As = 0} and let ¢, = P(V,¢ | V;,_1). Note that
P{|B(T,) — nu| < en; Vi, | Vue1} < P{|B(T) —nu| < en | Vo_1} < cé,

and hence

662

P{|B(t,) —nu| <en|V,} < 1 .
—qn

Therefore,
Gns1 < e+ ce?(1—qp) L.

In particular, for all € sufficiently small we can show that g, < 2¢ implies g,4+1 < 2¢, and hence
PYB[Ty, T, N As =0} > (1 —2¢)". O

The following two lemmas can be proved in a similar way; we omit the proofs. Let —As; = {z :
—I € A(s}

Lemma 3.6 There exist c1,co such that the following hold. For every 0 < § < 1/2, let V = Vs be
the translated infinite cone

V=As+1-0u={zeR :z—(1—-08)uc A;}.
Then if z € S, |z — u| < §/2,
PT{T, < T_g B[0,T1] C V} > ;8.
Moreover, if z € S, |z — u| > 24,
P*{T, < T_5 B[0,T1] NV = 0} > ¢,6°.

Lemma 3.7 There exist c1,c2 such that the following is true. Suppose x € 83 \ Ags. Then

1
PZ{B[OaTl/AL] NAs =0;le /*B(Ty)4) +ul < %} > 6,

Pz{B[O,T1/4] NAs = 0;T/4 < To; B[T1/4,T1] C —A1/10} > c0?.
The following lemma contains standard exponential estimates for binomial and geometric ran-

dom variables. Since the proofs are short, we present them here.

Lemma 3.8 (a) If X is a binomial random variable with parameters n and p and k > 1, then

ek—l
P{X > knp} < (?)np’
P{X < klnp} < (k/k exp{% _ 1y,

(b) For every M < oo,e > 0, there exists a p > 0 such that if X1, Xo,... are independent
nonnegative integer random variables with

then
P{X| 4+ + X, >en} < M le M

13



Proof. (a) For any ¢,
E[e"] = [1+p(e" = 1)]" < (exp{e’ — 1})".
Hence if t > 0,
t
-1
P{X > knp} < eftlcan[etX] < (exp{ekt })np
e

P{X <k 'np} < e™/FE[e7X] < (e!/* exp{e™t — 1})™.

I

Letting t = log k gives the result.
(b) For any ¢ > 0,

P{Xl et X, > en} < e—tenE[et(X1+...+Xn)] < e—ten(supE[eth])n_
J

Let t = 2M /e and then choose p sufficiently small so that
E[e!*i] < min{l, M~ 1}eM. O
The following is a simple estimate of binomial coefficients.

Lemma 3.9 There ezists ¢ < oo such that for all a € (0,1/c),

n < Cafane2an
an) — ’

Proof. By Stirling’s formula, for all a < 1/2,

provided an is a positive integer.

A

n efnnn+(1/2)
(an) - c(an)an+(1/2)e—an[(1 — a)n](1—a)n+(1/2) g—(1-a)n
< ea (1 - a)_(l_a)",

Asa— 0,
(1 _ a)l—a — e(l—a) In(l-a) _ 6—a+0(a2)_

In particular, for all a sufficiently small,

(1—a)"(-% <e?0. O

We will not prove the following standard estimates which follow from concavity (A < 1) and
Minkowski’s inequality (A > 1).

Lemma 3.10 Let X,Y be random variables. If 0 < A <1,

E[YP] > B[IX]]| - E[X - Y]],
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In particular, if E[|X — Y|} < aE[| X "],
E[Y["] > (1~ a)E[X["].

If1< A< o,
E[Y] > [(BIX]')* — B]X - YA

In particular, if B|X — Y} < aB[| X|],
E[[Y]] > (1—-d*)E(X).

Hence, for every Ao > 1, there exists a C = C(Xg) such that for all a <1/2,1 < X < Ag,
E[[Y] > [1 - Ca'ME(X ).

We will now prove a series of lemmas that will be needed in Section 6. For any e € (0,1/10)
let L be the line segment with endpoints « and e*u, where again u is the unit vector whose first
component is 1, and let

R.={z €R?: |z —y| < e for some y € L}.
Let U, be the collection of subsets D of R such that
DNn{l<|z| <e'} CR,

and such that for every = € Ry, the probability that a Brownian motion starting at z hits D before
leaving the ball of radius € centered at z is at least 1/100. The second condition implies that D
fills up a reasonable fraction of R.. Let 7 = 7p be the first time that the Brownian motion hits the
set D and let p = pp = min{Ts,7}. For |z| < €3,|y| = €3, let H(z,y; D) denote the density of the
hitting measure of B(p). This is a density of a subprobability measure; in fact, if o = o3 denotes

normalized surface measure on Ss, the sphere of radius e?,

@y D) do(y) = PHr > Ts}.

The next lemma will give an estimate for H(z,y; D). Assume that D € U;|z| < e2;|y| = €3;
and y & Ro.. It is immediate from the strong Markov property that

H(z,y; D) <P*{Th, < 7} sup H(z,y;D).
2

|2|=e

Let R? denote the points in R whose first component is nonpositive. Then the Harnack principle
can be combined with the strong Markov property to conclude

H(z,y; D) > cP*{Ts < 7; B(Tz) € RL}YH (—eu;y).
The boundary Harnack principle can be used to see that for |z| < €2,

H(z,y; D) < H(2,§; D), |§| =€ |y—g| <e/2.
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Hence,
H(z,y; D) < ¢! ~"P*{|B(p) —y| < ¢/2}.

Let n(y, ) be the first time that the Brownian motion reaches the ball of radius ¢ about y. Then
it is easy to see that

aP{n(y,e/4) <7} <P*{|B(p) —y| < ¢/2} < caP*{n(y,€/2) < T}.

Let G(z,w; D) denote the Green’s function of the Brownian motion killed at time p. Then it is
standard to see that

P {n(y,e/4) <1} < P*{n(y,e/2) < 7} < e 2G(z; (1 — ee*/2)y; D).
The Green’s function satisfies G(z1, z9; D) = G(22,21; D), and hence
H(z,y; D) < e 'G((1 — ee™3/2)y, z; D).
Let 4 = (1 — ee~3/2)y. Then again using standard arguments, if |z| = €2
G(7;2; D) < P¥{T55 < p},
G(y; —€*u; D) > PY{Ty < p; B(Ty) € R }.

Combining all of the estimates in this paragraph, we see that if |z| < €2, |y| = €3, z,y & Ra, and y
is defined as above i
H(z,y; D) < ce "P*{T, < T}P¥{T5)5 < p},

H(z,y; D) > ce_le{Tz <1;B(Ty) € R¢ 1PY{T, < p; B(Ty) € R‘i}
The probabilities can be estimated in a standard fashion to give the following lemma.
Lemma 3.11 There ezist constants c1,ca such that the following is true. Suppose D € U, satisfies
DN{l<|z| <e'} CR..
Let oy = dist(z, Re), oy = dist(y, Re). Then for =,y & Ro.
crogay < H(z,y; D) < coazoy, d=2,

log a; — log e log o, — log e log ay; — log e log oy — log €

C1 SH("anaD)SC2 ’ d=3.

—loge —loge —loge —loge

We will not need the exact form of the probabilities in the previous lemma, but just the following
corollary.

Corollary 3.12 There ezists a ¢ such that the following is true. Let 0 < € < 1/5, and let D = D,
be the open region
D ={1<|z| < e*}\ Ry..

For x € D,y € D N Ss, let H(z,y) denote the density (in y, with respect to normalized surface
measure on S3) of the distribution of B(T3) given By = = and B[0,T3) C D. Then for all 1,z2 €
Dn{lz| <€}, y € S5,

H('Tla y) < CH(‘T% y)
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Now suppose we have an open region D contained in {1 < |z| < e"}. Let z1,2z9 € D and
let Y;',Y;? denote h-processes conditioned to leave D at S, starting at z1, s respectively. (This
will be conditioning with respect to a set of positive probability, so we really do not need to use
h-processes, but it is convenient to use the term anyway.)

In the analysis below, we will use the following coupling of Brownian motions.

Lemma 3.13 There erists a c such that the following is true. If z,y € B(0,e” '), there ewist
Brownian motions B', B2, defined on the same probability space (Q, P), with corresponding stopping
times T}, T2, and also stopping times 7', 72 (coupling times) such that:

P{r' < Ti1/2} >¢ P{r’< TE1/2} 26

and if 7' < Tg,

Bl =B} 0<t<Ty—71'=T5—1%

Moreover if g',h* denote the density of BY(T¢) (with respect to normalized surface measure on S),
conditioned on the events {1" < T11/2} and {1* > Ti1/2}, respectively, then

c< gi,hi <ch

Proof. We will only give the coupling rule, leaving it to the reader to verify that it satisfies the
conditions of the lemma. We will do the d = 2 case; the d = 3 case is essentially the same. Let
= (2%, 2?),y = (y',%?) and let X}, X2,Y;},Y;? be independent one dimensional Brownian motions
starting at !, z2,y', 42, respectively. Let B} = (X}, X?) for all t. Let

Pl = inf{t: Y} = X}},

and let
p? =inf{t > p' : V2 = X?}.
Then we let
(VLYR), 0<t<pl,
B = (X},Y?), p<t<p’ O
(X}, X2), p?<t<cc.

A corollary is a coupling for h-processes. Suppose D is a bounded open set and suppose h is a
positive harmonic function on D. Then the h-process killed upon hitting 0D is the process with
transition density

a(z,y) = pt(z,y; D)h(y)/W(z), =,y €D

where p;(z,y : D) is the density of usual Brownian motion killed upon hitting dD. (See [6, Chapter
10] for a detailed discussion of h-processes.) One particular case that we will use is when V' C 9D,
and h(z) is the probability that Brownian motion starting at z first hits D some place in the set
V. The following follows immediately from Lemma 3.13 .

Corollary 3.14 There exists a ¢ such that the following is true. Let h be any positive harmonic
function on the interior of B(0,e) and let z,y € B(0,e™'). There exist h-processes Y',Y?2, defined
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on the same probability space (2, P), with corresponding stopping times T}, T2, and also stopping
times 7', 7% (coupling times) such that:
P{r' <T! s} >¢ P{r°<T? )} >¢

and if Tt < T,

Vi a=Y2, 0<t<Ty—1 =T5—1"

Now let A be a closed subset of R? and let D = D, (A) be the open region
D ={|z| <"} \ A

We will assume that D is connected. Let 7 = 74 be the first hitting time of A and let h be the
harmonic function on D,
h(z) =P*{14 > T,}.

Let z,y € D. We want to define a coupling of h-processes starting at z,y, i.e., we want to define
h-processes Y,!, Y2 on the same probability space (£2,P) such that Yj = z,Y = y, and such that
with high probability

Yi(T,) = Ya(T).

Let J = J,(A) be the set of even integers m less than n such that
m 1 m
B(e™u, € ) C D.
Start by taking independent h-processes starting at z,y, say X}, X?. We let

: : 1
oy, = inf{t : X} € B(e™u, %em)}.
Let I; be the smallest integer m in J such that
O < Tpp1s O < Tinio-

Let . _ _
Y! = X, Ogtgalll.

Let
. : : 1
pr, = inf{t > ol : Y} € 0B(e™u, gemu)}.

We can use Corollary 3.14 to define Y} for
of, <t <pj
in such a way so that with probability at least c,
Yl(p%l) = Yz(pl22)'
We now start up independent h-processes, X;, X? at Yl(p%l), Y2(p121). On the event

{Y'(p1,) = Y?(0)},

18



we set
) 1 :
Ytz =X (t - p;1)7
for all ¢ until the boundary is reached. Otherwise, we set

for all ¢ until there exists an Iy, defined similarly as above. If that happens, we do the coupling
procedure again, in a way so that the conditional probability of the processes being coupled, given
that they were not already coupled is c. This defines the processes Y;!,Y;2 for 0 <t < T¢.

Let Re(m) = €™ R, = {e™w : w € R.}. Suppose for a given integer m, € < 1/10,

AN{e™? < |z| <™} € —R(m — 2), 9)

and o _
YT 1, Thpy] C{e™ 2 < 2| < €™} \ —Rye(m —2).

By the estimate in Lemma 3.11, given this information there is a positive probability that the
processes, if they have not already coupled, will couple during this time interval. Suppose we have
an € < 1/10 and a collection K of 35 integers satisfying (9). Let Y!,Y? be h-processes starting at
z,y (not necessarily independent, in fact, we will be concerned mainly with the coupled precesses),
and let p; be the probability that there exists at least 7 integers m in K with

YT 1, Tr1] € {72 <2 < ™1} \ —Ra(m - 2).
The probability that the coupling does not occur is bounded by

p1+ p2 +ce .

Note that p; depends only on Y?, so this quantity is independent of the coupling procedure used.
This coupling procedure allows us to conclude the following lemma.

Lemma 3.15 There ezist ¢, such that the following is true. Let A be a closed subset of R?, and
let
D =D,(A) ={|z| <e"}\ A.

Let z,y € DNS and let Y}, Y,? be h-processes conditioned to hit S, before hitting A. Let H'(z)
denote the density (with respect to normalized surface measure o, on S,) of Y(T!). Suppose there
erists an € > 0, and a subset K of even integers m < n such that (9) holds, and such that the
cardinality of K is at least 3j. Let p* be the probability that there exist at least j elements of K such
that

YTy 1, Tisa] N{e™ 2 < 2] < €™} N —Loe # 0.

Then
/ ' (2) — H(2)| don(2) < p' +p* + ce™.

n
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4 Intersection Exponent

In the section we will prove Theorem 2.1 and develop some of the technical results needed for the
convergence to a stationary distribution. Let us review our convention about constants. We fix k, d
and 0 < A; < Ay < oo and choose A € [A1, \z]. Constants ¢, cq,co,... are positive constants that
may depend on k, d, A1, A2, but may not depend on A. The values of ¢, ¢1, co may vary from place to
place, but the values of c3, ¢y, ... will not. We let B(z,r) denote the closed ball of radius r about =z,
and we let S, denote the circle or sphere of radius e” centered at the origin. We write S for Sy and
Sk for k-tuples of points in S. We let u = (1,0) or (1,0,0) be the unit vector with first component
1.

Let BY,...,B* B be independent Brownian motions, not all necessarily starting at the same
point. We will assume that B',..., B* are defined on the probability space (2, P) and B is defined
on the probability space (Q1,P1). We write (2, P) for (2 x Q;,P x P;). We use E,E{, and E for
expectations with respect to P, Py, and P, respectively. Define, as before, the stopping times

T/ =inf{t: |B!| = e’} = inf{t : B! € S,},
T, =inf{t: |By| =¢€¢"} =inf{t: B; € S, }.

Let F, be the o-algebra _ _
Fr=0{B;1<j <k, t<T/}.

Let A, denote the random set
Ar = Bl[oaT'rl] U---u Bk[Oan]a

and for r < s let
A(r,s) = BT}, T U---UB*TF TF.

TI S8

Note that A, is a set determined by F,-measurable random variables.
For any r > 0 and y € S, define the following F,.-measurable random variables:

Zry = PY{B[0, T;] N A, = 0},

Z'r,- = P(l){B[TOaTr] NA, = Qj} = /SZr,y do(y),

Z, = sup Zyy.
yeS
Here 0 = oy denotes the normalized surface measure on S.
Let
p(r) = ¢(r, \, k,d) = sup EX[Z},].
x€Sk ’

o(r) = d(r, A\, k,d) = /S ) EX[Z)] d"o(x),

$(r) = ¢(r, X, k, d) = sup EX[Z}].
x€Sk
If r,s > 0, then ) ) )
¢(r+s) = sup EX[ZALS] < sup Ex[Zf‘Yr)‘s],
xeSk xeSk ’
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where

Y, = sup PY{B[0, Ty, N A(r,r + 5) = 0}.
yES,

By Brownian scaling, _
EX[Y, | ] < ¢(s),

and hence B B -
¢r+s) < sup EX[E(Z)Y,) | F)] < $(r)d(s).
xcSk

By standard arguments using the subadditivity of log ¢ we can see that there is a

§= 5()‘) = f()"k’d)a

such that as r — oo,

p(r) e,
where ~ means that the logarithms of both sides are asymptotic. Moreover, ¢(r) > e~¢". The first
major goal of this section is to establish the inequality

cre” " < p(r), g(r), p(r) < cae” ¥ (10)

In order to prove (10), it suffices to show the following:

b(r) < ch(r), (11)
$(r) < cg(r), (12)

and for all 7, s,
P(r +5) > c19(r)(s). (13)

To see this, note that the first two of these equations and the trivial inequality ¢(r) < ¢(r) imply
that

$(r) = ¢(r) < ¢(r), (14)

where < means that each side is bounded by a constant times the other side. Also, (13) implies
that f(r) =log ¢(r) + logc; is a superadditive function and hence

—leimﬂzsupM

r—oo T rsoo T

bl

ie.,
p(r) < c;le "t

If will follow from one of our first lemmas (see (23)) that
$lr+1) > cp(r), Gr+1)2ch(r), ¢(r+1) > ch(r) (15)

We will assume these inequalities now and use them to derive (11) and (12). By the Harnack
inequality applied to B,

Zy < cYr,
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where

Y, =P{B[T1, ;] NA(L,r) = 0}.

By applying the Harnack inequality to B, ..., B¥, and using Brownian scaling, we can see that for
any x € Sk, 5
EX[Y})] < cf(r —1).

This gives that B 5
$(r) < ch(r — 1), (16)
and then (11) follows from (15). For (12), we first note that if A > 1

/ZA do(y >[/dea

o) = [ (s B2, doty) > [ [ B¥122,) aot ) dot) > )

Therefore, if suffices to prove (12) for A < 1. For any § > 0, let

and hence

AQES Z&) =sup{Z,, : y € S,dist(y, A,) <},
Z2 = Zg&) = sup{Z,, : y € S,dist(y, A,) > d}.

Note that Z, < Z,gl) + Zr@), and since A < 1,

22 < (ZP + (2PN
Below we will show that there exists a dy such that for all x € S¥,

EX[(Z{)] < 5é(r). (17)
This implies for some x,

_ 1_

B ((Z)Y] > 36(0).

By Harnack, there exists a set of y € § of surface measure at least ¢; such that

ZT7y Z _7‘(2) °

DN | =

(This ¢; depends on dp, but we have fixed dy.) In particular,

and hence
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To derive (17), we first assume d = 2. Let

Y, = sup PY{B[0,T;] N A(2,r) = 0},
YyESs

X, = X, 5 =supP*{B[0, 1] N A, = 0},
where the supremum is over all z € § with dist(z,A,) < d. Note that

zZ < X,Y,,
and by the Beurling estimates (Lemma 3.2), X, < ¢§'/2. Hence
EX[(Z0)Y] < e6PEX Y] < ed?¢(r — 2) < 82 g(r).

In particular for § sufficiently small,

(200 < 240,
For d = 3, let ' . . .
o =p(r) =inf{t: B € So; B’[t,T,] N B(0,1) = 0},
AT = Bl[plaTrl] U---u Bk[pkaTrk]
Let

Y, = sup PY{B[0,T;] N A(2,’l‘) =0},
YyESs

X, = X, 5 =supP?{B[0,T1] N A, = 0},

where the supremum is over all z € § with dist(z, A,) < é. One can easily check that the distribution
of Y, given
A, N B(0,e) =0,

is bounded above and below by a constant times the unconditioned distribution. Note also that

X,,Y, are independent and Zgl) < X,Y,; hence

EX[(Z{V)] < BX[XQ) BNV,

T

It is not difficult (using, say, Lemma 4.4 below as well as the transience of Brownian motion) to
show
EX[X)] < (0),

for some €(d) — 0. Also, the transience of the Brownian motion implies that with positive probability
(independent of r),

A =A2,7).
Hence, it is not difficult to see that
EXY] < eh(r —2) < eg(r).

This finishes (17) and hence we have derived (11) and (12).
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The next lemmas are important technical lemmas that make precise the notion that Brown-
ian motions conditioned not to intersect have a reasonable chance of being far apart. It will be
convenient for us to set up some notation. Let ¥ = (v}, ... ,’yk) be a k-tuple of continuous functions

[0, 57] :— R?

with |[y/ ()] = 1 and |y/(¢)| < 1 for t < b’ (we allow trivial functions with & = 0). As before, we
start independent Brownian motions Bl,..., B¥, at y1(b'),...,v*(b*), respectively, defined on the
probability space (£2,P), and let

Y =7%U Ar-
We also have another Brownian motion B defined on the probability space (21, P1). Depending on
context, we will start B at: the origin; uniformly on S, for some r < 0; or at some |z| < 1. We will
write conditioning with respect to the event

B(OaTO] NY% = 0.

In the latter two cases, this conditioning will be on a set of positive probability. In the first case, we
will mean by this conditioning that B, up through time Ty, is an h-process conditioned to not hit
0. In particular, we will assume that g is sufficiently nice so that this conditioning is well-defined.
Below we will use the shorthand expression “7yy is an h-set”, to be mean that it is sufficiently nice.
Note that for each r, 4,, appropriately scaled, is an allowable k-tuple of functions, and we can talk
of probabilities given

B(0,T,] N5, = 0.

For r > 0, we let
6, = e " min{dist(B(T}),¥,), dist(B*(T}}), B0, T}]), . . ., dist(B*(T¥), B[0, T}.])},
and let D, be the F,.-measurable random variable
De=P1{6, > €| B(0,T,] N ¥, = 0}.
Let A= Ayjip asin (7) and —A = {z: —z € A}. For s <7, let U(s,r), U(s,r) be the events

U(s,r) = {BI[TI,T)] C —A,j =1,...,k},
Ul(s,r) = {B[T,,T;] C A}.

By an initial configuration we will mean a random allowable k-tuple 7, defined on the probability
space (€, P), where the 7 is independent of the Brownian motions B,..., B¥ (except for the fact
that the Brownian motions are rotated so that they start at (b'),...,y(b*), respectively). Given
with the initial configuration will be a starting point for the process B; (either By = 0; or By starts
on S, for some s < 0.) If we assume By = 0, then we will assume that the initial configuration gives
probability one to h-sets. If the starting point is on S, then we will assume the initial configuration
gives probability one to 7y satisfying

P1{B[0,To] N5 = 0} > 0.
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When an initial configuration is given we will let F, denote the o-algebra generated by 4 and
the Brownian motions B', ..., B¥ up through times T!,... ,Tf. Let

Zy = Pl{B(O,Tr] Ny =01]B(0,Th] N = QJ},

where the conditioning is in terms of h-processes if necessary. For s < r, let

Z(s,r) = Pl{Bm,Tr] 1% = 0:0(s,r) | B(O,To] N0 = w}.

Lemma 4.1 There exist constants c1, 8 such that if the initial configuration satisfies
P{D. > ¢} =1,
then

51 1
E[Z(, )% U5 D] > ere”.

Proof. Without loss of generality, we may assume that the initial configuration is a point mass
at 7o satisfying D, > e. Cover the sphere of radius 1 by O(e~(¢=1) balls of radius €/16 centered on
the sphere. Then we can see that there must by an x such that

P1{6 > € B(Ty) € B(x,€/16) | B(0,To] N0 = 0} > ce? Le.

Without loss of generality we may assume z = u. The lemma now boils down to an estimate on
Brownian motions: see Lemmas 3.6 and 3.7. O

Lemma 4.2 There ezists a constant ¢ such that for any initial configuration

E[Z(=

AU 1) > B2,

Proof. Choose N sufficiently large so that

Let h, =1/4 for n < N and for n > N,
hn = hn 1+ 17277,
so that h, < 3/8 for all n. Let D™ = Dy—» and

E[Z(hn,1)*;U(hn, 1)]
E[(Z) ] ’

r(n) = inf

where the infimum is over all initial configurations satisfying

1

D" > —.
-2
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Note that the numerator in the infimum is increasing in h,, while the denominator is decreasing in

h,. Hence

B{Z(3,11:U(5,1)] > rBIZ1),

where r = inf, r(n). By Lemma 4.1,
E[Z(hp; 1)U (hn, 1)] > 12757, (18)
for any such configuration, and hence r(n) > 0 for each n. We will show that for n > N,
c
r(n) > (1= S)r(n—1), (19)

and hence r > 0. This will prove the lemma.
Assume n > N and we have an initial configuration with

D" >

N | =

Let D(j) = D(j,n) be the Fj5-n-measurable random variable
Pi{djo-n > 27" B(0, Tjo-»] N Yjo-n = 0},

and let 0 = 0, be the smallest positive integer j with D(j) > 1/2. Then if j < n?, on the event

N Z(hn, 1
Ekwmﬁmenﬂrﬂ=@MEkéfJWUWMHﬂT+
] —n
A _ 7\ Zhn A
E[Zhn |7:j2—n] = ZanE[(T) | 7j2—n]-
j2—n

The definition of r(n) and Brownian scaling can be used to see that on {o = j},

Z(hn, 1 Zp,
B [(M)A; Ulha,1) | fjﬂ] > r(n - 1)E[<L)* | fpn],
Z]Z_n Z]2—n
and hence 5
E[Z(hp, 1) U(hn,1);0 = 5] > r(n — DE[Z(hy,); 0 = j].
Therefore,

E[Z(hp, 1)U (hn,1);0 < %] > r(n — D)E[Z(hy) ;0 < n?). (20)
However, it is not difficult to see that there is a positive ¢ such that if D*~! < 1/2,

E[Z(27™)*; D(1) < %] <l-c

By continuing we see that this implies

2

P{o>n’} <(1-0o",
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and hence ,
E[Z(hy);0 > n?] < ce P17,

This and (18) imply that
E[Z (k)0 < 1% > (1 — 5)E[Z(ha)"],
n

which combined with (20) gives (19) and hence the lemma. O

We return to the random variable
Zyo = PUB[0,T,] N A, = 0}.
As above, let A = A9, and
Zy = PHB[0,T:] N Ay = 0; B[T,_1/2),Ty] C A},
/
Zy(s,r) = %:Z, Z!l(s,7) = %:Z
By applying Lemma 4.2 to the configuration 7,_;, we see that for r > 2, x € S*
EX[Z! (r —1,r)NU(r) | Fro1] > BX[Zy(r — 1,7)* | Fr_il, (21)

where U(r) = U(r — 1,r) is as defined above. In particular,

EX[(Z)YU(r)] 2 cBX[Z},]. (22)

Let g be the infimum over all x € S N A of the probability that a Brownian motion starting at x
reaches the sphere of radius e without hitting the sphere of radius e™1/2 or hitting the hyperplane
{y = (y',---) : y* = 0}. Then it is easy to see from the strong Markov property that

EX[Z)1 ] > ¢° ¢ EX[(Z],) U (r)].

Therefore,
EX[Z)1,] > cBX[Z},],

and hence

d(r+1) > cop(r). (23)
The same argument holds with different initial configurations so we can conclude

$(r+1) > ch(r).

Also, using (16), } }
G(r+1) > ¢(r+1) > ch(r —1) > eh(r),

which gives us (15).
One of the keys to proving (10) is (22). The other is the following lemma.
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Lemma 4.3 Let A= A5 as in (7); let

Zry = PTI‘{B[O,TT] NA, =0;B[0,T,) NnB(0,2) C A\ B(0, %)}
and let J, the event

_ . 4
Jr = {B][O,TTJ] N B(0,2) Cc —A\ B(0, g),j = 1,...,k}.

There ezists a ¢ such that if x = (z1,...,z1) € S with |zj +u| <1/10,5 =1,...,k, r>2
EX(Z},; Jr] > cE¥[Z}),].

U

Before proving this lemma, let us derive a simple consequence. Let

) 4
7, = ian?{{B[O,TT] N A, = 0; B0, T,] N B(0,2) C A\ B(0, g)},

where the infimum is over all y € Sy with |y — u| < 1/10. By the Harnack inequality, on the event
Jr, Zp > cZ,. We can therefore replace the conclusion in Lemma 4.3 with

EX(2); J,] > X2,

It is then an easy application of the strong Markov property to see that (22) and Lemma 4.3 imply
(13) and hence Theorem 2.1. Therefore we need only prove Lemma 4.3 to finish the proof of Theorem
2.1. We will use a series of lemmas to prove this lemma. The proof of the next lemma can be found
in [16, Lemma 3.4]. We state two versions of the result, but they can easily be seen to be equivalent
by Brownian scaling. We note that for d = 2 the lemma is immediate from the Beurling estimates;
however, for d = 3 some work is needed.

Lemma 4.4 Let Y.,Y; be the random variables on (Q,P):

Y.= sup PY{B[0,Ty|nB0,T}] = 0},
[B'(0)—y|<e

Y;* = sup PY{B[0,T:] N B'[0,T}] = ¢},
y€So
For every M < oo there exist b > 0 and C < oo such that for all e > 0,7 > 1,
P{Y, > "} < CM,
P{Y-T* > e—rb} < Oe—rM_

Lemma 4.5 There ezists a B such that if |z — u| < €/2,

P“’x{Bl[O,Tf] NB%0,T?] =0 | B'[0,T{] N B(0,1 —¢) = @} <é,
P“’Z{Bl[O,Tf] N B%0,TZ = 0 | (B0, T}] U B%0,TZ)) N B(0,1 —¢€) = 0, } <é.
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Proof. (sketch) We will sketch the idea in the second inequality; the first is similar
assume that B!, B? are h-processes conditioned so that

B0, T )N B(0,1 —¢) = 0.

Let . .
7y =inf{t: |B} —u| =r}.

Then if € < § < 1/4, routine estimates for this h-process can be used to show that
PU’I{BI[Oa 7_215] n B2[Oa 7_225] 7é 0 | Bl[oa 7_61] n Bz[oa T¢52] = @} 2 cC.

The lemma is obtained by iterating this estimate. O

Lemma 4.6 For any € > 0, let J. be the event
J.={B'0,T!]nB(0,1 —¢) = 0},
and let X, X, be the random variables on (Q,P),
X = PY{{B[0,T1] N B'[0,T}] = 0},
X, =P¥{B[0,T1] N B'[0,T}] = 0; B[0, T1] N B(0,1 — €) = 0}.
Then there exist constants c1,3 such that for all |z —u| < €/2,
E*(X*) < ¢1é’,
BE*(X}) < ¢ P,
E7(XMJo) < cre'P,
EZ (X} J) < cpel TP,
Proof. Let Y, be as in Lemmas 4.4, and let M = max{3X,2}. Choose b, C so that
P{Y, > et} < CeM.

Then
E*(X) < E*(Y)) < e + CeM.

. Fix e and

This gives the first inequality. For the third inequality note that the gambler’s ruin estimate (Lemma

3.1) gives P*(J.) < e. Hence,
EZ(X*; J) <EX(Y2; J) < L4 oM,
For the second inequality , write
X, =PYB[0,T.]NB(0,1 —¢) = P}V,

where

Y. = P{{B[0,Th] N B'[0,T{] =0 | B0, T1]N B(0,1 —¢) = 0},
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Then the gambler’s ruin estimate gives
E®(X}) < B (Y)),
E?[X; J] < ceBZ[Y); J.).

We then must prove ~
E* (V) < e,

Ez[ﬁ)‘ | Jo] < céP.
But this follows from Lemma 4.5 and the fact that if 0 <Y <1, then

E[Y?] < E[Y]*™. O

Lemma 4.7 There ezist c, 8 such that for all x = (z1,...,z;) € S¥,
BX(2),) < cb(r)|s1 — ul.
Proof. Note that Z,, < XY, where

X = PY{B[0,T)] N B0, T}] = 0},

YV, =Yru= P’f{B[ThTr] N (BT, TV UBHTE, TF) = 0 | B0, Ti]N A1 = @}-
By Brownian scaling, (14), and (23),
EX(Y) | F1) < ¢(r — 1) < cg(r).

By Lemma 4.6,
EX(X?) < ¢z — ul’.

Hence
B%(Z),) < BX(X*Y)) = XX B(Y} | 71)] < cler — ul’g(r). O

Lemma 4.8 For any e > 0, let Vi = Vi (€) be the event
v/ = {B7[0,T!] N B(0,1) C B(B’(0),¢)}.
There ezists a constant ¢ such that for alle >0, and j =1,...,k,

sup BX[Z) VNN VI > e p(r).

Sk; U
xXE
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Proof. Note that the gambler’s ruin estimate can be used to conclude that

PX(Vin---nV)=é.

By an argument similar to those in Lemmas 4.6 and 4.7, we can see that if x = (z1,...,z;) € S¥,
EX[Z),; Vi 0NV < elay —ulPr)el. (24)

Without loss of generality we may assume 7 > 1,e < 1/2. We will write Z for Z,,. For any j,
let
p = pi = inf{t: B] € B0,1)\ B(B(0),¢)},

o) =0l =inf{t: |Bl|=1—¢},
=1 =inf{t > p’ : |Bg| =1}
It is not difficult to show that

P*{p! <ol <1/ <Ti} >, (25)
where we emphasize that ¢ does not depend on r or e. Choose x = (z1,...,z;) € S*, which may
depend on r, such that

EX[27] = ¢(r).

By Lemma 4.7, there is a d; such that if |y; — u| < é1,

B (2] < Lg(r).
Fix such a d;. Using (25), we claim that there exists a ¢ (which may depend on §;, but we have

fixed 41) such that
P?Y|BY(t!) —u| <4 | pt <ot <7 < THY > ce

(The argument to establish the claim goes approximately as follows: with probability at least ¢
we have o! < 7! < T}; given 0! < T!, gambler’s ruin implies that with probability at least ce,
T, < T}; and given T!, < T}, there is at least a cd?~! probability that |B(r!) — u| < §;.) Hence,
using the strong Markov property on B!,

EX[Z%;p) < T]] < (1 - ce)g(r),

and hence _
EX[Z% V)] = BX(Z% p' > TJ) > ced(r).
This proves the lemma for j = 1.
To prove the result for general j, let

<]5j(7") = ¢j,e(7") = sup EX[Z)‘; VT1 NN VTJ]
xe8Sk

Suppose we have shown that .
pj—1(r) > ce’ " 1(r).

Choose x = (z1,...,z;) € S, which may depend on r, such that

¢j-1(r) = BX[Z V! N n VT,
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By (24), there exists a d; such that for |y —u| < d;,
- 1
BPLEe B 20V 0 NV < S (7).
We now define times p/, 07,77 and proceed in the same way as the j = 1 case. O

We note that from (24) we can conclude that, for all € small, the x = (z1,...,z;) € S* for
which the supremum in the conclusion of Lemma 4.8 is attained satisfies

|z; —u| > 20e. (26)
Likewise (for small €), if x = (z1,...,2x) € S¥ with |z; — u| < 5e for some j,
1
EX[Z),; V' NN VF < () sup BY[Z); VN n V)L (27)
yEeSk

We now fix an ¢y > 0 sufficiently small such that (26) and (27) hold, and such that for each
X = (.’El,...,.Tk) Gsk,
S ¢ B(z',30ep) U --- U B(z*, 30€p). (28)

Since we have fixed €y, constants ¢, c1, c2, ... may now depend on ¢p.

Lemma 4.9 Let Vi = V/(e) as in Lemma 4.8. Let
Zyp = Zipy = P’f{B[O,Tr] NA, = 0; B[0,T,] N B(0,1) C B(u,1 — 60)}.

There exists a ¢ > 0 such that for all r,

sup EX[Z) V' 0+ N VE] > eo(r),

where the supremum is over all X = (z1,...,z3) € S with |z; — u| > 20€.
Proof. We will write Z, for Z,,,. Choose x = (z1,...,2) € S*, which may depend on 7, such
that

EX[Z; V0 nVE] = q(r),

where ¢(r) is the supremum in the conclusion of Lemma 4.8 with 5 = k and € = ¢. By (26),
|z; — u| > 20€g. Let
p=inf{t: B(t) € B(0,1) \ B(u,1 —€)},

T =inf{t > p: |B(t)| = 1},
T, = inf{t > 7:B(t) € S}

Let R
Xr = PZIL{T < TT;B[T,TT] NA, = (b}

Note that



But an argument as in Lemma 4.8 can be used to show that
EX[X75 Ve 0N VF] < (1= o)g(r).

Hence R
EX(Z) — (Zy — Z:)5 Vi 0V > (1= e)g(r).

The lemma now follows, using Lemma 3.10. [

For any a > 0, let

Vi = Vi (eo,0) = {BI[0,TI] N B(0, 1) C B(B(0), e0); B[O, T] N B(u, a) = 0},
Zy = Z(a) = PY{B[0,T,] N A, = 0; B[0, T,] N B(0,1) C B(u, €);
B[0,T,] N B(B(0),a) =0, =1,...,k}.
By using Lemma 4.6, we can see that by choosing a = ag sufficiently small we have

supBX[Z); V! -+ N VE] > eo(r),

where the supremum is over all x = (z1,...,zx) € S¥ with |z; —u| > 20¢y. With this fixed ag > 0,
we can then use the Harnack inequality to conclude the following.

Corollary 4.10 Let V=V (€0,a0) be as above and for z € Sy, let

A

Zpy = Zr,z(ao) = P‘f{B[O,Tr] N A, = 0; B[0,T,] N B(0,1) C B(u, €);

B[0,T,] N B(B?(0),a0) = 0,j = 1k}

Then
supinfinf BY[Z) ; VI n---nVE] > co(r),
x Y Z ’

where the supremum is over all x = (z1,...,x;) € S* with |z —u| > 20€q; the first infimum is over
all y € 8% with |y — x| < ag/2; and the second infimum is over all z € Sy with |z — u| < ag/2.

Let A= Aj)1q as before, and let W = W (z1,..., Tk, €0,a0) be the event:
(1) B[0,T1i]N A1 = 0;
(ii) e "BUTY) — 2| < ao/2,5 = 1,....k;
(ii3) |e ' B(T1) — u| < ao/2;
(iv) BI[0,T!]1N{|z| > e(1 — €0)} C Blex;,3eeq),5 = 1,...,k;

and
(v) B[0,T1]N{|z| > e(1l —€)} C Bleu, 3eeyp).
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Lety = (y1,...,yx) € S and let B,..., B*, B start at yy, ..., y,u respectively. Then it is straight-
forward to show that there is a ¢ > 0 such that for all |27 — u| > 20e,

PW]>c.
It is then not difficult to use this estimate with Corollary 4.10, to conclude Lemma 4.3 and hence

we have (13). In particular, we may replace ¢(r) with ce ¢" in all the results above.

We now summarize some of the main results of this section in a way that we will use them.
Assume we have a random initial configuration 47 and assume we have a Brownian motion B
starting at the origin. We assume that 7, is an h-set with probability one so that conditioning given

B(0, T N7y =0,

makes sense. Let
2 =2 {BO.TIN G0 UA) =01 BO.TI 10 = 01,

and for s < r,
Z(s,r) = P1{B(0,Tr] N UA) =0 B(0,T,]N (Yo UAs) = (0}-

Note that Z, = Z;Z(s,r) and Z(s,r) < Z(s,r) where

Z(s,r) = Sélg PY{B[0,T,] N A(s,r) = 0}.
YyESs

Let ¢4 be a constant such that
o(r) < cie 5.

Then for all s <,
E[Z(s,r)" | Fs] < E[Z(s,7)* | Fs] < cae™.

Let A= Ay)0 as before. Let

U, = {A(r — %,r) c —A},

Z(r—1,r) = PI{B(OaTr] N (Yo UA) =0;B[T, (1/2),7] CA|BO, 1] N (o UA—1) = @}-

Then we have proved the following.

Corollary 4.11 There exists a constant cs such that for any initial configuration and every r > 1,
E[Z(r— 1,7\ U, | Fra] > aEBZ(r — 1,7 | Fr).

Moreover for all s > r,

E[Z('r - 1,5))\ | -7:7'—1] > CSC_E(S_T)E[Z(T — 1,7‘)>‘ | .T"r_1].
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We note that

E[Z(r—1,s) | Fro1] < E[Z(r—1,7)Z(r,s)* | Fr_1]
= E[E[Z(r— 1,r)*Z(r,s)* | F] | Fri]
< cqe —&(s— T)E[Z('r' — 1,7‘)>‘ | Fr—1],

so the inequality goes in both directions. We will often restrict ourselves to initial configurations
such that
cze S < B[Z)N < cye . (29)

This will not be a big restriction. If a given configuration 7y does not satisfy the lower bound (all
configurations satisfy the upper bound), we consider the configuration generated by 4y U A;.

Assume that our initial configuration satisfies (29). Assume 1 < s < 8,0 < m < n — s, and
consider the measure Q,, on ) whose density is

E[Z)1Z).
Note that Q, depends on A and the initial configuration. By (29) we know that
E[Z)] 1Z) = e 7).
Assume V is an event that is measurable with respect to A(m, m + s) and let
p(V) =supP(V | Fpn).

Then we have shown that
E[Z);V | Fn] < cZpp(V)e s,

In particular,
Qu[V | Fm] < ep(V). (30)

Conversely, suppose that the event V' is measurable with respect to A(m + 1, m + s). Suppose also
that every A(m + 1,m + s) in V satisfies

A(m —+ l,m + S) C _Al/l()'

Let
p(V) =infP(V | Fn).

Then by Corollary 4.11 we can see that
E[Z5V | F] > cBlZy | Falp(V)e™ "7,

In particular,
Qu[V | Fm] > cp(V). (31)

We finish this section with some estimates that will be needed in future sections. It is well
known and easy to verify that there is a 8 such that for a > 0, m > 0,

P[T/

2 — T8 > ae®™} < e .
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Hence, if 0 <m<n-—-1,a >0,

AN

E|ZNT) | — T3 > ae®™ | fm] E[Z;}l;Z(m +1L,)NTL L — TS > ae®™ | Fr

< e tmmm)gmaB zA (32)
Similarly, if we let
Zr = Z¥(m,a) = PY{B(0,T,] N (o UA) = 0; Tpny1 — T > ae®™ | B(0,To) N 70 = 0},

then
E[(Z) | Fm) < ce 8meaB 72 (33)

The next lemma quantifies the idea that Brownian motions conditioned to not intersect are transient.

Lemma 4.12 There ezist ¢, such that the following holds. Assume s < m < r, and let JI =

J7(s,m,r) be the event _ .
JI = {BI[TI  T* N B(0,e*) # 0}.

Then if x € S*
E2[Z(m,r); J U---UJF | Fp] < crem(Mmm9)Be=(r—m,
Proof. It suffices to show that
E°[Z(m, )\ JY | Fp] < ce™ M908 r—mE,

Let

p = p(m,s) = inf{t > T} : B(t) € S,},

7 =7(m,s) = inf{t > p: B'(t) € Sp},

A = AN (m,s,r) = B'[r, T} U BYT2,T?|U--- U B¥[T*  TF,

Z' = Z'(m,s,r) = sup P{{B[0,T,]N A" = 0}.

TESH

Assume d = 3 and write J = J! for both the event and the indicator function of the event.
Then
Z(m,r)*J < Z'J.

By transience of three dimensional Brownian motion (see Lemma 3.3),
PX(J | Frm) < e (M9,
Hence, by the strong Markov property
E°[J(Z') | Fn) < ce”(m=s)e=8—m),
Now assume d = 2. Let

Y =Y(s,m) = PY{B[0,Tn] N B[Ty,, p] = 0 | B0, T;] N Ay = 0}.
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By using the Beurling projection estimate, Lemma 3.2 (using B[0,7,,] as the fixed curve and
BT}, p] as the Brownian motion), we can see that

E[Y? | Fn] < ce™Pm=s),

But,
Z(m,r) ] <YZ,

so again we get the lemma. O

Lemma 4.12 concerns the transience of B, ..., B¥. The transience of B can be proved similarly
(proof omitted):

Lemma 4.13 There exist c1, 8 such that the following holds. Let s <m <r and
Z" =27"(s,m,r) = Pl{B(O,TT]ﬂ(VOUAT) = 0; BT, T, )NB(0,€°) £ 0 | B(0, Ty ]N(FoUAR) = (Z)}.

Then for all x € S¥,
EX[(Z — Z") | Fpp] < cre™Bm=s)e=¢0r—m),
The following is an easy corollary.

Corollary 4.14 There exist c1,3 such that the following holds. Let s < r and

Z'=27'(s,r) =

Pl{B(O,TT] N H UA) =0; BTy, T,]NB(0,e™°) =0,s <m <n}| B0,To] N¥ = (Z)}.
Let K = K, be the event
K ={A(m,r)NB(0,e™ *) =0, s<m<r}.

Then for r < s°,
E[Z)‘] — E[(Z'))‘; K| < cre PseEr,

The following lemma will be needed in Section 6.

Lemma 4.15 For every € > 0, there exist s and a such that the following is true. Forj =1,...,k,
let
Jm = Jm,n,s,j = {B][TgnsaTn],s] n B(an(mil)s) 7é ®}a

and let .
X = Xs,n,j = Z Jma
m=1

where we let J,, denote either the event or its indicator function. Then for every x € S¥,

EX[Z2; X > en] < e”e™5",

sn?
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Proof. Without loss of generality we will assume j = 1. Suppose
BT, TN B(0,e™ V%) £ .
Then there exists a smallest integer ¢ > 0 such that
BI[T'r}zs’T(lm+i+1)s] N B(0, e(m—1)5) # 0,

ie.,

B Tiyss Tomigrys] N B0, €™ D%) # 0.
Let py, = pm s be the largest integer 7 > 0 such that
Bl[Tslm7 Tsl(m—|—1)] n B(Oa e(mii)s) 7é @

Then we can see that .

n

X < Z Pm-

m=0
and that pm 18 Fy(mmq1)-measurable. Let Q = Qs denote the probability given by (E[Zsn]) ™ Zsn,
Then by (30), we see that there exist ¢, 8 such that

Q[pm—H > | Tsm] < ce s,

The result can then be obtained by large deviation estimates for geometric random variables (see
Lemma 3.8(b) ), handling separately
> pm

m €Ven

me.D

m odd

and

5 Convergence to Stationarity

In this section we will describe the results on convergence to a stationary measure. We start by
setting up some notation. For r < s, let G, 5 be the set of continuous functions

v:[0,8] = RY,

with v(0) € S,,v(b) € Ss, and |y(t)| < €®, t < b. The number b can be any number, and given a
particular v € G, , we write b(y) or by for the number b such that the domain of + is [0,5]. This
is a metric space under the metric p in which p(y,%) < € if there exists a continuous bijective time
change h : [0,b()] — [0,b6(%)] with |t — h(t)| < € and |y(t) — F(h(t))| < € for all ¢ € [0,b(7)].
There is a natural one-to-one correspondence between G, and Ggs—r given by Brownian scaling.
Specifically, if v € G, s we associate ¥ € Gy s—r by

bF) = >7b(),

(t) = eTy(e”).
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We will write G, for Gy 5, and elements of G, ; will be considered equally well as elements of G, . We
let Cs = G oo,s e the set of functions 7 : [0,b] — R? with (0) = 0;(b) € Ss and |y(t)| < €, t < b.
There is a natural one-to-one correspondence between Cs and Cy given by Brownian scaling. We let
QT,S be the set of excursions from S, to S;, i.e., the set of v € G, s with |y(¢)| > e”, £ > 0. Again we
set Gy = Qo,s and note that there is a natural one-to-one correspondence between GT,S and Gs_,.

If 0 <r < s <n, we define

D, : gr,n — gs,m
‘is : gr,n — g~s,na
as follows. Let v € G, and let b = b(7). Let

T =Tg = lnf{t : ’Y(t) € SS}’

o=o0s=sup{t <b:vy(t) € Ss}.
Then set

b(@sy) =b—T1, b(®sy)=b—o,
(@s)(t) =y(t+7), 0<t<b—r,

(@s7)(t) =7(t+0), 0<t<b—o.

Alternatively, by abuse of notation, we will write

‘bS’Y = 7[7-’ b]a

&gy = 7lo, ).
(It will be convenient for us to use this notation below; it should not present any confusion.) In a
similar fashion we can define

&, :C, — gs,na
b, :C,— Gs’n.

Let {Oz;z € S} be a fixed collection of rotations with Oyu = z. (For d = 2 there is an obvious
choice; for d = 3 we will make the following arbitrary choice. We let O, be the identity and let
O_, be a rotation by 7 along the great circle parallel to the zy-plane. For other z, we let O, be
the rotation along the great circle containing u and z.) If v1 € G,,y2 € G5, we define y; @ 2 to be
the element of G, ¢ obtained by attaching 7, to the end of ;. More specifically, let v} € G, 45 be
obtained by scaling v, and let 42 = O} where the rotation O is chosen so that 1 (b(71)) = 42(0).
Then

b(y1 ®y2) = b(m) + b(72),

_J n@®), 0<t<b(m),
(n &7)tt) = { Fa(t —b(71)), bly1) <t <b(y1) + b(ys)-

Similarly, if v1 € Co,v2 € G, we define v; &2 € C,; we can, of course, consider y; @2 as an element
of Cy. We will write n-fold “additions” with the understanding that

7169"'@7”:(7169'.'@77171)@7’[1'
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Let H be the set of v € G; with v(0) = u, and let
YV =CEx HF x HF x

We write elements of ) as

(’705 M, 72, - - ')a
where
Yo = ('7(%5--- 3’7(1)0)7 '7(1)0 € C(I)Ca

o= (s smh), M €M,
We define the shift
(’?05 M, 72, - - ) — (’71’ 12,13, - - ')a

where

T =Y%Dm
(the operation @ is done separately on each of the & components). It is easy to see that this
transformation is invertible, and the inverse operation can be described easily (we omit it). We let

Yn=YBM DD,

which we will consider either as an element of C(])c or C¥. Assume that we have a probability measure
v on C(’f. We will assume that v is an h-measure. By this we mean that v is supported on curves g
that are h-sets as described in Section 4 (Here and below we will write 7y as shorthand for the set

¥%10,5(v3)] U -+~ U0, 6(7)]- )

To say that 7 is an h-set is to say that there is a well-defined measure on Cy that corresponds to
a Brownian motion B starting at the origin conditioned so that B(0,7p] Ny = 0. We extend v
to be a measure on )Y by specifying that 71,72, . .. are independent, identically distributed random
variables, independent of 7, each having the Wiener distribution on 7*. The Wiener distribution
on H* is the measure obtained by starting independent Brownian motions Bl,..., B¥ at u and
considering

(B'[0,T}],...,B*0,TF).

Let po = v. Let F,, denote the o-algebra generated by 4, and let Z, be the F,-measurable
random variable
Zyn =P1{B(0,Tn] Nyn = 0| B(0, To] N 7o = 0}

(here we are considering ¥, as an element of C¥). Let
Y, = —log(Zn/Zn—1) = —1log P1{B(0,Tp,) N7p =0 | B(0,Tp—1] N Yp—1 = 0}.
Let p, = pn(A,v) be the measure on C’; given by %, with the measure whose density with respect

tovis
Z) exp(— AZ] 1Y)
E,[Z)| Eylexp(=A 37, Y))]
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We can consider p, as a measure on C§ (an h-measure, in fact) and hence we can also consider it
as a measure on Y. Our goal is to find an invariant measure g = p(A) such that

pn(A, ) = p. (34)

Of course, it suffices to show this for n = 1.

If m < n and v is any measure on C§ or GF n,0» We write Il v for the measure on GE induced
by the projection ®_,, o. The projections are done separately on each component. In Section 7, we
will show that for every m, there exists a measure p(™ = ,u(m)()\) on Gk m,0 and positive constants
¢, 3 such that for any initial h-measure v and all n > m?,

Mot — ™| < ce™P™. (35)

Here || - || denotes variation distance, and we emphasize that the constants ¢, can be chosen
uniformly for A € [A1, A2] (and may change from line to line). This implies for all s < m,

ITLs ptr, — Hsu(m)H <ce P p>m?
If we fix s and take s < m < r, we can see (by considering Iy, for large n),
ML, — T < cefm,
We therefore have a Cauchy sequence and hence can find a limit measure i° such that

||Hs,un - /7'5“ < Ceiﬁ\/ﬁa s* < n.

We emphasize that this bound is independent of the initial distribution v. It is not difficult to see
that {#°} give a consistent family of measures. It is not difficult, using (32), to see that there is a
constant ¢ such that the expected value of b(77) under p° is less than c. Hence, this will be true in
the limit, and hence we get a measure y on C§ such that

Eﬂ[b(’yj)] <e¢, j=1,... k.

With this and the technical lemma of the next section, one can show that y is an h-measure. Given
this, it is clear that it satisfies (34).
The exponent & = £(A) satisfies
Eu(ef)‘yl) =e ¢,

Since p is invariant,

Eulexp(-A\)_Yj)] =€ ™.
j=1

Suppose [ is another measure on C(’)C such that

T — T ] < ce™PV.
Then it is not difficult, using the ideas in Lemma 4.12 and 4.13 to see that

(B — Bale )| < ce VP (36)
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Let

n

Ropn = €™ Elexp(-) YY) | Fol.
j=1

Note that
Elefe Mrttexp(—A YT Y5) | Fol

Elexp(—A327_, Yj) | Fo]

Since the convergence rate to y is independent of the initial distribution, we get by (36)

Roni1=Ropn

Roni1 = Ron[l +O(e™ V).

and hence the limit

n—oo
exists and
Ry = Rop[l + O™V, (37)

Note also that E,[Rg] = 1. Similarly, we define

n+m

Rogn = ¢™Elexp(-A ) Y)) | Fal,
j=n+1
R, = lim Ry, .

m— o0

We now define another measure ji. Let the invariant measure p be the initial distribution and
extend p to Y as above. Define i by saying that on JF,, the density of i with respect to u is

n
e exp(—\ Z Y;)R,.
j=1

We will need a slight generalization of (36) in Section 8. Suppose 0 < a1, az,a3 < 3 are integers
and 1 < mj; < mge < mg < m. Suppose again that fi is a measure on C(’f such that

T — I ] < ce PV,
Then,
[BulYo Y Vs e AT ¥m)] - B[y yeeyie e At < cemme AV (38)

This can be done in a straightforward manner. The only reason we restrict ourselves to third
moments is that all that we will need and we want the constant ¢ to be uniform. Higher moments
could be bounded similar, but the constant would depend on the particular moment.
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6 A Harnack Type Inequality
Let 0 <m <n/2< s/2 < oo, and assume we have an initial configuration 7, satisfying
E[Z)] > cze™".
(By Corollary 4.11, this is not a very restrictive assumption on 9y.) Consider the random variable
Z(n,s) = Pl{B(O,Ts] NHUAs) =0]B(0,T.] N (o UA,) = (0}.
The value of this random variable depends on the entire path

Fo U As.

The purpose of this section is to approximate Z(n, s) by a random variable Z**(n, s) that depends
only on A(n — 2m,n) U A(n, s). We start by defining

Z*(n,s) = Z*(n,s;m) = Pl{B(O,TS] N (0 U As) = 0;

B[T,,, T N B(0,e™ ™) =0| B(0,T,] N (Fo UA,) = (0}.
It is not difficult to use Lemma 4.13 to show that

E[|Z*(n,s) — Z(n, s)]"] < ce Pme 6,
Note that we can also write

Z*(n,s) = Pl{B[Tn_m,TS] NA(n —m,s) =0;

B[T,,Ts]NB(0,e" ™) =0 | B(0,T,] N (Yo UA,) = (2)}.
Also if W = W (n,m) is the event
W={ [AQn) N {z: |2 = "™} = [A(n — 2m,m) N {2 : |z] > e ™)] },
then Lemma 4.12 can be used to show that

E[Z); W] < ce Pme86—m),

On the event W,

Z*(n,s) = PI{B[Tnm, T,] N [A(n — 2m, s) U A(n, s)] = 0;
B[T,,, T N B(0,e" ™) =0| B(0,T,)N (o UA,) = @}.
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However, even on the event W, Z*(n, s) still depends on more than just /~\(n —2m,n)UA(n, s) since
the conditioning includes 4y U A,,. We will replace Z*(n, s) with

Z**(n,s) = Pl{B[Tn_m,Ts] N []\(n —2m,s) UA(n,s)] = 0;

B[T,, T;] N B(0,e" ™) =0 | B(0,T,,] NA(n —2m,n) = (2)}.
We need to have a similar estimate for, Z**(n, s),
E[Z"(n,s) — Z(n,5)]"] < coPme=tm), (39)

The purpose of this section is to prove a lemma that will establish (39).
Let Q1 = Q1(m,n) be the (random) measure on G, _,, obtained by considering

q)n—m,nB(OaTn] = B[Tn—maTm]a
where By is an h-process starting at the origin conditioned so that
B(0,T,] N (0 U A,) = 0.

This is a random measure in the sense that the measure @)1 depends on U A,,. Let Q2 = Q2(m,n)
be the measure on G;, ;,, obtained by considering

B B(0, T,

where By is an h-process starting at the origin conditioned so that
B(0,T,] N A(n — 2m,n) = 0.

We will prove the following lemma. The inequality (39) is an immediate corollary.
Lemma 6.1 There ezist ¢, 3 such that for all m < n/2 and all initial configurations with

E[Z)] > cze™ ",

E[Z;]|Q1 — Qall > ce™7™] < ce™ e,

where || - || denotes variation distance.

The proof of the lemma is somewhat complicated so we will start by making some reductions.
Without loss of generality, we will assume m = n/2, for otherwise we could let the Brownian motions
run until they reach S,_9,, and consider that as the initial configuration. We will also write 8n and
4n for n and n/2; this will only affect the constants ¢, 3. Hence we will show

E[Z3; Q1 — Qall > ce "] < ce Pre %, (40)

where QQ; = Qi(4n,8n). In this change of variables, (); has become the measure on G4, g, obtained
by considering @4y, 8, B(0, T,] under the conditionings

44



B(0,Tsn) NA(0,8n) =0, ifi=2.
Let V4 = Vi(n) be the Fg,-measurable event
Vi = {(Asn N{z] > &"}) = (A[(j — D, 8n] N {|z| > &™}), j=1,...,7}

In order for the event (V)¢ to occur, one of the Brownian motions B!, ..., B¥ must hit S(-1)n at
some time after hitting S, but before reaching Sg, for the first time. By Lemma 4.12,

E[Z3,; (V1)9] < ce Pre 8,
Hence to prove (40) it suffices to prove that
E[Z30; Q1 = Qall > ce™ 5 V] < ce™ e,
Note that on the event V7,
A0,8n) N {z: |2 > €"} = (3 U Aga) N {z: |2] > e"}.
Let
Z' = Zgp = P1{B(0,Tsn] N (Y0 U An) # 0; B[T2n, Tsn] N B(0,€") = 0 |

B(0, To] N o = 0}

By Lemma 4.13,
E[(Zsp, — Z')}] < e Pre 8,

Hence, if we let @} = Q' (4n,8n) be the measure on Gup g, obtained by considering
D4y, 80 B(0, Tgy),
where B(0,Tsy] is conditioned so that
B(0,Ts,] N (30 U Ay) = 0 and B[Th,, Tx,] N B(0,e") = 0,

then
E[Z2,; Q1 — Q|| > ce™P"] < ce=Pre8én,

for appropriately chosen ¢, . Similarly, if we let Q% = Q%(4n, 8n) be the measure on Gay, g, obtained
by considering
¢471,871.B(Oa TSn]a

where B(0,Tsy,] is conditioned so that
B(0,Ts,] N A(0,8n) = 0 and B[Tyy,, Ts,] N B(0,e™) = 0,

then
E[Z3,;11Q2 — Q5] > ce ™) < ce Fre ¥,

Hence to prove (40), it suffices to prove that

E[Z3,; | Q) — Q]| > ce " V1] < cePre ¥,
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We will assume we are on the event V4. We now let B; be an h-process conditioned to hit Sg,
before hitting

A(0,8n) U B(0,e™) = A(0,8n) U B(0, ™).
Under the conditionings used to derive the measures @, @, the process
Bt7 T2n S t S TSna

has the distribution of such an h-process. The only possible difference between @} and QY comes
in the “initial” distribution of B(T%,). For i =1,2, 2n < r < 8n, let

hi(z,7) = hi(z,r; A(0,8n) U B(0,e")),

be the density with respect to normalized surface measure on S, of the distribution of B(T}) given
these two possible conditionings. For 2n < |y| < r, let

9(y,z,r) = g(y, z,r; A0,8n) U B(0,€e")),

be the density (in z) with respect to normalized surface measure on S, of the first hitting time of
an h-process as described above, starting at y. Then for 2n < s < r < 8n,

hi(z,r) = / hi(y, 5)gr (4, 7, 7) dora(y),

where, as before, o, denotes normalized surface measure on S;. Let Y = Yj, be the Fg,-measurable
random variable

% :/ Iy (2, 4n) — ha(z, 4n)| dosn ().
S4n

Note that on the event V7,
Q1 — Q3] =Y.

Hence it suffices to prove that
E[Z3,;Y > ce P V1] < ce Pm. (41)

The technique to show that Y is small is coupling. In Section 3, we discussed coupling of h-
processes. The basic idea of the proof of (41) is simple. We give exponential estimates to show that
the number of times m between 2n and 4n that

Agn N {e™™! < |z < ™3}

is “thin” is at least some small constant times n, except for a set of exponentially small probability.
Then given that there are of order n such thin spots, two h-processes in the complement of Ag,
starting at different points on Sy, will have order n chances to couple (using an appropriate coupling)
and hence the probability of no coupling is exponentially small in nn. The rest of this section is
devoted to making this idea precise. Readers who are willing to accept that this idea can be made
precise are invited to skip to the next section!
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Recall the definition of R, from Section 3 and let R¢(m) = Rem. be a scaling of R.. Suppose
there exist €, d, ¢, 8 such that the following holds, except for an Fg,-measurable set of probability
at most ce #". There exists a set

K = K(Agn) ={l1,...,l+}, 7=1[3dn],
of integers between 2n and 4n with [; < ;41 — 5 satisfying the following. First, for all [ € K,
Agn N {z;e! ! <[z <e*?} C R(D),

Moreover, let By, Bt denote two h-process conditioned to reach S, before hitting Ag, U S,, start-
ing on Sy, with initial distributions given by hi(z,2n) and ho(z,2n) respectively, defined on the
probability space (€21,P1), with hitting times T, T}, respectively. Let

X =X, =#{l € K:B[T;_1,Ti12) N R(I) N {e!7! < |z| < €1} # 0},

X=X, =#{l€ K:B[Tj 1,Ti2) N R() N {e"! <z < et} #£0).

Then .
Pi{X >dn}+P{X >dn} < ce P,

By the coupling argument for h-processes in Section 3 (see Lemma 3.15), we can see that this will
imply that Y < ce=P™ for any Ag, not in the exceptional set. This will give the lemma.

Let €,0 be numbers to be determined later, and also let m > 6 be a positive integer to be
determined later. Let U/ = UJ(e) be the event,

(4) |BY(To) — ul < ¢/2;
(i) BT, ) C Ren{z: |2| > e~}
(43i) For every z € R, N{e < |z| < €%},

1

PH{B0,7] N BIT], T{] # 0} > —,

where n =7 = inf{t : |B; — By| = €};
(iv) |e P BI(TY) — u| < ¢/2.
Let U=U.=U'(e)N---NU¥(e) and
p(e) = FVPUU(e).

At least for e sufficiently small, p(e) > 0 and p(e) = 0 as e — 0. If x € S¥, z = (z!,...,2%),
|z7 —u| < €/2, j =1,...,k, then by the Harnack inequality (for e small),

ci1p(e) < PXU(e)] < cap(e)-
We now let U; = U;(e,m) be the event that the Brownian motions

kmk k
Bl[Tilm—l—la Tz%n—l—ﬁ]’ s ’B [T%m—l—lv Tim—|—6]7
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appropriately scaled, satisfy U. Note that
P[Ui(e,m) | Fim] < p(e)

(the factor ek(d=1) gives, up to a constant multiple, the probability that each of the k Brownian

motions is within distance €/2 of u at time 77 ;).

For n1 < na < ns, let W(n1,n2,ns) be the event
A(ng,n3) N{|z| <e™} =0,

and let ~ }
Ui =Ui(e,m) =U;NW(im +4,im + 5, (1 + 1)m).

It follows from the work in Section 4, that for any N > (i + 1)m,
E(Zy; Ui | Fim) > ce "N "™E[Z], 11 | Fimlp(e)-
If we let Q = Qu denote the measure on Q with density E[Z}]*Z3,
Qsn[Ui | Fim] > cp(e)
(see (31)). Let S = S(m,n) be the collection of integers ¢ such that
2n <im < 3n.

Let r be the cardinality of S and note that r = (n/m) + O(1). Let
G = G(e,n,m) = ZI([)})
i€S

By standard large deviation estimates for binomial random variables (see Lemma 3.8(a)), we can
find a ¢5 (independent of €,m), and positive constant o = a(€) such that

QsnlG < caple)r] < e (42)

We emphasize that c5 holds for all € sufficiently small and all m sufﬁciAently large.
Let cg = c5/8 and let V = V(e,n, m) be the collection of all subsets S of S of cardinality [cep(€)r].
Note that by Lemma 3.9, the cardinality of V is

" clcgple _CBP(G)TGQCBP(E)T.
(fpter) = et (43)

Consider a particular S eV andlet J; = Ji(e,m) be the event (in Q = Q x ),
Ji = {B[Tim-1, Tim+2] N Re(im) # 0}.

We can estimate

E[Zgn; Nics(Ji N T3))
from above as follows. Let F, be the o-algebra generated by 7o, As, and {B; : 0 < t < Ty}. Note
that if s1 < s9,

E[Zs)‘2 | Fs,] < co(so — sl)ZS)‘1 < 06—6(52—51)Z8>\1_
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Also if we let
v(e) = PY{B[0,Ts] N Re # 0},

then v(e) — 0. If i € S, we can see that
EZim 163 i 0 Ui | Fim] < cp(€)v(e)-

By combining these estimates (doing each one essentially [cgp(€)r] times), we can see that there is
a c¢7 such that ) i
E[Zg‘n; nieé’(Ji N Uz)] < C;GP(E)T675(87L7606;0(6)T)[p(e)v(e)]ctgp(e)r‘
This implies that i
QsnlM;e(Ji N U] < clerep(e)v(e)] P

(Here we have extended Qgp naturally to a measure on Q.)
For each S € V, let X R }
J(S) = J(S,e,m) = Ni(J; NU;).

Then by combining the last estimate with (43), we see that there is a c¢g such that
an[néev(z]z ﬂ 01)] S C[CSU(E)]CGP(E)T_

We now fix an e sufficiently small so that cgv(e) < 1/2; since we have fixed the €, constants may
now depend on e. We can therefore write the last inequality

QSn[nS‘ev(Ji n ﬁz)] < Ce_ﬂr.
We emphasize that this holds for all m (sufficiently large). We will now choose m.

Let

n—1
F=Fpm=> I(W(im, (i + 1)m,8n)°).
i=0
By Lemma 4.15, we can find m sufficiently large so that

1
Qsn[F > 505])(6)7‘] <ce P,
We now fix such an m. Hence, if we let

G => I(UiNW(im + 4,im + 5,8n),
i€S

we have )
Qsn[G < Sesp(e)] < ce Fr.

Note that since we have fixed m, we can write this as
.1 6n
Qsn[G < §C5p(€)] < ce P™.

This will allow us to finish the lemma, choosing the § as mentioned above to be cgp(e)m™!.
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7 Convergence Continued

In this section we continue the discussion started in Section 5 of the convergence to an equilibrium
distribution. As was discussed in that section, the derivation consists broadly of two parts: approx-
imating the distribution generated by Zf{ by the distribution of a Markov chain (more precisely, a
subMarkov chain) and determining the rate of convergence to equilibrium of that Markov chain.
We have already done most of the work necessary for the approximation. Here we will summarize
those results in a convenient way and then discuss the rate of convergence of the Markov chain.

Assume that an initial configuration 79 = (7¢,...,78) € CF is given. We assume that (with
probability one) 7 is an h-set so that there is a well-defined process B defined on (21,P;) that
corresponds to Brownian motion starting at the origin conditioned so that

B(O,To] Ny = 0.

The conditioning on B goes only through time Tj; however, we assume that B is defined for all
t € [0,00). As before, we have independent Brownian motions B!, ..., B¥ starting at the endpoints
of 4y, defined on the probability space (€2,P). For convenience, we will assume we have another
Brownian motion B starting at the origin, defined on the probability space (Q2,P2), with stopping
times T,.. We let (Q,P) = (2 x Q1 x Qz, P x Py x Py), so that all the Brownian motions on  are
independent.
As before set
A, = B0, T} U--- U B¥0,TH,

Yn =70 UAna

and for m < n,
A(man) = Bl[TrzaTrﬂ U---u Bk[TrIﬁwTrch]a

A(m,n) = B[, T} U--- U B*[o", TF],

where _ _ o
0’ =a’(m,n) =sup{t < T? : B} € Siu}-

For 0 < r < m < n, define the random variables

T — Pl{B«),Tn] (15 = 0| BIO,To] 150 = @},

Z(m,n) = Pl{B(O,Tn] NYn = 0 | B[(),Tm] N Ym = (b}a

Z(r,m,n) = Pl{B(O,Tn] N [11(7‘, m)UA(m,n)] =0 | B0, T N ym = (Z)},

Z(r,m,n) = PQ{B(O,Tn] N [A(r,m) U A(m,n)] =0 | B(0,Ty] N A(r,m) = (I)}.

Note that Z, = Z(0,n) and Z(r,n) = Z(r,m)Z(m,n). By Corollary 4.11, there exist constants
c3, ¢4 such that for all n > 1,

cse” M VEZA < B[Z) | Fi] < cae(DEZD
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In particular, if we let the initial distribution on C§ be given by 4; (rather than 7o) we would have
c3e ™ < E[Z)] < cqe ™. (44)

Without loss of generality, we will assume that our initial distribution on 7, satisfies (44), realizing
that if it does not satisfy it we can consider 7; instead.
Fix an integer m > 6, and consider Zs,, for integers m. We know that

Zomn = Z(0,2m)Z(2m,4m) --- Z(2(n — 1)m, 2nm).
Let

ZM = 7(0,2m) Z(2m, 4m) - - Z(2(n — 2)m, 2(n — 1)m) Z((2n — 3)m, 2(n — 1)m, 2nm).

2mn

It follows from Lemmas 4.12 and 4.13 that
E[| Zomn — Z |V < cePme=2mnt,
Similarly, if for s = 2,...,n — 1, we set

7z = 7(0,2m)Z(2m, 4m) - - - Z(2(i — 2)m, 2(i — 1)m) Z((2i — 3)m, 2(i — 1)m, 2im)

2mn
Z((2t — 1)m, 2im,2(i + 1)m) --- Z((2n — 3)m, 2(n — 1)m, 2nm),

we can show for each 1, 4 _
E(|Zgpp, — Zypun 1] < ce e 2.

2mn

Hence we can see by repeated application of Lemma 3.10, that for n < m?,

E[| Zomn — 252

2mn|>\] S ce—ﬂne—an.f_

We note that we have changed the values of both ¢ and 8 in this last step. If we define %

2mn 111

the same way as Zg?m except that every Z((2j — 3)m,2(j — 1)m,2jm)) is replaced with Z((2j —

3)m,2(j — 1)m,2jm)), then using Lemma 6.1 we can show that

2)
mn

Bl| Zomn — Zsp N < ce Pme 28 n < .

Let pu(m,n) be the measure induced on C5 by the weighting [E(Z3),,,.)] " Zomn, and let fi(m,n)

be the measure induced by the weighting (E[(ZQ(ir)m))‘)])*l(Zéﬁn)A Then, using (44), we see that
for n < m#,
ln(m, n) — f(m, n)|| < ce”?™.

This also will be true if we project these measures by é(n,z)m,nm or i)(n,l)mmm. The advantage of
the measure fi(m,n) is that it is produced by a Markov chain on C;(’)“’m. To be specific, let v be any

measure on g}’;’m which we consider as a measure on G* m,0- Let
7 = Zny = Po{B[0,Trn]) N Y = 0 | B0, Tp] N7 = 0}.

Then we let v be the measure induced by projecting the measure (E[Z}])~1Z* by ém,gm. To
obtain v9 we consider v; as a measure on g(’im and do the same procedure. This defines the Markov
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chain. Now suppose we start with any initial configuration -y (which need not be in éé“’m). Let
vi,i =0,...,n—2 be the measure obtained by projecting the measure fi(m,i+ 2) by &)m(i+1),m(i+2)-
Then it is easy to check that v; is obtained from v;_; by the Markov chain just described (in
particular, the distribution v; depends only on v;_1).

It is for this Markov chain that we will show that there is an invariant measure (™ on g~’,§1 such
that for any initial distribution vy on Qan,

v — ™) < ce™Pm. (45)

We emphasize that f, ¢ are independent of m. In particular, if u(m,n) is defined as in the previous
paragraph, then for any initial distribution 7y,

||V(m) - é)(271—1)771,2nm.u("nan)” < Ceiﬁma m/2 <n< m*,

Another application of Lemmas 4.12 and 4.13 shows that

||(I)(2n—(1/2))m,2nm:u(ma n) - <I)(2n—(1/2))m,2nmcI)(2n—1)m,2nm:u(ma n)” < ce ™.,

Hence

1@ /2,m™ = ®(on—(1/2))m2nmll < ce ™™, m/2 <n < mt.

This establishes (35). It remains to derive (45). }
For the remainder of this section we will investigate the Markov chain on GF. Let W = W,
denote Wiener measure on g’,gz, i.e., the measure induced by

(@0,m B0, T, . .. BomBF[0,TE]),

where B, ..., B* start at the origin (and have no other conditioning). We let Yp, Y7, ... denote the
values of the chain (so that Y; € GE)). As before, if 79 € G* let

m,0

Zom = Zam(Y0) = Pl{B[O,sz] N (3 UA(0,2m)) =0 | B0, To] N0 = (Zl}.
We will assume that the conditioning is on an event of positive probability, i.e., that
P {B0, To] N5 = 0} > 0. (46)

For the remainder of this section we will write just G for the set of 59 € GF, that satisfy (46). It is
easy to check that the Markov chain on 7y € gk is actually a Markov chain on G (assuming that
Yy € G). Let K(70,7) = Km(F0,71) be the kernel of the chain with respect to Wiener measure,
ie., if Yo = 7o,

E[Z),:Yi € V] = / K (30, 51) dW()-
\%

We will show that there exist constants ci,cs (independent of m) and bounded functions fi, fo
(depending on m) such that for all 4y,y; € G,

c1f1(30) f2(7) < K(¥0,71) < e2f1(F0) f2(71)-
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Let v, = vy 4, denote the distribution of Y;,, normalized so that p,, is a probability measure. Then
it follows [15, Lemma 4.4 that there exists a limiting measure »(™ and ¢, 8 (depending only on
c1, ¢ and hence independent of m) such that for any initial distribution on Yp,

|t — ™| < ce™Pm.
In particular, for n > m/2,
v — ™| < ce™Pm™.

Hence to derive (45) it suffices to prove (46).
Let

f1(%0) = E[Z,] = ElZn ().
By the work in Section 4 (see Corollary 4.11), we know that

f1(30) < BlZp, o] < e”""B[Z})].

In fact, if we let A = A;/19 as in Corollary 4.11 and let

Un = {Alm — 3,m) C ~A},

and
G = PI{B[O, Tu] 1 (30 U A0, m)) = 0: B[T_ (12, To] C A:

| B[0,Ty] N 70 = @},

then the corollary states that

fl (70) = E[Zm—2; Um—Z]-

Note that f; measures how easily the configuration 4y can be extended to configurations that
have a reasonable chance of being avoided. In this case the “end” of the configuration is more
important than the “beginning”. The function fs will be similar except that it will emphasize how
easy it is for y; to appear at the end of the configuration and hence will focus more on the beginning
of 4. Let

Z}y 1 9m = P1{B[o(m — 1,2m), Tp,] N A(m — 1,2m) = 0},

where, as before,
o(m—1,2m) = sup{t < Top, : B € S;—1}-

We define f> by N
F2(1) = E[(Z_1 2m) ] | Amm, 2m) = 3]

This definition is a little imprecise. By ]\(m, 2m) we mean
(&)m,QmBl[Tr}u T21m]’ ) &)m,QmBk[Trﬁa Tka])’

and we have to make precise the conditioning, which as written is conditioning on an event of
probability zero. Making sense of this conditioning is not difficult. In fact, we can describe how to get
the distribution of A(m — 1,2m) given A(m,2m) =31 = (7{,...,7¥). We will give the description
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now, leaving the verification to the reader. Start independent Brownian motions B',...,B* at
71(0),...,7¥(0) € S, i.e., at the beginning points of ;. Let V = V;,, be the event

V=AT) _<T3. ., j5=1,...,k}.

m

Note that P(V') > ¢, where c is independent of mn (recalling that we have chosen m > 6). Choose
Bl,..., B* conditioned on the event V. Then the set A(m — 1,2m) is the set

M UB'0,TL (JU---UBM0,TE ).
We will need the analogue of Lemma 4.2. The proof is essentially the same, so we will only state

the result. Let A = A1y as above and let

/! = Pl{B[a(m —1,2m), Tom] N A(m — 1,2m) = 0;

m—1,2m
Blo(m — 1,2m), Ty N {|2| < ™ 1/2)} A},

Ul = {A(m —1,2m) N{|z| < em<1/2>} c —A}.
Then there exists a constant ¢ such that for every v, € G,
E[( A1I'n—1,2m)/\; Up | 1~X(m,2m) =] >
> B(Zp-1,2m)"] | A(m, 2m) = 7).

Once we have the result, it is not hard to obtain (35). Basically we tie the ends of good extensions
of 4y to the good extensions of 7;. We omit the details.

8 Moment Calculations

In this section we do the moment calculations necessary to compute the derivatives of the intersection
exponent as a function of A\. There is nothing deep about these calculations. Suppose we had a
stationary sequence of mean zero random variables

LY LY Y,

with
G\ = o{Yy, : m < n},

such that for n > 0,
E(Y. | Go) = E(Ya)[1 + O(en)],

E(Y;} | Go) = E(Y;)[1 + O(en)],
E(Y,; | Go) = E(Y,)[1 + Olen)),

where € — 0 sufficiently quickly. Then straightforward estimates given
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Var(Yy +... 4+ Y, | Go) = o%n + O(1),
E[(Yi +-- +Ya)’ | Go] = O(n).

This is the idea behind the calculations of this section.
We will let zo be the probability measure on C§ which gives probability one to ¥o = (7, -,%)
where
y(t) =tu, 0<t<1.

This is an arbitrary choice, but we want some initial distribution that does not depend on A. This
is a nice h-set, so it makes sense to speak of Brownian motions starting at the origin conditioned
to avoid 7y. We let B!,..., B* be independent Brownian motions starting at u and define A,, as
before. As before, we define

Zn =P1{B(0,T,] N (A, U50) =0 | B(0, Tp] Ny = 0},

Z(m,n) =P1{B(0,T,,] N (A, U7) =0 | B(0,T] N (A UFo) = 0},
v, = —log Z,,
U(m,n) = —log Z(m,n).

As in Section 5, let
Yo = ‘lj(n - 1an)a

so that ¥, = Y1 +---+Y,. We define p,, (which does depend on ) as the probability measure on
Ck induced by
(7 S Bl[OaT'r}]’ T a7® Bk[OaTﬁ )7

with density
[E(Z)] ' 2.

We will actually think of u, as a measure on C(’)“. We will write E,, for expectations with respect to
tn. We emphasize that for n = 0 this measure does not depend on A, but for n > 0 it does. We
have seen that the measures u, converge to a measure = p(A). We will write E,, for expectations
with respect to u.
Let
dn(\) = Eq[Z)] = Egle *7").

Let
Rp = Hn(A) = en§¢n(A),

and

k=k(\) = nli)ngo K-

From (37) we know that
kin = K[1+ O(e PV™)].

We also set as before,
Rm,n — e(nfm)‘fE[ef)\\Il(m,n) | fm],

R, = lim R, ,.

n—oo
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Note that
Ry =Rpnll+ O(e‘ﬂvn_m)].

Let .
fa(A) = —=log ¢n(X).

T on
Then from the results of Section 4,

Fa(0) =€) +0().
By differentiating we can see that .
.ﬂb()‘) = EQn[\I}n]a
700 = -2 Qulw2] - (Qulwa)?),

209 = = Qul92] - 3(Qul T2 (Qu[a]) +2(Qu[E )P

Here Q,, = Q) represents expectations

Eqg[Xe Mn] —1_n¢ —AY,
Bl LT

Qu[X] =

We start with the first moment. Note that
n n

Qulla] = Y QulYi] = k'™ Y BolYie A+ V)],
=1 i=1

and
EO [Yie—)\(Yl—F-..—I—Yn)] — K/ifle_(i_l)gEifl[Yle_)\(le +"'+Yn—i+1)].

Also, note that .
Ei_l[Ylef)\(Yl—k...—}-Yn,H,l) | ]:-1] _ leef)\lﬁef{(nfz)Rl’n_i,

and hence '
Ei_l[Y'le—)\(Y1+~~~—|—Yn_i+1)] — E'—l[Yle_)\YIe_g(n_z)Rl,n—i]-
Hence,
Ki_
Q.lYi] = ; 1Eiq[‘1’16“’:7’\‘1!1R1,7H'+1]-

n

By the convergence results, we know that
ki1 = k[l + O(ePV9),
B [015 A Ry ] = By [1ef A Ry ][+ O(e PV,

Rip—it1=Ri[1+0(e PV ).

Hence,
Qn[yvz] = EH[\I’le‘g_)\\PlRl][l + O(e_ﬁ\/z)][l + O(e—ﬁ\/ﬁ)]
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In particular we see that
Qn[¥,] =an+ O(1),

where
a=a()) = E,[Ue AR

We can also write
a= Eﬁ[qjl]a

where [ is as defined in Section 5.
Before tackling the higher moments, it will be useful to set up some notation. Assume 1 <34 <
j < n. Define the following (which depend on \):

a(n) = By [Y1e* MR 1),
a(n;i,j) = Bu[V1Y;Y;et AR, .

We define a(c0), a(00;1),a(oc0;1,5) to the be corresponding quantities where Ry ,,—1, Rin—i, Rjn—j
is replaced by Ri, R;, R;, respectively. We also define a;(n),a;(n;i),a1(n;14,5), a;(00), ai(oo;i),
a;(00;1, j) similarly by replacing p with g;. Note that a = a(c0) and

a(o0) = Eﬁ[yle‘f*AYl]’
a(oo; i) = B[V Vet At
a(o0;i, §) = BV, Y;Y;elé A0+ +Y5)],
Suppose 1 <4 < j < m < n. Then by an argument similar to that used to derive (47),

Kji— . . .
QuYiYj] = ——aia(n—j+1;j —i+1),

n
Qu[YiY; V] = K;—:ai_l(n —m+ 1 —i+1,m—i+1).
Assume 7 > 1 and consider
ay(n;i) = B[V Vel AVt-tYR, .
By first conditioning with respect to F;_1 we can see that
ay(n;i) = By[Yy ANVl [yl R, ),
where E; represents the measure whose density with respect to E; is

Yy el DEAY1++Yi)
El [Yle(ifl)ﬁf)\(Yl ++Y271)] .

By the convergence result, we can see that

E[Yies iR, il = B Y1 MRy, ][+ O(e Vi),
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hence
ay(nyi) = a6 — Da(n — i + 1)[1 + O(e PV)).

Similarly we can show

a(n;i, j) = (i = Da(n i+ 155 — i+ D[L+ 0V,

ai(n;i,j) = a(j — 1;i)a(n — j + 1)1 + O(PVITT)].

Also,
ay(n; i) = a(o0;8)[1 + O(e™ V),

ay(n;i,5) = ay(003i,5)[1 + O(e VP,

These results also hold if a; is replaced with a.
We now tackle the second moment,

i=1 j=1
= Z[Qn[Yf] Qn[Y +2Z Z [Qn[YY
=1 =1 j=i+1

The convergence results tell us that

Qn[Y;.Q] =E, [‘ll%ef—A\IllRl] + O(e—ﬂ\ﬁ) + O(e—ﬂ\/ﬁ),

and hence
D QuY?] = nE,[T7eF IR + 0(1),
i=1
and .
D (QulY??] — QulYi]) = nfa(o0; 1) — a(00)?] + O(1).
i=1
Let .
rin= Y (Qu[YiVj] — Qu[¥i]Qn[Y]]),
j=i+1
and

o0
r="la(o0; j) — a(c0)?].
J=2
The convergence results can be used to show that
Tin < C,

and . .
Tin =T+ O(e_ﬂ‘[’) + O(e PV,
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This then implies
Qn[@i] - (Qn[\Pn])z =no” + 0(1),

where
0? = a(oo0;1) — a(c0)? + 2r.

For the third moment, we have,

nf "N =Y. Aljm)

1<i,j,k<m
where
A, j,m) = Qu(YiY¥m) — Qa(Yi)Qn(Yi¥m) — Qa(Y)Qu(Yi¥m) — Qa(Ym) Qn(YiY))
+2Qn (Y2) Qn (Y;)Qn (Yin)-
Assume that 7 < j < m. If m — 5 > §, then the convergence results tell us that

Qn(Y;Y;Ym) = Qn(Y'zYY])Qn(Ym) + O(eiﬁ\/g)a

Qn(YiYim) = Qu(Y:)Qu(Yon) + O(e™7Y?),
Qu(YjYim) = Qu(Y;)Qu(Yim) + O(e™V7).

Hence, '
A(i,j,m) < ce PVm=I,
Similarly, -
A(i’j’ m) S ce_ﬂ J_Z’
and hence

A(i, j,m) < e PVmaxim=33=),
from which it follows by a straightforward estimate that
n n n
>3 Al <en
i=1 j=1m=1

We finish this section by sketching the argument to show that o = 2(\) > 0 for every A > 0.
Let

gn()‘) = —log ¢n()\)a

where

¢n = E[Z})].

We assume the same initial condition as the previous section. Note that g, = nf, where f, is as
defined in the previous section, and let
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In the previous section we showed that
02 =o’n+ O(1).
Hence in order to prove that o2 > 0, it suffices to show that

. 2
nll)ngo o5 = 00. (50)

Define as in Section 7,

Z(r,m,n) = Pl{B[O,Tn] N [A(r,m) U A(m,n)] = 0 | B[0,T;,) N A(r,m) = (Z)}.

For a given m > 8§, let
Z2nm,m = Z(—-m,0,2m)Z(m, 2m,4m)Z(3m, 4m,6m) - -- Z((2n — 3)m, (2n — 2)m, 2nm).
It follows from the work in that section and previous sections that for n < m?,
E[Z)\n; | Zonm — Zonmm| > € 7™ Zopm] < ce™Pme2mnE,

In particular, if we let 6,2%m be the variance of — log Zgnz with respect to the probability measure

Zan,m [E[Z2nm,m]]_17

then as n — oo,
2 ~2
O9n2 ™~ Oonnyn-

Hence to prove (50), it suffices to show that
~2
G2y — OO

We will, in fact, show that there is a constant ¢ > 0 such that for all m > 4,

~2

02nm,m 2 cn.

Fix m > 4 and let
Yy = Yom = —log Z((2n — 3)m, (2n — 2)m, 2nm).

Let H = H,,, be the o-algebra generated by sets

A((2n —1)m,2nm), n=0,1,2,....

Note that Y7,Y>,... are conditionally independent, given . Now if Xi,..., X, are independent
nonnegative random variables, then it is easy to check that they are also independent with respect
to the probability measure

e—A(X1+"'+Xn)
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Hence
Var[Y1 + -+ Y, | H] = Var[Y: | H] +--- + Var[Y,, | H],

where the variance is with respect to the probability measure
72
Z2mn,m
E[Z}yn,m]
If we can show that there is a ¢ > 0 such that

Varly; | H] > ¢,

then we will have
Var[Y1 + -4+ Y, | H] > cn.

Since conditioning can only reduce the variance, this implies
Var[Y1 +--- + Y,] > cn,

which gives us the result.
To prove that Var[Y; | H| > ¢, is actually quite easy and we omit the proof. The basic idea is to
note that
Var[Y; | H] = Var[Y; | A((2i — 3)m, (2i — 2)m), A((2i — 1)m, 2im)],

and to show directly using ideas similar to those in Section 4 to show that there is some positive
variance.

9 Continuity at A =0

In this section we show that the intersection exponent () is continuous at 0. More precisely we
show that

lim £(\) =0, d=3, (51)
lim () =a, d=2, (52)

where a = qy, is the k disconnection exponent defined by
P{Z, >0} < e "%
We will also prove that for d = 2
ap < 00, (53)

where ag is as in Section 2.

The proof of (51) is straightforward. Suppose d = 3. Let § > 0 and let As be as in Section 3. It
is not difficult (see Lemma 3.5) to show that there exist r = r(d),Cy = C1(d) withr - 0asd =0
such that

P "{A,NA; =0} > Cie™™.

However (see Lemma 3.4) there exists an s = s(d), Cy = C2(d) such that

P%{B[0,T,] C As} > Che™*".
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™

In other words, with probability at least C1e™"",
Zn Z 0267'5’”.

Hence,
EY[Z)] > C1Cpe "),

and
E(N) <7+ As,

lim £(\) < 7.
Ag%f( )<r

By letting r — 0, we obtain the result.
Now let d = 2. Since E[Z)] < P{Z, > 0} we immediately see that

lim £(\) > a.
Ag%&( ) >«

If we try to adapt the d = 3 argument for d = 2, we will only be able to prove that

lim £(A) < k/2,

but it is known [24, 25] that a < k/2.
For ease we will use the same initial configuration as in Section 8, i.e., we start with 7y =

(vy-.-,7), with
y(t) =tu, 0<t<1.

In this section, we will let Q,, denote the conditional measure on {2 given no disconnection,

_ P{V;Z, > 0}
Q.(V) = P{Z >0}

We will assume n > 8, and let

Xn = Z(4,n — 4) = sup P{{B[0, Tp—4] N [30 U Ap_d] = 0}.
TESy

We have seen, see (11), (12), (15), that
E[X)] < e™™,

where the multiplicative constants may depend on A (and, in particular, have not been shown to be
uniform for all A > 0). We will show that

Qn[_ log Xn] < cn, (54)

where we use Q,[Y] to denote the expectation of Y with respect to Q,. It follows immediately that
there exists a (31 such that

1
P{X, >e "1} > iP{Zn > 0} > ce ™, (55)
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Hence for any A > 0,
E[X)] > E[X)); X, > e 1] > cem1AeTne,

Therefore,
§(>‘) <a+ IBI)H

and letting A go to zero we get (52). If b(a) is defined as in Section 2, then (55) can be rephrased as
b(a’) =, a > /31-
It also follows from (55) that for every A > 0 and every € > 0,

Al < e~ n(Brte)
lim EX; X, <e ]

T BXQ] -

From this we get that a()\) < 1, and hence we get (53). So we need only prove (54).

It will be convenient to use the complex map z — logz to convert this problem to a slightly
different problem. We denote the real and imaginary parts of a complex number by (z) and (=),
respectively. The logarithm takes the complex plane to an infinite cylinder, which can be thought
of as the complex plane with two points identified if their difference is an integer multiple of 273.
Brownian motion is invariant (up to a random time change that will not be relevant) under this
transformation (see, e.g., [3, Theorem V.1.1]). The initial configuration now is the negative real axis,
combined with all translates of this axis by integer multiples of 2mi. Brownian motions Bl ... B
are started at the origin and run until 7}, the first time B’ hits {R(2) = n}. The paths of the
Brownian motions are augmented by the 2j7i translates of the paths (j integer), and we write A,
for the path along with all its translates. The random variables Z,, X, and the measure Q, are
transformed in a natural way. Given the paths B!, ..., B* if Z, > 0, there is a unique open domain
D bounded by {R(z) = 0}, {R(z) = n} and A, such that

oD N {R(z) = 0,S(z) € (0,27)} # 0.

Take this domain D (but not its translates) and let 7 : [0,1] — C denote a continuous function with
n(0,1) C D; R(n(1)) = n; R(n(0)) = 0; I(n(0)) € (0,27). Since Z, > 0, such an 1 must exist. Note
that 7(0, 1) splits {0 < R(z) < n} into two pieces. Let dD;,dD3 be the intersection of

aDﬂ{%gﬂ?(z)gn—%}

with the “upper” and “lower” pieces, respectively. Note that dD1,3D- are independent of the 7
chosen.
For any z € D, let
dy(z) = dist(z,0D1), da2(z) = dist(z,dD2).

Let
A=A, ={z€D:4 <R(2) <n—4;di(z) =da(2)}.

Note that di(z) < 7 if z € A, and hence dist(z,0D) = di(z). For z € A, let r(z) = di(2)/8 =
da(z)/8. The open balls of radius r(z),

{B%(z,r(2)), z€ A}
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form an open cover of A; hence we can find a finite set z1,...,zx € A such that
K
AC U B°(zj,7(25))-
7j=1
From this finite set we can find a sequence, which we also denote by z1,..., 2k, such that
B°(z1,r(z1)) N{R(2) = 4} # 0,
B2z, m(z)) N {R(2) = — 4} £,
zZj € Bo(Zj_l,T(Zj_l)), j=1..., K.

(To find this sequence we use the fact that the set of points equidistant from two disjoint compact
sets is connected.) By “erasing loops” if necessary, we can find a subsequence of this sequence, which
we still denote as z1,..., 2K, such that the above three conditions hold as well as

2 & B2y r(zm)), G = m+2. (56)
Take y € {R(z) =4} N B°(21,7(21)) and start a Brownian motion B at y. Let
7 =1inf{t : By € B%(22,7(22)) U [B°(21,4r(21))]°}.
It is easy to check that there is a p > 0 such that
PI{B(7) € B°(22,7(22))} > p.
By repeating this estimate, we see that
PY{B[0,T,,_4] C UL, B°(2,4r(z))} > p¥,

and hence
—log X, < cK.

For integer m, we say that (z,y) is a 27™-approach if z € dD;,y € D3, |z —y| = 27™. Let
B,y denote the closed disk with diameter the line segment connecting z and y. Let U, = Ur(,zl )
be the maximal number N of 2™ approaches, (z1,y1),...(zn,yn) that can be chosen with 3 <
R(z;), R(y;) <n—3 and

Byy NByy; =0, 1#7.

Let
oo
U=U™=>"Upn.
m=1
By using (56) it is easy to show that
K < cU,

where K is the K of the last line of the last paragraph. We will show that there exists a constant
¢ such that
Qn(U) < cn, (57)
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which will imply (54).

If [ is an integer, we say that a 2=™ approach (z,y) is an (/,27™)-approach if z,y € A; but at
least one of z,y is not in A;_;. Let Uy, (I) denote the maximal number of (I,2~™)-approaches (z,y)
that can be chosen so that the disks B, , are disjoint. Let

Ul)=">_ Unll).

m=

[y

Note that

3

v <> o).

=1

We will show that there exists a constant ¢ such that

To do this, it suffices to show that there exist ¢, 3 such that for each m,

Qn(Um(Z)) < Ce_ﬂm-

Fix m,l and write V for Up(l). Let 7{ be the smallest ¢ > T}', such that there exists a
y € Aj—1 UB'[T}" |, ] such that |B} —y| =27™ and

Ay UBYT,, 1] U L(B;,y)

disconnects. Here L(z,y) denotes the line segment with endpoints z,y, and we say that I discon-
nects if there does not exists a continuous curve v : [0,1] — C with v(0) € {R(z) = 0,S(z) €
(0,27)}, R(y(1)) = n,v(0,1) € {0 < R(z) < n}, such that v(0,1) NT = . Let pi be the smallest ¢
greater than 7| such that |Bf — B'(r])| = 27™*1. For integer r > 1, let 7;! be the smallest t > pj_;
such that there exists a y € Aj—1 U B'[T}" ;,#] such that |B} —y| = 27! and

Ay UBYT,, 1] U L(B;,y)

disconnects; and let p} be the smallest ¢ > 7} with |Bf — B1(7})| . Let J = J! be the largest r such
that 7} < T}!, and consider the event
{J >r}.

In order for this event to occur it is necessary (although not sufficient) that: A; ; does not discon-
nect; For each s < r, no disconnection occurs between 77 and pf; no disconnection occurs between p}
and T}, ;; and finally A(l+ 1,n) does not disconnect. The first probability is bounded by ce (¢ ~1);
the last probability by ce~*™~4 (here we are really talking conditional probabilities). The Beurling
estimates say that the second probability is bounded by e=#", and the third probability by e=#™.
Hence

Qu[J'] < cePm.

Similarly, we let 72 be the smallest ¢ > Tﬁl such that there exists a y in

Ai—1 UB' T, T U BT, 1,
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such that |B? —y| = 2™™ and
Ai-1 U B0, | U B?[T} 1, ] U L(Bf, )

disconnects, and similarly as above. The only difference is that we have included Bl[Tl{l, Tll] The
random times p?, 72 as well as J2 and we show as above

Qu[J?] < cePm.
We define J3, ..., J* similarly, and hence we get
QuJt + -+ JF] < ce P,
But it is not difficult to check that
Un(l) < [J" + -+ JF],

so we have proved (57).
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