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Abstract. We calculate the period function of Lewis of the automorphic Eisenstein series
E(s,w) = 50° ¥, 00 (mw 4 1)~ for the modular group PSL(2, Z). This function
turns out to be the function B(3,s + 3)1s(z), where B(z,y) denotes the beta function
and 1, a function introduced some time ago by Zagier and given for s > 1 by the series
Vs(2) = Xpms1(mz+n)"% + 2((2s) (1 4+ z7%). The analytic extension of 1, to negative
integers s gives just the odd part of the period functions in the Eichler, Shimura, Manin
theory for the holomorphic Eisenstein forms of weight —2s + 2. We find this way an
interesting connection between holomorphic and nonholomorphic Eisenstein series on the
level of their respective period functions.
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1 The transfer operator £, and zeros of Selberg’s zeta
function

In the so called dynamical approach to Selberg’s zeta function Zg(s) for the modular
group PSL(2, Z) this function is expressed through Fredholm determinants of the transfer
operator L, of the geodesic flow on the modular surface as [M]

Zy(s) = det(1 — £,) det(1+ L,) . (1)

Thereby L, denotes the transfer operator for PSL(2, Z) which for s > 0 has the fol-
lowing representation in the Banach space B(D) of holomorphic functions on the disc
D={z€Q : |z—-1] < 3}:

L0 =3 () [F(c5) —s@] +soceszrn. @

ol \Z+ 7N zZ+n

with ((s, z) the Hurwitz zeta function. The zeros of Zg(s) hence can be related to those
complex values of s for which the analytically continued operator £, has eigenfunctions
fs € B(D) with eigenvalues A =1 or A = —1.

In [CM] we discussed these eigenfunctions for s values corresponding to the so called
trivial zeros of Zs(s), that is s = s, = —n, n € IN. It was shown in [CM], [LZ] and [Z2]
that these eigenfunctions are the period polynomials 7,_,, .,(z + 1) of the holomorphic
cusp forms ¢_gs o of weight —2s, + 2 for the group PSL(2,Z) given in the Eichler,
Shimura, Manin theory in terms of the cusp forms ¢_o,, 12(2) as [Z1]

Fosea ()= [ panra(e)(z = )P (3)

respectively the period functions p_ss y2(z + 1) of the holomorphic Eisenstein forms
G_as,+2(2) of weight —2s,, + 2

Gogspa(2) = D (mz+n)* 77, (4)
m,n#(0,0)

which are given in terms of these noncusp forms by a formula similar to the one in (3)
which however has to be regularized at infinity since these Eisenstein forms do not vanish
there [Z1].

The eigenfunctions of L, corresponding to the spectral zeros of Zs on Rs = % have
also been called period functions by J. Lewis and D. Zagier in [LZ]. They were introduced

2



by Lewis in [L] for the even Maass cusp forms ¢, which are automorphic eigenfunctions

. 2 2 .
of the Laplace Beltrami operator —Arp = —y* (2, + 86—y2) on the modular surface with
eigenvalue A\ = s(1 — s), through the transformation 7, defined as

Tooue) = [ puliv) (22 +0) " otdo. 6)

Then T;¢5(z + 1) is an eigenfunction of £, with eigenvalue A = 1 [CM], [L]. An extension
to odd Maass cusp forms has been given in [LZ] where also a formula analogous to the
one in (5) can be found.

It was found in [CM] that formula (5) can also be applied to the constant Maass wave
form s = c for the modular group. In this case one determines as its period function
simply the function z~! which results just in the eigenfunction f(z) = ZJ%I of L, for s =1
with eigenvalue A = 1.

There still remain to be determined the eigenfunctions ¢, of £, with eigenvalue A =1
corresponding to the spectral zeros s of Zs(s) related to the nontrivial zeros of Riemann’s
zeta function through the relation ((2s) = 0.

In [LZ] and independently in [CM] it was shown that the function t,(z) defined for
Rs > 1 as [Z2]

Yo(e) = X (mz+ ) 4 C(25) (14 77) ()
m,n>1
determines an eigenfunction of £, with eigenvalue A\ = 1 iff {(2s) = 0. For s values
corresponding to the trivial Riemann zero’s, that is s = —1, —2, —3, ---, the analytic
extension of 1, leads to the period function p 4,5 of the holomorphic Eisenstein series
G 9512 [CM] discussed earlier.

In the same paper we conjectured that the analytic extension of s to s values corre-
sponding to the nontrivial zeros ((2s) = 0 of Riemann’s function should be related to the
nonholomorphic Eisenstein series E;(z) for PSL(2, Z), since the corresponding zeros of
Selberg’s zeta function are closely related to poles of the scattering matrix for this group.



2 The period function of the nonholomorphic Eisen-
stein series

The nonholomorphic Eisenstein series E,(w) is defined for w € H = {w € @ : w =
u+ 1w, v > 0} and complex s with s > 1 as

Ey(w)=-v" > |mw+n|">. (7)
(m,n)#(0,0)

These functions are real analytic in w and define generalized eigenfunctions of the hyper-
bolic Laplace Beltrami operator —A . with eigenvalue s(1 — s) for s > 1. Es(w) can
be meromorphically continued into the entire complex s plane with only one simple pole
at s = 1 with residue 7 independent of w [Z3].

Our main result then is

Theorem The period function T,Es(z) as defined in (5) is given by
TsEs(z) = B(1/2,5 +1/2) ¢s(2) , (8)
where B denotes the beta function and s was defined in (6).

Proof The nonholomorphic Eisenstein series

Es(w)zlvs > mw+n|"*,  (w=u+iv). 9)

m,nEZ, m2+n2#£0
can be written for w = v and Rs > 1 as follows
1
E,(0+iv) = —-° > (jmvi + n|?)~*
2 m,nEZ, m2+n2#£0
- vs Z (m2v2+n2)75

m,n€Z, m2+n2#£0

= v (2 Y 42 Y Y | )

m>1,n=0 m=0,n>1 m,n>1

= v ((28) +0° ((25) +20v° ) (M’ +n®). (10)

m,n>1



Inserting this expression into definition (5) gives

TEs(2) = z/ooo [v_s C(2s) +v° ¢(2s) +20° Y (m**+n®)"° ] (22 +v*) 1 do

m,n>1
00 dv oy du
= (2 / MY L / _vaev
C(25) 2 0o (224 0v2)st! +((2s) 2 0o (224 0?)st!
. 2,2 2\ s
+22z Z/ UQS(mU =) dv, (11)
o= o (22 4 02) 11

where we used uniform convergence of the infinite series to get the last equality. With
the substitution £ = () the first two integrals above can be rewritten as

1 0 £71/2 df ol 00 5571/2 d§
T /0 0t o respectively 5 ot /0 1o (12)
However, for |arg §| < 7, Rv > Ru > 0 the following formula holds [GR] 3.194.3
o0 gu—l d¢ L
S BBy - p), 13
L Gaper =0 Bl (13)

where B(p, q) = FF(ZEE;) is the beta function. For the special values 8 =1, v = s+ 1 and

u = 1/2 respectively p = s+ 1/2 and for s > —1/2 one then gets for the integrals in

(12)

B(1/2,s+1/2)  respectively  B(s+1/2,1/2). (14)

Obviously these two beta functions are the same.
For the third integral we use the following formula [GR] 3.197.5 which holds for
larg of < 7mand —R(p+v) > RA >0

/Oox’\_l 1+z) 14+ax)!de =B\ —p—v—A)F(—p,\;—p—v;l—a),
0

with F(—p, A\; —p — v;1 — ) the hypergeometric function. Substituting p = —s, v =
—s—1,A=5+4+1/2,a=(m/nz)? and x = (v/2)? we get for Rs > —1/2

2,2 | 2\—s
gy (MV° £+ 17) _ B(s+1/2,5+1/2) _ . )
/0 v (22 + v2)5 1 dv = 5125 5 F<8,8+1/2,28+1,1—(m/nz))_

(15)



Applying relation ['(2n) = 7~Y/22271T'(n) ['(1/2 4+ n) [MOS] p.3 for n = s+ 1/2 the
function B(s+ 1/2,s+ 1/2) can be also expressed as

I(s+1/2)T'(s+1/2) T(s+1/2)T'(1/2)T(s+1/2)
Bls+1/2,5+1/2) = T(2s + 1) - /2 T(2s+ 1)
= B(1/2,s+1/2)27* (16)

Using next the identity [MOS] p.38, valid for all complex n with 7 & [1, c0)

—2a
F(a,a+1/2;2a + 1;7%) = 2% (1—|— 1 —772> (17)

for a = s and > = 1 — (22)* we get the relation
F(s,s+1/2;2s+1;1— (22)?) :< 1 )25
(2n)?s mz+n/)

Combining now (15), (16), (18) and (12), (14) with (11) shows that

>

m,n>1

1
mz+n

TsEs(z) = B(1/2,s+1/2) [ ) s+%€(28)(1+(1/2)25)] (19)

= B(1/2,5+1/2) ¢,(2) .

Notice that (18) holds for all z with z & IR. Hence also relation (19) holds true first only
in that region. Analytic continuation however then gives the final result for all z in the
entire half plane Rz > 0. Known analyticity properties of the functions B and v, [Z2]
then tell us the result to be true in the entire complex s plane, also. O

An immediate consequence of this Theorem is

Corollary 1 The eigenfunctions of the transfer operator L, with eigenvalue A = 1 for
s-values related to the nontrivial zeros of Riemann’s zeta function through ((2s) = 0 are
Just the period functions Ty Es(z+1) of the nonholomorphic Eisenstein series for the same
s-values.

It is interesting that the period functions of the Eisenstein series E(s, z) for s-values with
¢(2s) = 0 and not those on the critical line Rs = £, which are known to determine the
continuous spectrum of the Laplace Beltrami operator for PSL(2, Z) are responsible for
the spectral zeros of the Selberg function related to the scattering theory on the modular
surface.

Combining next the result of our Theorem with what is known about the analytic
extension of the function s to negative integer values of s we get
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Corollary 2 The analytic extension of the function #ﬁﬁ/?)

values is identical to the odd part of the period function p_ss.i2(z) of the holomorphic
Fisenstein form for PSL(2, Z) of weight —2s + 2.

to negative integer s

This shows that there exists a remarkable connection between nonholomorphic automor-
phic Eisenstein series E(s, z) and all the holomorphic modular Eisenstein forms of even
weight through the new period functions of Lewis and Zagier for Maass wave forms.
Our results also show that the transfer operator £, combines in a surprising way the
theory of holomorphic forms and nonholomorphic Maass wave forms through its eigen-
functions to the eigenvalues A = 1 and A = —1. These eigenfunctions are either period
polynomials or period functions associated to these forms for the group PSL(2, Z).

References

[CM] C. Chang and D. Mayer: The transfer operator approach to
Selberg’s zeta function and modular and Maass wave forms for
PSL(2,Z), to appear in IMA Volumes in Mathematics and its Ap-
plications ’"Emerging Applications of Number Theory’. 73-142pp.

[GR] I. S. Gradshteyn and .M. Ryzhik: Table of Integrals, Series and
Products, Academic Press, New York and London (1965).

(L] J. Lewis: Spaces of holomorphic functions equivalent to even
Maass cusp forms, Invent. Math. 127 271-306pp. (1997).

[LZ] J. Lewis and D. Zagier: Period functions and the Selberg zeta
function for the modular group, MPI Bonn Preprint 96/112.

M] D. Mayer: The thermodynamic formalism approach to Selberg’s
zeta function for PSL(2, Z), Bull. American Math. Soc. 25 55-
60pp. (1991).

[MOS]  W. Magnus, F. Oberhettinger and R. P. Soni: Formulas and Theo-
rems for the Special Functions of Mathematical Physics, Springer-
Verlag (1966).

[Z1] D. Zagier: Periods of modular forms and Jacobi theta functions,
Invent. Math. 104 449-465pp. (1991).



D. Zagier: Periods of modular forms, traces of Hecke operators
and multiple zeta values, in ’Studies of automorphic forms and L
functions’, RIMS Kyoto 162-170pp. (1992).

D. Zagier: Introduction to Modular Forms in ’From Number The-
ory to Physics’, eds. M. Waldschmidt et al, Springer-Verlag Berlin
(1992).



