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Abstract

Under some hypotheses (symmetry, confluence), we enumerate all
quadratically presented algebras, generated by creation and destruc-
tion operators, in which number operators exist. We show that these
are algebras of bosons, fermions, their immediate generalizations that
we call pseudo-bosons and pseudo-fermions, and also matrix algebras,
in the finitely generated case. We then recover ¢g-bosons (and pseudo-
g-bosons) by a completion operation.
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1 Introduction

In [Besl] we have proposed a new way of looking at quantization. In this
point of view, one should quantize the equations of evolution rather than
the canonical commutation relations, the latter being a consequence of the
former. In the case of a system of harmonic oscillators, which is crucial for
field theory, we want to find algebras (over C) of gq-numbers generated by
a set {a,]i € T} of so-called destruction operators, and a set {a;|i € Z} of
creation operators, conjugate to the former by an anti-involution which we
denote by J. Our algebras will then have the structure of x-algebras. It
should be stressed that the word “operator” is just a convention here, since
no Hilbert space is a priori fixed. We require the existence of elements N,
for all 7 € Z, so that the following equations hold :

[Niva’j] = —0;;a; (1)

[N, af] = bija; (2)

Since the base field C does not play a particular role, we will replace it by
any field of characteristic 0.

In this article we propose to give a detailed account of the results obtained
in our thesis, as well as a few novelties concerning Fock algebras. We will
begin in the second section by defining precisely what we call a number
operator algebra, and work out the first consequences of the definition. In the
third section we will restrict to the case of quadratically confluent number
operator algebras of finite type, and state the classification theorem. The
proof is quite long, so we will not give it here in full. However we give an
account of the demonstration, as detailed as we can, in section four. Then,
we will tackle to the problem of n.o.a. of infinite type in section five. In
particular we will show that we can do without the confluence hypothesis.
Furthermore, only four out of the six different kinds of algebras we have
found in the finite case remain. These algebras are precisely those which can
be obtained as deformations of e-Poisson algebras (a generalization of Super-
Poisson algebras about which one can consult [Sch] or [Bes2]). In section
six, we will prove a generalization of the classification theorem for n.o.a.
of infinite type, in which we let the number operators belong to a certain
completion of the algebra. We will see that this completion operation is
natural in order to have a Fock representation. In this case, we will find two
more solutions, namely ¢g-bosonic and pseudo-g-bosonic algebras.
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2 Definitions and first consequences

2.1 Definitions

We fix once for all K a field of characteristic 0, 7 an involution of K (possibly
the identity), and R the sub-field of elements of K fixed by 7. For each
cardinal number o we choose a representative set Z,. In particular if « = n
is finite, we take Z, = {1,...,n} C N. All algebras are unital K-algebras
and all morphisms preserve units. If A is an algebra, we say that it is trivial
iff A=0or A= K. We denote by Z(A) the center of A.

Definition 1 Let o be a cardinal number and B be a non-trivial K -algebra.
Let X4 = {a;li € o}, Xa+ = {af i € I}, N = {N;|i € I,} be 3 sets
indexed by T, with the a,’s and a; ’s in B, and N;’s in B/Z(B). We call
(B, X a, X 4+, N) a number operator algebra of type a if, and only if :

(i) B is generated by X4 U X+ as an algebra.

(11) One uniquely defines an anti-involution J on B by setting J(a;) = a; .

(#ii) Equations (1) and (2) are fulfilled.

Remark : N; belongs to B/Z(B) which is only a vector space, nevertheless
the commutator of such an element with any element of B is well defined, so
that equations (1) and (2) make sense.

We have to define morphisms between two n.o.a. : we will only need to do
so for n.o.a. of the same type. For a more general definition, see [Besl].

Definition 2 Let (B, X4, Xa+,N) and (B, X'y, X';+, N') be two n.o.a. of
type «, and let f be an algebra homomorphism from B to B'. We will say
that f is a morphism of n.o.a. iff :

(i) fod =Jof
(i) f(Z(B)) C Z(B')
(i) There ezists a bijection ¢ : To, — Ty such that f(N;) € Ny, + Z(B')

It is easy to see that n.o.a. of type o and their morphisms form a category.
We are now going to define another category, in which all creation (resp.
destruction) operators play a symmetric role. We will denote by S, the
group of permutations of Z, that leave all but a finite number of elements
invariant.
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Definition 3 Let B be a n.o.a. of type o and S, be the group of permutations
of Lo with finite support. We will say that B is symmetric iff for all 0 €
S, the prescription a; — a,(;) uniquely defines an automorphism o* of B
commuting with J.

Definition 4 A n.o.a. morphism f between two symmetric n.o.a. of type
will be called symmetric iff it commutes with o*, Vo € S,.

Let (B, X4, X4+, N) be a n.o.a. of type a, set X = X, U X4+, and let (X)
be the free monoid, L, = K(X) the free algebra, generated by X. Thus, the
elements of L, are of the form z = > ; \jz;, with \; € K, z; € (X). The
set of those monomials x; such that \; # 0 is called the support of z, it is a
finite set. The A;z;’s are called the terms of x.

We call 7 the canonical projection from L, onto B, and I the kernel of 7.
There is an anti-involution on L, sending a; to a; . We also denote it by J.
The symmetric group S, also acts on L, in an obvious way. If B is symmetric
this action commutes with 7. Since everything is commuting with 7 we will
often drop it from the notations : whether an element belongs to L, or B
should be clear from the context.

Definition 5 If I is generated by quadratic elements we say that B is a
quadratic n.o.a.

Remark : What we call a quadratic element is an element of degree < 2. If
it has no term of degree < 1 we call it homogeneous quadratic.

2.2 A few lemmas

We denote by Z(® the direct sum @Dicz, Z. Its elements are mappings p :
T, — Z with a finite support.

For all 7 € Z, we define the derivation N; : L, — L, on the generators
by Ni(a;) = —6;a; and N;(a]) = d;;a. The following trivial lemma has
important consequences :
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Lemma 1 If B is a n.o.a. then the diagram of vector spaces :

commutes for all i € Z,.

Corollary 1 B is a Z®-graded algebra. More precisely : L, = @ L?,
peZ(a)
B= @ B, 1= P (INLE), with L2, = {z € Ly|ViN;(z) = p(i)z}, and
pEZ(@) peZ(@)

BP = {y € Blad(N;)(y) = p(i)y}.

Corollary 2
Vi,j [Ni,N;]=0

Proof :

To prove the lemma, one just has to verify that 7=(NV;(z)) = [N;, 7 (z)] for
x € X since ad(N;) = [N;,.] is a (inner) derivation.

For the corollary 1 just notice that NM;A; = NN for all 4, j. Then according
to lemma 1 we also have [ad(NN;),ad(N;)] = 0, where [,] is the commutator
in End(B). Thus we can decompose each space into common eigenspaces for
the appropriate family of commuting endomorphisms.

Let us prove corollary 2 : Vz € B, 0 = [ad(N;),ad(N;)](z) =ad([N;, N;])(z).
Thus [N;, N;| € Z(B). But the central elements commute with all V;, thus
Z(B) C B°. Now, if N; = ¥pcz0 N?, then Vi :

[Ni, Njl = >_ p(i)N} € B°

pPEZ™

= Vi,¥p#£0, p(i)N? =0
:¢’]V} e B° :i’[ﬁh,]V}]:: 0
QED.
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Let us notice that the action of the derivations N; (resp. [Nj,.]) on a mono-
mial z is to multiply it by the integer n;(x), which is the number of a;
minus the number of a; appearing in z. We will call n;(x) the i-number of
x. More generally if 2 belongs to an eigenspace of N; or ad(V;) we call the
corresponding eigenvalue the ¢-number of x.

Lemma 2 If B is symmetric, B is a sub-representation space for S,.

Proof :
Indeed, if x € BY it is a linear combination of monomials of zero i-number
for all 4, and for 0 € S,, o(x) shares the same property. QED.

3 Number Operator Algebras of Finite Type

3.1 The confluence hypothesis

In order to state the fundamental confluence hypothesis, we have to intro-
duce some combinatorial terminology. In this subsection we do not have
to suppose yet that « is finite, although we will only need the confluence
hypothesis in this case. We refer the reader to [Berg] or [Ufn] for a more
formal presentation. In the sequel by a reduction system we mean a subset
of (X) x L,. Its elements are called reductions : they are couples (m, f) for
which we will use the notation m — f.

Given a presentation of an ideal I (i.e. a set of generators) and a monoid
ordering <, that is an ordering on (X) which is compatible with multiplica-
tion, it is sometimes possible (always if < is total) to construct a reduction
system by isolating the leading monomial of every element of the presenta-
tion. We say that this reduction system is associated with the presentation
and <. More precisely, if P is the presentation, then the reduction system
associated with P and < is Sy« = {Im(g) — _lc(lg (9—1t(g9))|g € P} where
we used the following notations : Im stands for “lea(fing monomial”, lc stands
for “leading coefficient” and 1t stands for “leading term”.

A reduction system is useful if it gives a way of rewriting elements of B so as
to give them a unique normal form. Indeed, let x = }_; \;x; be an element of
L,. If m — f is areduction of S; ., then every occurrence of m as a subword
of any monomial x; may be replaced by f without changing the class of z
modulo /. The aim is then to apply every possible reduction to x until we
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get an irreducible element, that is to say an element we cannot reduce any
further.

Of course this is not always a well defined procedure. First if we have two
reductions m — f and m’ — f’ it can happen that the same monomial z;
can be written xz; = abc with ab = m and bc = m'. In this case we say that
there is an overlap ambiguity. It is called solvable if there are two sequences
of reductions, s; and so, such that applying s; on fc and s, on af’ gives the
same result. This can be visualized on the following diagram :

abc
v N\
fe af
51\ v 52

same result

There can also be inclusion ambiguities : x; = abc with abc = m and b = m/.
It is said to be solvable if there are two sequences of reductions s; and s
such that s; applied on f is equal to s, applied on af'd.

When all ambiguities are solvable, the reduction system is said to be conflu-
ent.

There is one last problem to solve : we must be sure that the procedure
will stop, and will not give an infinite cycle of reductions. This is achieved
by using orderings satisfying the descending chain condition (DCC) : all
decreasing sequences are stationary. Among such orderings, the most natural
ones are the so-called “deglex” (degree-lexicographic) orderings, obtained
from a total ordering <, on the generators, that is : z < y iff d°(x) < d°(y)
or (d°(z) = d°(y) and z is before y in the lexicographic order induced by <j).
S0, if St < is confluent and if < is a monoid ordering satisfying DCC, Bergman’s
diamond lemma [Berg| states that the set of irreducible monomials is a K-
basis for B.

For instance take @ = 1, X4 = {a}, X4+ = {a™}, so that L; = K{a,a™),
and denote by < the deglex-ordering coming from a* < a. Let us consider
the ideal I generated by P = {a%, a*?, aa™ +a*ta—1}. The reduction system
associated to P and < is S = {a®> — 0,a*® — 0,aa* — 1 — a*a}. This
system is easily seen to be confluent. For instance the overlap ambiguity
coming from a?a™ is solvable because (a?)a™ — 0 and a(aa™) — a(1—a*a) =
a—(aa™)a — a— (1 —a*a)a = a™(a®) — 0. By Bergman’s lemma we find
that the irreducible monomials 1, a, a™ and a™a form a K-basis of B = L;/I.
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Remark : It is always possible to avoid inclusion ambiguities in a reduction
system (see [Berg| or [Besl]). In this case we say that the reduction system
is simplified. It is also always possible to assume that every element of a
confluent reduction system is of the form m — r with r irreducible. We shall
say that such a reduction system is reduced.

Definition 6 We say that a presentation P of an ideal I is quadratically
confluent (resp. deglex-quadratically confluent) iff the elements of P are at
most of degree two, and there exists a monoid ordering < satisfying DCC
(resp. a deglex ordering), such that the reduction system associated with P
and < is confluent.

3.2 The Main Theorem

We can now state our main result for n.o.a. of finite type :

Theorem 1 Let n be a finite number and let B = L,/I be a symmetric
deglex-quadratically confluent n.o.a., i.e. I satisfies the following properties

(Fo) I # Ly, I #(X).

(P) J(I) C I

(P) Yo € S, 0*(I) C I.

(P;) ANy,..., N, € B s.t. (1) and (2) hold.
(P

») 2 3 <o, a total ordering on X s.t. I admits a quadratic and confluent
reduction system, adapted to the deglex ordering coming from <.

then, if n = 1, there exists h € R\ {0} such that I is generated by one of the
following sets :

(a) {a® o™’ aat + ata— h}
(b) {aa™ —ata — h}

if n > 2 there exists h € R\ {0} such that I is generated by one of the
following sets :

(a) {a;?,af", a;0; + a;a;,af of + af of , ;07 + af a;, 0,07 + afa; — b1 < i #
j < n}

(a’) {a;?, 0", a;0; — a;a;, a;

++ + + + +
78 g ]_ajaiiazj_aa +(L(L—h|1<17é
j<n}

77 Z
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2 . .
(b) {a’i27a’j 7aiaj7ajajaaiajaaiai+ + Zk a’gak - h|1 S ? 7é.7 S n}

(b’) {ai2’a;|—2 a;a; a?’a*f a;"aj,a;"ai + > aka,‘c" — h‘l <i1#j< n}

y Wilhgy j
Yot —atat a.at — ot + ot L
(c) {a;a; — aja;,07 af —afa;, 0] —aja;, 0,07 —afa; —h|1 <i#j<n}
) ot 4 atat a.at + ot + _ ot s
(¢’) {a;a; + aja;,af af + ajal,a;a] +afa;, a0 —afa; —h|]1 <i#j<n}

Remark 1 : In the case n = 1, the hypothesis (P,) can be loosened to :
I is generated by elements of degree < 2 (Py)

It is also true for n infinite that we can replace (P;) with (P}), as we shall
see later. However, in the case 2 < n < oo there exist ideals I satisfying
(B), - .-, (P3) and (Pj) but not (Py) (see [Besl]).

Remark 2 : In the physical case, h is a positive real number and we can
set h to 1 by rescaling the units, which amounts to the symmetric n.o.a.
isomorphism ¢, : a; — Ag;, with A € R. Then, we get :

e (a) The tensor product of n Weyl algebras (boson case), A, = A; ®
LR Ala with A1 = L1/<G,U,+ — (L+(L — ].)

(a’) The graded tensor product of n Weyl algebras (we call it the
pseudo-boson case), 4, = A;®...®A;.

(b) The matrix algebra M, 1(K).

(b’) The same as above but with the creation and destruction operators
exchanged.

(c) The graded tensor product of n Clifford algebras (the fermion case),

'~

Cn=C1&...®Cy, with Cy = L /{a?,a*®, aa* + ata —1).

(¢’) The tensor product of n Clifford algebras (the pseudo-fermion case),
Cn201®®01

Particles whose creation and destruction operators form the algebra (c) or
(¢') satisfy Pauli’s exclusion principle : only one particle of that kind can be
found in a given state (a2 = a}” = 0). Particles of type (b) or (#') follow
a more extreme exclusion principle : only one such particle can be found,
regardless of its state (a,a; = o a] =0).

Remark 3 : We see that all these algebras depend only on a single constant
h. Thanks to this fact we can see them as deformations of the “classical”

algebras obtained by taking A = 0. This point of view is developed in [Bes2].
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4 Sketch of proof of theorem 1

We do not have the space here to give a full proof. Nevertheless, we will
give enough indications (we hope) for the reader to fill in the blanks. For a
detailed proof see [Besl].

4.1 A few more lemmas

The way we prove the theorem is by reducing the number of cases enough to
be able to treat them all. This is done with the help of the following lemmas.

Lemma 3 If (P;) and (P;) are satisfied, then I can be generated by a set of
elements of the form : a2 (1), af® (17), aa;a; + Baja; (2), cafaf + Bafaf
(2°), ag;af + Bafa; (8), Yicicn 0] + Yi<ci<n Bigi a; = X (4), a; (5), or
o (5). -~ -~

Proof :

Let P be a quadratic presentation of I and let r € P. We can write r =
> pezn TP, where p, seen as a function of 4, must be £24;;, or 4(d;; + ), or
0, or +6;;. Now, from lemma 1, r € I < r? € I, Vp, and the forms (1) to
(5") correspond to the different possibilities for the p’s. QED.

Lemma 4 If I fulfills (Py), (Ps), and (P}), then it must contain at least one
set of generators of type (4) with A # 0.

Proof :

Let us suppose that it is not so. Then, by lemma 3 and (Py), I must be gen-
erated by elements of the form : a;, a;f, or r, with r homogeneous quadratic.
Now by (P,), Ji such that a, or a; is not in I. Suppose a; ¢ I, and let
N; belong to 7=*(N;). By (Ps), I must contain Nja;, — a;N; + a;, whose
only term of degree one is a,. But every element of I can be written as
2 xry + 3 sjat; + Zuka,‘ka, r being homogeneous quadratic, and the sec-
ond sum running over j # ¢. This is a contradiction. QED.

Lemma 5 If B = L, /I satisfies (Py), (P3) and (Py), and if C is a commu-
tative algebra, then Homy_q4(B,C) = {0}.

Proof :
We have Vi, ¢([N;, m(a;)]) = ¢(m(a;)) = 0, since C' is commutative. For the
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same reason, ¢(m(a;)) = 0. Now, by lemma 4, I contains an element of the
form z+A.1, A # 0,  homogeneous quadratic. We have : 0 = ¢(r(z+A.1)) =
d(m(z)) + Ad(1) = 0+ A.¢(1). Therefore ¢(1) =0, and ¢ = 0. QED.

Lemma 6 Let B=L,/I, B' = L,/I', ® and 7' the respective projections.
If 3¢: B — B', an algebra homomorphism such that ¢(n(a;)) = 7'(a;) and
d(m(af)) = 7' (a), then : I fulfills (Ps) = I' fulfills (Ps).

(In particular, this is the case if I C I' and if ¢ is induced by the identity
map of L)

Proof :
It is easily verified that the images by ¢ of the number operators of B are
number operators for B'. QED.

Lemma 7 Let B = L,/I such that (Ps) holds, let B' be any algebra, and
¢ € Homp_,(B, B') such that Vi, ¢(a;) = ¢(a;"). Then, Vi ¢(a;) = 0.

2

Proof :
Set z; :== ¢(a;) = ¢(a;). On one hand [N;,q;] = —a; = [¢(N;), z;] = —z;,
and on the other hand [N}, a;'] = o) = [¢(NV;),2;] = z;. Soz; =0.  QED.

Lemma 8 Let n > 2, B = L, /I such that (P3) holds, B' any algebra, and
¢ € Homp_a4(B, B') such that Vi, j, ¢(a;) = ¢(a;) (resp. ¢(a;") = d(af)).
Then, Vi ¢(a;) = 0 (resp. ¢(a]) =0).

Proof :

Let us examine the first case, the other one being similar. Let 7 # 7 and let
z = ¢(a;) = ¢(a;). Then [N;,q;] = —a; = [¢(N;), 7] = —z, and [Ny, a;] =
0= [¢(N;),z] = 0. Thus z = 0. QED.

We now have to work out the consequences of (P). It is a bit long, but very
easy. We only state the results, leaving the details to the reader (one could
also see [Besl]).

In what follows, we suppose n > 2, V is a n dimensional vector space with
basis ey,...,e, and coordinates €i,...,€,. Let p : S, — End(V) be the
representation given by p(o)(e;) := o0.; := €,(;), let H be the hyperplane of
equation €; +...+¢€, = 0. W is the vector space W =V @&V &1, where 1 is
the trivial representation of S, of dimension 1. W bears the representation
p®pd 1. Finally, weset z;, = e, 8080, y, =0Pe; &0, and let 1 be a
non-zero vector of 1.
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Lemma 9 Let w € W, w # 0, and let O(w) be the linear span of the orbit
of w under the action of S,. Then O(w) is isomorphic as a representation
spaceto : 1, H  H®1, H®H or H® H® 1. Furthermore O(w) has a basis
of the form :

o in the 1st case : {pz.1y + pyly + p1.1}, with 1, = 1 + ... + 1z,
ly=vy1+ ...+ yn, and pg, by, 1 € K, not all zero.

o in the 2nd case : {A;(z; —x1) + Ay(yi — y1)]2 > 1}, (Mg, Ay) # (0,0).

o in the 3rd case : {pyly + pyly + a1, Ap(xi — 1) + Ay (yi — y1)]i > 1}
(/l'wa Moy /1'1) # (Oa 0, 0)7 (/\w’ )\y) # (05 0)'

e in the 4th case : {x; — x1,y; — y1|i > 1}.

o in the 5th case : {pzly+pyly+pl, xi—21,yi—y1|i > 1}, (g, oy, p1) #
0,0,0).

If we take an element x of I, we can make S, act upon it to get others, so
that the whole orbit of  belongs to I, and of course, so does its linear span.
Using this and noticing that the last lemma apply to our situation if we set

T; = a;a;, y; = aj a;, and 1 = 1, we arrive at the following result :

Lemma 10 If I fulfills (Py), (P1), (P), (P3) and (P}), then I can be gen-
erated by a union of sets, each having one of the following forms :

o form (2,0) : {a%af’|1 <i<n}

o form (1,1), : {a;a; + aja;, 0 o] +ajaf|i < j}
o form (1,1)y : {a;0; — a;a;, 0 af —afa|i < j}
)e : {a;a5, 0 af |i # j}

(

(

(
e form (1,1
o form (1,=1)q : {ra;af + saja;|i # j}, with (r,s) # (0,0), r,s € R.
o form (1,=1)y : {ma], afa;li # j}
e form (0,0) {Z aaal +Y° Biata, — A}

Furthermore, each set of the form (0,0) can be replaced by a union of sets of
the form :
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+

o form Ay : {a;a] —ajaf|i > 1}

o form By : {aja;, —afa,li > 1}
o form Ay : {a,af — M1 <i<n}
o form By : {aja;, — p|l <i<n}

o form C : { Y aaf —

1<i<n

o form D : { Y afa; — p}

1<i<n
o form E; : {a(a,a] —a,af) + B(afa;, —afay)|i > 1}, aB#0
o form F : {a Y aaf +8 ) ata;,— A}, af#0

1<i<n 1<i<n

In every case, we can assume that o, 3, A\, i and v belong to R.

The next step is to combine the different sets of generators enumerated by
lemma 10. For instance, if we are given the set A; UC, we can replace it with
a set of the form A,. Obviously, some combinations, such as the union of
two sets of the form A, with different values of lambda, give a trivial result
and we can get rid of them. The next proposition sum up the results which
are non-trivial.

Proposition 1 Let I, = {z € Id°(z) < 2} 122 9 = In Span{a 2 +2\1 <
i <n}, MY = I'NSpan{a;a;,af afli # j}, 5V = rnSpan{a,a’
j}, 12(0,0) =5LN L%O,...,O)'

Under the hypotheses of lemma 10, there exists a presentation R for I, of the
form R = R®9 [ ROV ] ROV [T RO, such that R%9) is a basis of IS,
Furthermore :

i 5 a; ajli #

o R0 = (2,0) or the empty set.
o ROV = (1,1), or (1,1), or (1,1), or 0.
o RO = (1,-1), or (1,—1), or 0.

and R s one of the following sets :
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Ay ={ajaf — \,...,aa" — A}

r'nn
AU By ={ajaf — \,...,a,a; — \,afay —aja,,...,a a, —aa}
Ao U By = {ajaf — N\, ...,a,a7 — N\ afa, — N, ..., afa, — \}
AyUD = {ajaf = \,...,a,a7 — X\, ¥, a5 a;, — p}
Az = {aia;L—i-,BZja;raj—/\H <i<n}
A UD = {ayag — ajaf,... 0,07 —aaf, > afa, — A}

C={% az’a; — A}
CUD={21€LZCL:——)\,Ezaz+az_N}

Ey = {aa] +Braf a;+ o3 405 a;— N1 <i < n}, i # Bo, fr+(n—1)B # 0
or {a; a; + ava;0] + 0422#1'%&} —pll<i<n}oq #ag,00+(n—1)ay #0

Eé = {aiazﬂ_ + Bla'g—a/i + 1’% Z#iajaj — )\‘1 <1< n}7ﬁ1 7& 0 or

n
{Tia,0f = X ala;af —ayaf) + B(afa; — ai ay)]i > 1}
E;UCUD = {Y;aa] — \,X;afa; — p, a0 + faa; — vli > 1}, with
v=(a\+ Bu)/n
F={aY;aa +8Y;a]a, —\}
A UByUF = {aa] — ayaf,afa; — afay,caaf + Bafa; — Ai > 1} and
also : By, A1 UBy, BoUC, D, By, B UC, or El, which are respectively
symmetrical to Ag, Ay U By, AoUD, C, A;, A1 UD, El, by the exchange of
a; and a;. Moreover, in each case, at least one of the constants \, p or v is
non-zero, « and 3 are non-zero, and all the constants belong to R.

Such a presentation is unique, except in the cases Ey, EYy and EY for which
we give two forms, and is called “standard”.

Even if a standard presentation is given and if the hypothesis (P,) is satisfied,
the standard presentation could happen to be non-confluent for any ordering.
The next proposition shows that it is not so. Indeed, if a confluent reduction
system exists for some deglex-ordering <, then this system is associated with
a standard presentation. Furthermore, all orderings are not allowed.

Proposition 2 Let I be an ideal such that (P),...,(Py) hold, and let S be
a quadratic confluent reduction system, which is adapted to some deglex or-
dering <, and associated with I. We also assume that S is simplified and
reduced. Let R = R®0 [ R I RMD [T ROY be a standard presentation
of I, and Rg the presentation assoctated with S and <.
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Then, Ry = REV I RVVIIRGVIIRYY, § = SCO SO [SL-D]
SO0 where SU7) is the reduction system associated with R%7) | and R‘;’O) =
R0, ROV = {z/1c(z)|z € ROV}, RSV = {a/lc(z)|z € RG=VY. More-
over, depending on R0, the SO0 part is :

Ay - SO = {a.a} —A[1 < i < n}.

AU By : Fig s.t. SO0 = {a,af —a; af ,afa,—puli # 19,1 < j < n}

%0 ZO’ ] J

Ay U By : SO0 = {g.af =\, af ai—m}.

Aj : there are two possibilities (a) : S0 = {a;af =\ — X ;0] )} or
(b) : Jig, jo s.t. SOV = {a,af —a; af, a;)ajoﬁg—ga a3 =3 2005 a ]t # i}

C : Fig s.t. SOV = {a; af =X\ — ¥, ,0;07 }
CUD : Jigy, jo s.t. SO0 = {a;,af =X — X007, 0, Qjo—r e — > itio 07 a;}
ALUD : Fig, jo s.t. SO0 = {a,af a0, afa;—p — Xz00] a;li # o}

'Lo’ JO Jo

Ay UD : Fig s.t. SOV ={a,af =X afa;;—p — X005 a1 <i<n}
By, withn >3 : (a) {a;af =X — pra; a; — B22 407 a;]1 < i < n}, or
(b) {ai a;=p — a0 — X a0f 1 <i<n}
Ey withn =2 : (a), or (b) as in the previous case, or

132
(¢) {6} a;=5;(\=Braf a;—a;a] ), aja7 = A(1 = ) + (5 = Be)af a; + GLagaf},
with {1, ]} {1 2}, or

ﬂ2
(d) {afai%é()\ Boafa;—aa), a;af —A(1 %) + (5 - Br)afa; + 'g—faia;’},
with {i,7} = {1,2}

: (a) {a,af =)\ — Biafa, + LY 0] aJ\l <i<n}, or

(b) {a; 6 =X = 4,007 a+a—> al+af a; +2aa,a; RN IIN S j|27é

377077 %0 10

io}, forig € [1..n], or

() {a; 05 = A=3j2i,0,0 ;”,amazo—> oz)\—l—ajoajo—|—2aa]0a]0+a2#mJoaja’L a;a;
—aj,a;, + aajoa;z — aa;a; |i # iy, jo} for some iy, and with a = (1 —n)/By
F : (a) {a;,a; m — Y itig ;07 — Z1<9<n% a;}, for some i, or

(b) {ajoa]0_> ﬂ El<z<na CL Ej:,éyoa } for some .70

A UBUF : (a) {a;af —a; 0, af a]—>ﬁf — 5040 Fli#i,1 <j<n}, or
(b) {aif a,—a; a;, a;0f =5 — aamam\z # 19,1 < j <n}

E,uCUD : 3K, L C[l,.,n], KNL=0,i ¢ CUL, CULU {4} =
[1.n] such that S©0 = {aaf—% ﬂcﬁaz,afa]—)E — ﬂa]aj,amam—)/\’
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Sk + 5 Yooy, afa, =y — Y pafay, + %Zicakaﬂi €L,jeK} XN=
A=Card(L)g, W' = p—Card(K) 3.

By the exchange of a; and af we also find the forms corresponding to B,
Ay U By, Bs, and EY.

For the proof, see [Besl].
The next proposition will allow us to use symmetry between a; and a; and
fix the value of some constant when needed.

Proposition 3 Let ¢ be one of the following automorphisms of L,, :
e:L, — L, Gap: Ly — Ly
a, +— a a — g,
—  pa;

af  — q a
with Ap € R\ {0}. Then if I fulfills (Py),...,(Py), so does ¢(I).

~

N+

Proof :

We do it for ¢, , the case of € is even easier and is left to the reader.

For (F), it is obvious. Let us show that ¢, ,(I) fulfills (P;) : it is only needed
to verify that the image under ¢, , of a standard presentation of I, which is
a presentation of ¢, ,(I), is sent into ¢, ,(I) by J.

If x is a homogeneous quadratic element of a standard presentation of I,
éx,u(z) is proportional to z, so J(@, ,(z)) is proportional to ¢, ,(J(x)) and
therefore belongs to ¢, ,(I). Now if z = 3 a0 + Y Biaf a;, — v.1, with oy,
Bi, v € R, is a generator of I, then ¢, ,(z) = \u(X aua;af + 3 Biaf a;) — v.1
is stable under J, because \u € R.

It is clear by its definition that ¢, , commutes with the action of S,. Thus,
o (érulD) = bru(0" (1)) = dru(])

Lastly, let S whose elements we denote by m,— f,, be a quadratic confluent
reduction system, adapted to < and associated with I, and let W be the
vector space spanned by the irreducible monomials relatively to S. If we
set oau(S) = {ms—5eadrulfs)ls € S, ms of degree k in ¢; and I in q;},
then ¢, ,(W) = W is also the linear span of monomials that are irreducible
under ¢, ,(S). Moreover ¢, ,(S) is clearly adapted to < and @ W = L,, =
Orpu(l) ® dru(W) = L,. Thus, by Bergman’s lemma, ¢, ,(S) is confluent.
QED.

The last of our lemmas will help us to reduce even further the number of
cases.



Number operator algebras 17

Lemma 11 If I fulfills (FRy),...,(Py), and if n > 2, then I must contain a
set of generators of type (1,1) or (1,-1).

Proof :

Let S be a quadratic confluent reduction system for I, associated with some
deglex-ordering <, R be the associated presentation, 7" the basis of irre-
ducible monomials, and W = Span(T). Let us denote by Ni,..., N, the
representatives of Ni,..., N, in W, and write N; = A& + ... + M& + u,
with d°(&) = ... =d°(&) > d°uand & > ... > &, A1,..., A\, € K\ {0}.
We first need to show the following formula :

Vi,j, NiN; =0 (3)

This is true because [N;, N;] = 0 < N;N; € 1. But 7' is made of eigenvectors
for NV, so W is stable under N, consequently N;N; € W NI = {0}.
Obviously, we also have :

Write & = xny, with x,y € X. There are two cases :

e There exists b € X with an index different from the indices of x and
y. Suppose first that b > z. Then b&; > &b, and since b&; > b&y > ...
and &b > &b > ... we have Im([Ny,b]) = b¢;. Thus b&; = brny must
be reducible, but since & = zny is not and the reduction system is
quadratic, it is only possible if bz is reducible. We then have relations
of type (1,1) or (1,—1) in R. Now if b < z, we have Im([Ny,b]) = &b =
xnyb, and we deduce that yb is reducible. Therefore the relations (1, 1)
or (1,—1) are in R.

e There is no such b. Then n = 2 and X = {z,z",y,y"}. If 2y or yx
are reducible we have relations (1,1) or (1, —1), so we suppose they are
irreducible. For k large enough, we have (zy)*¢ # & (zy)*. Indeed,
if not we would conclude that & divides (zy)* but it is impossible
since & must contain 2 or y* by the formula (4). So we deduce that
Im([Ny, (zy)*]) = & (zy)* or (zy)*k&,. In both cases it is irreducible, so
this is a contradiction. QED.

Even with the help of these lemmas, there still remain about a hundred cases
to study. This is done quite in details in appendix A.
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5 Number Operator Algebras of Infinite Type

5.1 The Classification Theorem

As we have said, in this case we do not need the confluence hypothesis.

Theorem 2 Let o be an infinite cardinal number and let B = L,/I be a
symmetric n.o.a. of quadratic presentation, i.e. I satisfies the following
properties

(Po) T# Lo, I # (X).

(P) J(I) C 1.

(Py) Yo € 8,, o*(I) C I.

(Ps) Vi € T, AN; € B s.t. (1) and (2) hold.
(P

1) o 1 is generated by elements of degree two or less.
Then there exists h € R\ {0} such that I is generated by one of the following
sets :

(a) {a?, a} ,azaj-l-ajaz,afcﬁ-l-a“La“L a;0f + aj a;, ;07 + af a; — hli # 5}

(a’) {a;?, 0", a;0; — aja;, 0 af — afaf ;07 — o a;, 0,05 + 0 a; — hli # 7}

(¢) {a;a; — a0, 0] af — afaf, a,0f — aja;,0,0f — a;a; — hli # 5}

(¢’) {a;a; + aja;,0f af + afaf 0,0 + af a;, 0,0 — affa; — hli # 5}

The algebras of case (a) (resp. (d'), (c), (¢)) are called fermionic (resp.
pseudo—fermionig, bosonic, pseudo-bosonic) algebras, and are denoted by C,
(resp. Cq, Aq, As)-

5.2 The Lemmas

The lemmas 1, 2, 4, 5, 6, 7, and 8 are valid both in the finite and infinite
cases.

Due to the action of the symmetric group, the terms with a sum cannot
survive in the infinite case, or else the sum should be infinite, which is mean-
ingless in our purely algebraic setting. For this reason, the lemma 10 gets
replaced by :

Lemma 12 If I fulfills (Py), (P1), (P), (P3) and (Pj) then it is generated
by a union of sets, each being of one of the forms (with o, B, A\, r, s € R) :
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e (2,0) : {a2,a’li € T}

o (1,1)g 2 {a;a; + ajal,a, —i— a+a+|z JELyi# 5}

o (1,1)p « {aya, a]az,a“La“L —afafli,j € Io,i # 5}
e

¢ * 05,05 afli,j € To,i # j}
1,=1)q - {ra;af + saja;li,j € Io,i # j}, (r,s) # (0,0), r,s € R.
1,—1)y : {a;af,ala;i,j € Ty, i # j}

(At

o Ay i {aaf —ajafli,j e Ty,i > 5}

Ay {a;af — Ni € ,}
o £ :{aaal + Bafa, — \i € I,}
o By : {afaa —a;af) + B(afa; — af a;)|i,j € To, i # j}
and the forms By, Bg symmetric to Ay, As, by the exchange of a; and a; .

We must combine these different sets of generators to enumerate all possible
presentations. The equivalent of the proposition 1 is the following :

Proposition 4 If I fulfills (Py), (P1), (P2), (Ps) and (P;) then there exists
a presentation R of I, of the form R = R [[ RGY T RGD 1 RO such
that :

o RZY = (2,0) or the empty set.
o RLY = (1,1), or (1,1) or (1,1), or 0.
o R&Y = (1,-1), or (1,—1); or 0.

and R s one of the following sets :

Ay = {a,a — Ni € T}

Ay U By = {a;0; — X\ afa; — agayli,j € Ly, 5 > 0}

Ay U By = {a;af — N, a;a; — \|i € 7,}

E ={a;a} + Baja, — \i € T,}

A UBLUE = {a,a — ayag,ala; — af ay, agad + Baga, — Ai > 0}

as well as By, Bo U By. In each case A and 3 are non-zero, and belong to R.

We refer to appendix B for the exposition of the proof of theorem 2.
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6 Topological Number Operator Algebras

6.1 Definitions

In order to encompass the case of g-bosons, we must relax the conditions we
impose on number operator algebras so as to let the number operators belong
to some completion of the algebra. We are led to the following definition :

Definition 7 Let B be a non-trivial K-algebra. Let X4 = {q,|i € Z,} and

Xa+ = {af i € T} be 2 sets of distinct elements of B. Let V,, := BX} be

the left ideal of B generated by X't and let B := ﬂ B/V,. If the following
neN*

conditions hold :

(Hi) : () Va={0}
neN*
(Hy) : Vb € X},V¥n € N,3N € N such that Vyb C V,,
then the canonical morphism B— B is an embedding of algebras. If, in addi-
tion to this, we have :

(i) B is generated by X4 U Xa+ as an algebra.
(ii) One uniquely defines an anti-involution J on B by setting J(a;) = a .

(iii) For all i € T, there exists N; € B such that for all j € T, :

[Ni,a,] = —6ia; (5)

[Ni, af ] = d;a (6)
then (B, Xa, Xa+, (N;)iez,) is called a topological number operator algebra,

and B is the completion of B for the topology generated by the neighborhoods
Vo, of the origin.

In order for this definition to make sense, we must prove a few things. First,
since the V,,’s are left ideals of B satisfying V,,, C V,, whenever m > n they
form a projective system of left ideals and B is a left B-module. We also
know that they form a basis of neighborhoods of zero of a topology for which
the sum and the left multiplication are continuous. The property (H;) shows
that the canonical map is into and that the topology is separated. We still
have to show that the multiplication is a continuous mapping from B x B
to B. For this, it is easy to see that we only need to show the continuity of
right multiplication. This is assured by the property (Hs) for multiplication
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by elements of X 4+. Since it is obviously true for elements of X4, we can
show that it is true for any monomial, and then for any element of B.

With this definition we can expect the elements of B to be expressed as
normal ordered series, that is to say with the creations to the left.

In the next lemmas, B is a topological n.o.a.

Lemma 13 Let Sy = {0} and Vk € N*, Sy D Si_1 a subspace of B sup-

plementary to Vi,. Then B is isomorphic to the set of power series of the
type
S = Z up with uy € Slc—l—l NV
keN

endowed with the obvious laws.

Proof :

Let us define the natural projections 7, : B — B/Vj, and 7m; : B/V, —
B/Vj, for j < k. Every z € B is given by a sequence (z)ren-+ such that
xr € B/Vj, and Vj < k, m j(xx) = z;. Let s, be the linear section of 7
associated with Sy. We set uy = sgpi1(zk11) — sk(xk), and S(x) = Y pen Usk-
Conversely if S = Y, u we set x = ﬁk(Z;?;é u;).

It is trivial to verify that we have defined two linear maps, inverse to each
other. Indeed, the lemma is just a restatement of the definition of the pro-
jective limit, with in addition the condition (Hj) assuring that the product
of two series is well defined. QED.

Remark : If it happens that V,, = V,,,; for some n, then V,, = V,, for every
m > n. We have S;, = S, and the series are just finite sums. Thus, in this
case B is embedded in B. jFrom (H;) we finally get B = B, and V,, = {0}.

Let us see now a particular case.

Lemma 14 SetT = {a; ...a} a;, ...a;|k,1 > 0} andT; = {a;| ... af a;, ... a;|k >

0}. Suppose that T generates B as a K-space. Then there exist Tj C Ty,
T7 C T, ...such that for all k, ToII...11T} is a basis of B/Vii1-
Moreover, every x € B can be written in a unique way :

T = z z )\t,lt

=0 teT]

with the condition that VI, the set {t € T]|\; # 0} is finite.
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Proof :

Since V;, = BX% and T is a generating family for B, we have V;, =Span{Tj|j >
k}. We choose for Tj C Tj a basis of B/V;. Then we choose T} so that T} 17}
is a basis of B/V,, and so on. Then we set Sy =Span{7}|j < k} and apply
the previous lemma. QED.

Remark : It is not assumed that 7" = U,n 7}, is a basis of B. In fact this
assumption implies (H;) and seems to be strictly stronger.

Of course a topological n.o.a. B is VAL -graded, and so will be its completion
B. For every n € Z*=, we write B" = {x € B|Vi € Z,, [N;, z] = n(i)x}.

Lemma 15 Let n € Z%. Then Vz € B", 3(x) € BN such that for all k
T € B™ and x = lim, 7.

Proof :

Let B' := @pczza pzn B”. Vk € N*, J2; € B such that z — z;, € V4. Now
2K = Ty, + Yy, with zx € B™ and y, € B'. Since Vj is stable under ad(XV;) for
all 4, we have r — z, € V; and y;, € V. QED.
To give another motivation for the definition 7, let us introduce a new kind
of algebra, that would seem more natural in a physicist’s point of view :

Definition 8 Let B be a non-trivial K-algebra satisfying (i) and (ii) of
definition 7. Let us call F the left module F = B/BV) and let us define
p : B—End(F) such that p(x)(u) = x.u. If the following properties are
satisfied :
(a) Ker(p) = {0}.
(b) F is generated by the monoid X%, as a K-space.
(c) Vi € I, AN; € End(F) s.t.
[Ns, P(aj)] = _5ij,0(aj) (7)
[Ni, p(a})] = dijp(a;) (8)
(d) N;(|1)) =0, where |1) = 1[V4].

then (B, Xa, Xa+, (N:)iez,) is called a Fock algebra and we call p the Fock
representation of B.

Thanks to (7) and (8), a Fock algebra is graded in exactly the same way as a
n.o.a., and we can define B? and the i-numbers for i-homogeneous elements.
In the next lemmas, B is a Fock algebra.
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Lemma 16 Leti € 7, and x € B such that z is i-homogeneous and n;(x) <
0. Then 3N\ € K such that x = X [Vi]. Furthermore, if n;(z) < 0, A = 0.

Proof :

By (b) of definition (8), there exists a linear combination of elements of X%,
let us say A + &, where A is the scalar part, such that x — A\ — & € V. The
result is then clear using the fact that V; is graded. QED.

Lemma 17 Vi,j € I,, Vk € N*, 3y}, ...yl ! such that ys € X1, X%, y2
has the same numbers as a;a) and a;af = SrE_gyP [Vi].

Proof :

By the previous lemma the result holds for £ = 1. If it holds for k, then
aia;’ = Ykl Yr; + vk, with v, € Vi, Write v, = 3wz [Vi41] with w, € B
and z; € X ﬁ. Then each w; can be decomposed as a linear combination of
some elements in X%, modulo V;. Thus we can write vy = > wjz; [Viy1]
with w; € X%;. Now the numbers of wjz are the same as those of aa;.
Thus z must contain a; and w; must contain a;, at least once. If we remove
one copy of these two generators in z; and wj respectively, we find that the
numbers of the remaining two monomials must cancel. Since one consists of

generators only, and the other of destructions only, they must be of the same
length. So w} € X%, . QED.

Proposition 5 If B is a Fock algebra, then B fulfills (H,) and (Hs).

Proof :

Let z € N,en+ Vi and m be a monomial. Take n larger than the length of m,
and any n-uple Z. Then n;(a;m) < 0, so azm = 0 [V;] by lemma 16. Thus
Vom = 0[V4] and p(z)(m) = 0, consequently x €Ker(p) = {0}, and (H;) is
fulfilled.

Let us show that Via;” C Vj_; for all 4, which clearly entails (H,). This is
true for £ = 1. If it is true for k, then Vp < k—1, V, X%, C Vy_,. Let z be a
monomial in V1. Write = 2’a;. We have a;a] = Z’;;é Ak pUkpWhp + N,
with ng € Vi, vk, € X4, and wy, € XY, by lemma 17. Thus z'vy, € Vip
and = € V. So by induction, we find the claimed result. QED.
Remark : Let B be a topological n.o.a. and a Fock algebra, and put the
discrete topology on F. Then the topology of B is stronger than the topology
of pointwise convergence on End(F'). In all the cases we will investigate, these
topologies are in fact the same.
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6.2 The classification theorem

With the help of the preceding lemmas and the calculations already done
in proving theorems 1 and 2, there only remains a little work to prove the
following theorem.

Theorem 3 Let a be an infinite cardinal number. If B = L, /I is a topologi-
cal n.o.a. of type o that is symmetric and quadratically presented, then either
I is one of the ideals enumerated in theorem 2 or there exist h € R\ {0},
g € R\ {—1,1} such that I is generated by

e (d) {aia’j - a;a;, a;"a;' - a;—a;i—’ aia;— - a}Laz’a a0 — qa;a; — 1|i # j}

o (&) {aa; + aja;,0f af +afaf, a;0f + af a;, 0,0 — qafa; — 1]i # j}
In the case (d), the algebra is called a g-boson algebra, and denoted by AZ.
In the case (d') it is called a pseudo-q-boson algebra, and denoted by A%. In

both cases we have N; = Z ﬂ
=0 1— q*

central and the number operators are unique up to an additive constant.

afkaik + )\, \; € K, the algebras B are

For the proof we refer to appendix C.

7 Concluding Remarks

In this article, we have tried to explore the algebraic constraints that a free
field theory must abide by. Of course this approach have raised as many
questions as it has answered. Imposing quadratic relations (and confluence
in the finite case) seems to be just as restrictive as needed in order to state a
classification theorem. In this way we have recovered all the known cases, plus
two new ones if the number of degrees of freedom is finite. The virtue of this
method is also to put on an equal footing bosons, fermions, pseudo-bosons
and pseudo-fermions, which shows that e-symmetry (see [Bes2]) appears in
a natural way.

There are at least two directions towards which we can try to go further : in-
corporating infinite sums in the defining relations and allowing cubic relations
in order to recover para-statistics. These subjects are under investigations
but what we have done so far indicates that other algebraic hypotheses must
be imposed to keep the problem feasible.
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A End of Proof of Theorem 1

If I is such that (F),. .., (P,) hold, it has a standard presentation by propo-
sition 1. We have to study every such presentation that is not yet ruled
out by lemma 11. In most cases, it is possible to show that (FP), (Ps), or
(P;) cannot hold by making use of our different lemmas. Nonetheless, it is
sometimes necessary to call upon a reduction system and calculate in a basis
of irreducible monomials.

For convenience, we will deal with relations in B rather than with generators
of the ideal I.

When the relations (0,0) depend on a single constant term A (which must
be non-zero) we assume that A\ = 1.

In cases containing (1, —1),, and if r # 0, we set ¢ = —s/r. If s # 0, we set
¢ =-r/s.

From now on we assume n > 2. We will look at the case n = 1 afterwards.
(1,1).uU(1,-1),U(2,0) :

So [ is generated by the relations (1,1).U(1,—1),U(2,0) together with some
relations of type (0,0). If relations of type Ay, C, By or D with X or p # 0
are present, it is easily seen by multiplying them on the left or on the right
by a; that a; = 0. Thus (P,) is not satisfied. Let us see the other cases :

e Az : In B we have :
anajz— + Iﬁzalﬂ—ai =1 (ln)

Let’s multiply (1) on the right by a,,, we get a,, = 0, thus B = 0. This
also rules out the case A UB;UF = A3 U B;.

o [ :
aaf + frafay + B Xismaia; =1 (Ih)
ana: + Bla:an + /82 Ei;ﬁn a;—ai =1 (ln)

We do as above.

o [':
ad aaf + B8 afa; =1
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We first multiply the relation F' by a; on the left, then on the right,
and we get :

Baiaz—"—a’i = aa’ia;—ai =a;
If o # 3, we have B = 0. Thus we can assume that « = § = 1.

We have a;a;a; = a;, Vi. But if there exists a quadratic confluent

reduction system for I, it is of type (a) or (b) (see proposition 2). In
both cases, there exists ¢ such that a,a; and a; a; are irreducible, so

a;a; a; must be irreducible, and this is a contradiction.

(1, DaorsU(1,-1),U(2,0) :
Making use of either (1, 1), or (2,0), we see that Ay or By with A # 0
leads to B = 0.

e (' : Multiplying the relation (C) by a, on the left we get :

a,’af + Z a,0,0; = a,
i>1
= Z +a,a,a0 = a,
i>1
This also rules out all other presentations containing relations of type
C (in particular Ef = E; U C).

e F': We have
«Q Z alaia;—'i_/b) Z ala:rai:al

1<i<n 1<i<n
= a)_ *aaa] + faafa; = a,
i>1
= Baafa, = q
Multiplying by a, on the right we would obtain in the same way :
aaiaf a; = a (9)
thus a = . Furthermore, multiplying (9) by a;, i # 1 we get :

— + — + —
a,a; = aa,a; a,a; = taa,ay a;a; =0

- - ot oot
But, the presentation being standard, {a,a; — a;a,,a; a] —aja;"|i < j}
i i (1,1) +ot+ _ oot
is a basis of I;"’. Now a,a; ¢ Span{a,a; — a,a;,0;a] —aja;}, a

contradiction.
We can do the same for F', and thus for A3, By and FEj.
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(1,1).U(1,-1), U (2,0) :

e A;: Let’s multiply (/1) on the right by a; :

aafa; = a (10)
Now a,af = a0 = a; = a;afa;, Vi. Then if s # 0, we have
a, = —q¢'a;a;a] = 0, for i # 1, and B = 0. We can thus assume

that s = 0.

Now a,a] = 0, and multiplying (/;) to the left by a,, we find a; =
Ba,af a;, consequently we have 3 = 1, by (10).

We are then in the case (b) of the theorem. It is easily seen that the re-
duction system {a;a;—0, a; a] —0,a,*—0, at’=0, a;0] =0, q;a7 =1 —
S aja,|l <i#j <n}isconfluent and adapted to the deglex-ordering
coming from af < ... < af <a; <...< a,, which we will denote by
<, in the rest of the section. We let the reader verify that (Ps) holds,

with N; = afa; + \i.1, \; € K.
e F': Let’s multiply F' by a, on the right, then on the left :
{ Ba) (Ti<icn 07 0;) = a,

a(ZISiSn aiaf)al =04

_ + +
= { ra; =rBaai a; + B Xis1(—sa; a;)
sa; = saa afa, + @Yy a;(—raja
{ral = rBa,aia,
sa; = saaa; a
{mla;r = —sfBajafaga, =0
saya, = —raa,a;ya; a; =0
Thus » = 0 or s = 0 (the presentation is standard). If r = 0,
+ + + YoV — aaTa.at — oF -
aZL(a %:Z a;ai) + af B(X aa;) = aafasal = af. Now 3Jj such that

aja;a; is irreducible, and we come to a contradiction. The case s =0

is symmetrical.

e A, UB{UF : From case F' we know that we can assume that r = 0,
then we have a,, = aa,af a, + a7 a;a, = 0. Consequently B = 0.

e I : By F, we have rs = (. In each case it is easy to show that B = 0.
(1,1)p,U(1,-1), U (2,0) :
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e ( : Let’s show that B =0 :

+ _
:>Za1...anaiai =a-..0Q,
+ _
éZal A 1Gqq - - - Qp0;Q,0; = Qg ... 0
=0=a,...q,

Suppose that every product a;, ...a;, of length k is zero. This is true

for Kk = n. Then :

ik

+
= a; ...0;_ 00

and the sum is zero, since all terms a; ...a;  a; vanish. Thus, by
induction, we see that B = 0.

Since we made no use of relations (1, —1),, we can get rid of the case
(1,1), U (2,0) U C by the same method.

e F': Thanks to all the relations we have, one can show that

(a=pB)(r+s)ay...a,=0

Then, if (o — 8)(r 4+ s) # 0, it can be proved by induction that B = 0.
If only one of the factors o — 3 or r 4+ s vanishes then it is possible to
show that a,a, = 0. Let’s see the case o = 8 and r + s = 0 in more
details. We can assume o = 1.

If n > 2, it is easily verified that the natural projection L,, — Lo gives
a surjective homomorphism from B,, onto By. Therefore, if (P;) does
not hold for n = 2, it will not hold for any n > 2.

Let < be the only deglex-ordering such that af < a; < a3 < a,. The
reduction system S = {a,a,—a,a,, af af —aiaf, a,2—0, a0, a,2—0,
ai’—0, ayat —atay, af a,—a 0, a,0f =1 —a,af —afa,—aia,} is con-
fluent and adapted to <. If we call T the basis of irreducible mono-
mials and Ty := T'N BY, then it is clear that Ty = {1, a] ay, (afa,)¥,
(afa))*ag a,, (a,ai)*, (a,af)*ada,)|k > 1}. Indeed, no a, can be on
the left of another term, an aj can only be on the left of an as,,

Now, for k> 1+ [(ata,)¥,a}] = (afa,)¥af, [(af 0, af 0y, af] =
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(ai ay)*af ajay, [(a,01) a3 ay, ai] = —af (a;af)*afay, [(a101), af] =
—af (a,af)* and [afa,, af] = 0.
We see that ai never appears in these commutators. Consequently,

(P;) cannot hold.
e Az : From F we have r + s =0, then :

ay...0, = aaia,...a,+pBY0afaa, ... q,
aafa,...a
Up03 Qy - . -y,
a,0503 Gy - - . A,

= a(aaf)ay...a

= 0

n

n

So by induction B = 0.

e Fy : From F, we can assume that r +s =0and 8 + (n—1)8, = n
(which corresponds to § =1 in the case F).

a;(l1) — (l1)a, gives :
(b1 = Dayaia; + B2 ) (a,0f —afay)a; =0
i#1

= (51 - 1)“1@—“1 =0 (11)
But we also have :

a1 (ln) — (ln)a, = aya,0,) + Prayata, + B Z a,0; a; — 0,0, a,
1<i<n

+ﬁ2a1a1 a, — 510 a; — Po Z a:alai

1<i<n
=0= ﬁgalafal (12)

—if B # 0, (12) = a,aia; = 0. Thanks to a,...a,(l;) we get
a, ...a, =0 and by induction B = 0.

— if B3 = 0, we can assume ; = 1, orelse B=0 by (11). We get the

reduction system {a —0, a; —)0 a;0;,—0,;0;, G; Ta; —>a+a;’,aza;’—>
af a;, a0 =1 —afa1 <i<j< n} It is confluent and adapted

to <,. B is a solution to our problem, with N; = a; a; + \;.1,
Ai € K, and we are in case (a) of theorem 1.
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(1,1), U (1,-1), U (2,0) :

This case is similar to the preceding one. In the case Ey, we find the solution
().

(1: 1)6 U (17 _1)b :

o C: Let ¢ : L, — C, with C = @ K]z;,y:]/(ziy; — 1), defined by :

i=1

d(a;) = zi, d(af) = ,~. qb goes to the quotient, indeed : Vi # j,

gb(a a;) = Tidj = 0, ¢(aia)) = yiy; = 0, ¢a;af) = d(afa;) = ziy; =

QS(Z aaf —1) = (2 x,yz) 1 =0. But ¢ # 0 then by lemma 5, (Ps)
does not hold.

e CUD : We have (C)a; = a,afa; = \a; and a,(D) = a,afa, = pa,,
then if A # pu, B =0. If A = pu, we do as above, using the same ¢.

e Ay, A =0,UD : Computing (D)a,; we are led to a,? = 0.

e Asor AyUD : Witha=1o0r0:
aaaf + 8 afa, =1

= aa,’af + Bajafa; = a;

= aa,ay03 + fajafa; = a,

+ 4+ +
= fa,ay a,a] = a,a]

to ot )= ot
= Baai aya; =0 =a,a]

This is impossible in both cases. We can do the same for A; U B; U F.
e F, or E}) : Let’s calculate a,(l1), (I1)ay, a;(l,), and (I,)a;. We get :

a’ai + fraafa; = a; (i
aaf a; + frafa® = a; (i)
Boaafa; = a, (417)
Brafa? = a, (iv)

Thanks to the three last formulas we get (8; — 81 — 1)a, = 0.

So,if fo— P11 — 1 #0,ie. [y # ”T_l in the case E), B = 0.
Moreover, (iii) and (iv) = P2 # 0, or else B = 0.
The only remaining case is o = 1 + 1 # 0. We define ¢ : B —
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éK[ﬂﬁz’,yi]/<$iyi —1/B,) by ¢(a;) = zi, ¢(a) = yi. ¢ is well defined
i=1

since ¢(a;af + Bra; a; + B2 X4 a;aj) = (14 B1)ziyi + B X xjy = 1.
Thus (P3) cannot hold.

[ El ucub:
aaf +...+a,at =X (Ih)
ata,+...+afa,=p (o)
agal + Bafa;,=v  (I3,)
We must have A = p by C'U D. Now, if we multiply (I3;) by a; with
j # 4, we find va; = 0, therefore v = 0. But A(a + ) = nv = 0 and
A must be non-zero by lemma 4, then a4+ 8 = 0. We can assume that
A=1and o = —f = 1. We then use the same ¢ as in case F,.

o [':
ad aai — B> afa; =1

2 +

+
= aq;“a; — Ba,a; a; = a;

Now (P,) implies that there must always exist ¢ s.t. a;a; and a; a; are
irreducible. A contradiction.

(1,1)g or s U (1,—1), : Such a presentation is never standard. Indeed, we
always have relations of the form :

Y g + > Biafa; +A=0

1<i<n 1<i<n

with A # 0. Therefore :

a; Y. oaaf + Brajala; + ey, =0
1<i<n

= (pa,0505 Ay + Bra,a ajas + Aajay =0
= tasa,(a,0] )a, £ Bra,(af ay)ay + Aaja, = 0
= Aa,a, =0
= a0, =0

This is impossible.
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(1,1).U(1,—-1), : This case is very easy, and we only state the results.

e U, CUD, A; UD : Multiplying the relation C' or D by a,, one can
prove that the presentation is not standard.

e Azor AJUB;UF : Tt can be proved that a,2 = 0, thus the presentation
is not standard.

e F, or El : It can be shown that :
rs(By — 1 —1)a; =0

Therefore we have rs(fs — 51 — 1) = 0. If B — f; — 1 = 0 the ho-
momorphism ¢ of (1,1), U (1, —1), U E5 can be used to exclude this
case. If rs = 0 and B2 — 31 — 1 # 0, the presentation is shown to be
non-standard.

e F: We have, Vi : ag%afa; + Ba,af 0> = a2, so we conclude that the
presentation is not standard.

(1,1)pU (1, —1)q :

OAQI

Ty = T0y0, 0] = TG, 090,
eq o —
= —sa,af ay = ra,
= (r+s)ay, =0

Thus r +s# 0= B =0. If r+ s =0 an homomorphism ¢ : B — C,
with C = K[z1,...,Zn, Y1, -, Yn) /{101 =1, ..., 2yyn— 1), is defined by
setting d(a;) = z;, 6(a;) = y;. Therefore (Ps) cannot hold, by lemma
5. We do the same for A, U B; and 4, U B,.

e A;, AiUD and A; UD : In these three cases we have :

+ _ ot
{ +aiai = aijLrj
ag;a; + B3 a5a; =1

with a = 0 for A, U D and A; UD, and o = 1 for As.
Ifweset z = a,af = ... = a,a, we easily show that Vi, ra,z+sza; = 0,

and Vi # 1, ra,a a; + sa; a;a; = 0. Then :



Number operator algebras 33

B(ra,afa, + safa,?) = (r + s)a,

2

= B(ra,*aia; + sa,afa,®) = (r + s)a,?

= B(ra,z + sza,)a; = (r + s)a,*

=0=(r+s)a,’

Therefore 7 + s = 0. Let’s show that z := g;a] and y; := a; a; are

central elements of B. For x it is trivial : we calculate the commutator
of z with a, or af by writing z = a,a; with i # k. Now y; clearly
commutes with a; and a;’ for j # 1. As for j = 4, we just need to write

Now we show that B® C Z(B). Let m € B° be a monomial, and write
m as m = by ...by, with b; = a; or a;. There must exist 4 < j such
that b; = b (:= J(b;)) and Vk, i < k < j, by # b; and by, # b;. Then
b; commutes with every by s.t. 1 < k < j, and we can write :

m = b1 ... bi—lbz’bz’—i—l e bj—lbjbj—H e bgl
= b1 - bi—lbi—l—l e bj—l(bibj)bj—l—l . le

Now b;b; = bbi = x or y;, thus b;b] € Z(B). Consequently m =
by ... bi—lbi—l—l - bj—lbj—H - bgl(bzb:—) Let m = m’(bzbf), with bzb;l— €
Z(B) and m' € B%. By an easy induction, we find m € Z(B). Then
B° C Z(B) (the other inclusion is always true). As a consequence, (Ps)
cannot hold (unless B = 0).

e AUB;UF : As above, we must have r+s =0. If a+ 3 # 0, lemma 5
can be used, with the help of v : B — K|z, y|/(zy—1/(a+3)), defined
by v(a;) = z, v(a]) = y. If @ + 8 = 0 we have (with a = 1):

+ +2 _
a0y 01 — Gy G =0y

2 .
= a0 a0, —aja”’ =a;, i #1
= afa,a, —afa® =aq,
=afa®—afa*=0=aq,

= B=0
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e C: Wedo as in case (1,1). U (1,—-1), UC.
e CUD:
ra,(C) + s(C)a, = ra,’al + sa,aia, = \(r + s)a, (13)
ra,(D) + s(D)a, = ra,ai a, + safa,> = u(r + s)a, (14)
From these two relations we get :

{ ra,%afa, + sa;afa,? = \(r + s)a,?

ra,%afa, + sa,af a,? = p(r + s)a,?
= (r+s) (A —pa,?>=0

This shows that (r 4+ s)(A — p) = 0.

— A=y : We can use ¢ as in case C.

— X # p,r + s =0 then (13) and (14) = a,%a] = a,afa; = afa,.
Thus :
Aay...a, = aj...a,y a;a;
= Yaafa,...q,_10;,...q
= Yafal(a...a,)
= ua,...a,

n

Therefore a, ...a, = 0, and, by induction : B = 0.

e E, or E : On one hand ra,(l;) + s(l1)a, gives

(r +s)a; = sprafa,” +ra’af + (s + 7)) af g (15)
on the other hand ra,(l2) + s(lz)a, gives :
sBrata,® +rprajafa, = (r+ s)a, (16)

i From (16) we get :
Bo=0=>1r+5=0
Furthermore :

{52(15) — B1(16) & (9) {5201(7"01@L + say a,) = (B2 — B1)(r + s)a,
(16) "\ Bo(raaf + safay)a, = (r + s)a,
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Now :

(S) = { Boay (rajaf + saiay)a; = (B2 — Bi)(r + s)a,
Baay (raaf + safay)a; = (1 + s)a,>
= (B2 = B = 1)(r +5)a,> =0
Then we must have (r + s)(fs — 1 — 1) = 0.
—f—H—-1=0:
x [y # 0, we define p : L, — C, with C = K[z,y]/{zy — é),

such that p(a;) = =, p(af) = y, and p(a;) = p(a;") =0, Vi >
1. We then see that p is well defined non-zero homomorphism

to C.
% [ = 0 (which entails r + s = 0), f; = —1. We then have the
presentation {a;a; — a;a;,a; aj — aja;, 0,07 — aja;, 0,07 —

afa; — 1}. We recognize the Weyl algebra A,, which is a
well known solution to our problem, with N; = afa, + A;.1,
A € K.

—1+8—5#0,7r+s=0

(S) & {52“1[01,@] —0

Bolay, aﬂal =0

where [.,.] denotes the commutator.
* 1451+ (n—1)By # 0 (always true in the case FY) : We can then
define a homomorphism & from B to C = K[y, ..., z,]/{(x? —

1+ 61+ (n— 1)52> by setting : £(a;) = £(a;") = .
$ 1+ +(n—=1)B=0

)+ +0n) & D a0+ Y ala;+(n—1)5 Y afa;=n
@Za;’ai —Zaia;’ =N

& Z[ai,a;’ =-n
But 8y # 0, (or else 1 4+ 1 — B, = 0), then from (S) we get :

—na, ...a, =Y [a;0af]a...a,
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—na; ...a, =Y (la;, a a;a1 ... ai_1041...a,) =0
%

=ay...a,=0

And we can iterate to get B = 0.

e F1UCUD : From C U D, the only remaining case to study is A = p,
that is to say nv = (o + B)\. Moreover (by the case E,), B = 0, we
must have 7 + s = 0. Then we see that we can use £ as in the case F,

A
setting £(a;) = &(a;") = x;, with 22 = =,
n

e F': We have :

(r+s)a; = raj(aX a0 +BYaa)+s(aXaa; + By ajai)aj
= a Xy a(raef +safa;) + BX(ra;a + sa; a;)a;
(Tﬁ-l-soz)a]a a; +7“C¥CL] af +s,8aj a;?
= (rB + sa)ajai a; + raa’a; + s,Ba

Since there always exists j such that the monomials in the last expres-

sion are irreducible, we must have ra = s = 0 and 8 + sa = 0, that
entails that either r and s or a and 8 must be zero, which is impossible.

(1,1),U (1, —1), : This case is quite similar to the previous one, and we leave
it to the reader. In the case Ey we find the pseudo-boson solution.

(1,1).U(2,0) :

e A; : Let us distinguish between the different forms of S(-%)

— (a) On one hand we have a;*a] — 0 and on the other hand we
find a,?af — (1-B)a; —f ZZ?&] a;a; a;, which is irreducible. This
system cannot be conﬂuent

+

jo 100 two

— (b) : We can use the same argument by reducing a; *a
different ways.

e Ay UB;UF : From (I3)a; and a,(l3) we get o = 5. We set « to 1,
and we define 6 : L, — L, = K{(a,a™) by 6(a;) = a, 6(aj) = a™.
This ¢ induces a non-zero morphism from B to the Clifford algebra
Cl(1,1) := K{a,a™)/{a?,a"? aa* +ata—1). Indeed, (5( a —a; a+) =
0 = d(aja; — aja;), 6(a;0;) = a® = 0, 0(a;"aj) = o™ =0, 6(a;0f +

7
aia;) = aa™ + a*ta = 1. We conclude by lemma 8.
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.E2

(l))ayas & alafa2a2 = Aayas . Moreover, a,ai (I2) & a,af aya3 =

Aa,af. Thus a;a = a.a}, which is not possible.

5750

e F1UCUD : From C' and D we have A = = 0. Then nv = aA+5u =0,
which is impossible.

o [: Wehaveazzaaa —Oandﬁzzaaa—a = 0, but at
least one one of these two expressmns is 1rreduc1ble

(1,1)p,U(2,0) :

e C: B=0 (seecase (1,1),U(1,-1),U(2,0)).

.EQI

— (a) : We have (a;%)a;’ =0, and on the other hand a,(a;a; )—\(1 —

o Fl:

Br)a; + BrBadzaf a0, + B oY saT a0, — ﬁgzﬁé,azaj a; where 7 is
the set of indices j s.t. a; <a and J the set of all j’s s.t. a; > a;.
The last expression being irreducible, we come to a contradiction.

(b) : We do the same with a,a;"”

(c) : (n = 2) We have a]a;*—0, and also (aja;)a;—5-(A\a; —
prai a;a; — a0 a;). The term af a;a; may be reduced to a; a;a;,

but the whole expression cannot reduce to 0.
(d) : We have a; a;>—0 and a;q, —> (/\(1——)a — Beata,a; +

7

g2 a;a, a]) Confluence implies that /31 =1, B, = 0. In this case, 1
is generated by the relations a;a] + afa; = ), a,a3 + aga, = A,
a2 = a,2 = af’ = af’ =0, a;a; aja:a;ra;’—a+a+—0

Vi # j. We can thus send B onto Cl(1,1) by a; — a, aj — a.
We then use lemma 8.

(a) : Same method as in (a) of case Fj.

(b) or (c) : We have 0<a; ai = Xa;, — Y70, 0,07 — 3 7 a;0,0
with T = {ila;) < ¢;} and J = {i|aZO > a,;}. ThlS contradlcts
confluence.
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— (a) : We can assume without loss of generality that io = n, so that
a,a;,—a;a,, One can then show that 0+a,a;—2(1 — £)a,+
Ez<n aza a, + 2 Ez<n a; ;0 = Dicn 40 a; — P Ei<n a’na’;—a’b
which is 1rreduc1ble
— (b) : Symmetrical computation with a;a,,.

e Az or Ay UB; UF : It is easy to show that a,...a, = 0. In any case
the normal form of a, ...a, looks like a;, ...a; # 0. Therefore, (F})
does not hold.

(1,1)4 U (2,0) : This case is similar to the previous one.

(1,-1), U (2,0) :

Az : By multiplying a,ai + 8Y;aa; = 1 to the left by a;, we find
Bayasa, = a;, thus B = 0. We use a similar method in cases A; U D,
AQUD, and A1UB1UF

C or CUD : We can assume that 7o = n. We have 0<a, %a —\a, —

a,a,af —...—a,a,_,a;_;, consequently the reduction system cannot

be confluent.

E2 :
—n > 3 : From a,(l1)a, we find a,a, = Bia,a]a,a,, and from
a,(I3)a,, a,a, = Bea,a; a,a,, thus a,a, = 0.
— n = 2: In every case we can easily prove that the reduction system
is not confluent.
EY, : Same methods as above.

F : Let’s assume we have a reduction system of type (a ( ) (the case (b)
is symmetrical), and suppose 79 = n. We have 0<a,a;a;,— —a,af a; —
,g Sis1 0 a;a, + aal, which is irreducible.

E,UCUD : Vi€ L, 0+a;af a;,—~(va,, — Bai a;a;,), which is irre-
ducible, and Vi € K, 0<a;a; a]—> ﬂ( aazoa]aj), irreducible too.
Since at least one of two sets of indices i 1s not empty, we conclude that

the reduction system is not confluent.

(1,-1), U (2,0) :
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o AyUD, A =0: Ifa; = sup{a;}, we have 0<—a; a;>—pa,—> ., ai a;ay,
which is irreducible.

e CorCUD :see(1,-1),U(2,0)UC.

e A3 : We know from proposition 2 that at most one of the a;a,’s
is reducible. But we have 0<q;’af —(1 — B)a; + 23, afajaZ -

B2z aia;raj. Now we can choose i such that Vj # i, aja; is irre-

ducible. Then if » = 0, the last expression is irreducible. If r # 0,

some of the a, aja s can be reduced to qa a;a;, but in any case we get

a non-zero irreducible quantity.

'L]’

e AyUBUF : aylsp)a; gives a;(aa,af + Bafa,)a;

Ha; +
j i
Ba;(aja;)a;, but this is excluded.

= aa,(a;a] )a;

o A, UD : We have, Vi, a;a,a] = a;0;a; = 0= payai =Y af q;a,0] =

0. A contradiction.
[} EQ .

— (a) : By reducing a,%a; in two different ways, one can prove that
we must have 7 #£ 0, 5y = O and b1 = 1 for the system to be conflu-
ent. Thus we get {a —0,a; —>0, af —qaj a;, 0,07 =1—aa;|1 <
i # j < n} which is a confluent reductlon system adapted to <,,.
Let Z = (i1,...,1%) E [1..n]* be a k uple of indices. a; will stand
for a;, ...a;,, and ay for af ...a}, |I| = k. f T = 0, we set
ag = aa = 1. With these notations, the basis of irreducible mono-
mials for our reduction system is the set of all afa,, Z and J
running over all possible t-uple of indices such that ¢, # %1,
Jm # Jm+1, Vm. It is then possible to use this basis to explicitly
calculate the commutator of an element of B® with an a; and an

a; (see [Besl]). Doing this, one sees that (Ps) does not hold.

1

— (b) : This case is symmetrical to the latter.

— (c) : 0¢+=aja, —) (/\a — frai a;a; — ¢'a;0;a; ), thus the reduction
system is not conﬂuent

- (d) : afa, —> (/\(1 - —) — Boafaja; + ﬂQaZaJ a;). Now this
last expresswn is 1rreduc1ble, except for the term aza;raj, which
can possibly be reduced to qa;’aiaj. So, we must have $; = 1 and

B2 = 0 and then rs # 0. Indeed, if r = 0 we have 0+a;a; a;—a,;—
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+ e + + :
aja;a;, and if s = 0 we have 0<a;a;" a,—Aa; — a;a,a;” both being
impossible. There are two cases :

+ : +qt +q.aF + +,t
* If a;a; is reducible, then qa; a; a;¢—a; a;a7 —Aaj — a,a a; .

Since both expressions are irreducible, we conclude that the
system is not confluent.
+, . ' + +
* If a} a; is reducible, then we have ¢'a;q,a; <a,a; a,—\a; —

ata,a;, and arrive at the same conclusion.

J 3T

e Ej: Case (b) or (c) 0—a; *a; —Xa;, — > a; a;a], which is irreducible.
J#i0
e E,UCUD : Na, + 2% afa,a, — Yxaafa «a, afa, —p'a, +
1 - ) a &L Yk YWY K Y%k Yip 20 "0 %0 IU'ZO
52K i, 008 — 3¢ a; @y a;, and the only further reductions we can pos-
sibly do are : a,afa;, = ¢'aga; a; and a; a; a, — qa; a; a;. This shows
that the two expressions cannot be reduced to a common normal form.

e [ : Let’s do the case (a), the other one being symmetrical. Sup-
pose a,, is the largest of the a,’s, then 0<a,%af—a, (1 —a ¥, a;af —
BYi<naia;). If r = 0 we see that confluence is impossible. And if
r # 0, we have 0 = a, — @ Yicp, 0,,0,0; — ¢B Y ;<p a7 a;a, and we come
to the same conclusion.

(1, —1)1, .

e A3 : From aya, = a;(aa,af + 83Y;a a;)a, we are led to aja, = 0.
Thus, the presentation is not standard. The same method can be used
for the cases Ay UD, A,UD, A=0and Ay UB;UF.

e C,CUD, E,, Ef, E;UCUD, F : These rather easy cases are left
to the reader (it can be shown each time that the systems cannot be
confluent).

(1, 1), : Let us first notice that in all cases containing A, we have ra;a; +
saja; = 0 = ra;a;a; + sha; = 0. Then, if 7 = 0, a; = 0, and (F) is not
fulfilled. So 7 # 0, and a;a; must be reducible.

e Ay : According to the remark, we must have » # 0. Then we see
that S = {a;a; =1, 0,07 —qaj a;i # j} is confluent (there are no am-
biguities) and adapted to <,. The basis of irreducible monomials is
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T := {afa,|Z,J run over all tuples of indices}. If we write p for the
projection on W =Span(7T) in the direction of I, then p(z) =nf(z). If
the lengths of Z and J are at least two, and if n belongs to J, we have
p(lafas,al]) = ¢"7aja, — afafa,, where ns is the number of a,’s
in a, that are to the right of the a,, which is the most to the right,
and J' = J where the n the most to the right has been left out. If n
does not appear in 7, p([afa s, a}]) = ¢¥lafata, — afafa ;. In both
cases, if Z # (n,...,n), we have Im(p([afa,,al])) = afafa,;. Now
if afa, € L8, T = (n,...,n) = J = (n,...,n), then if afa, € LY
we always have Im(p([afa,a;}])) = afafa,. Let N, be a represen-
tative of N, in W, and let afa, be the leading term of N;. Then
we see that a;’afa_ is bigger than any other term of p([Ny, a;]), thus

Im(p([N1, a}])) = a;afa s, which proves that (P;) does not hold.

e Ay U By, Ay U By : As before, we have r # 0. For 1 # ip, we get
a; = (aia;r)ai = a; (a+a ) = qa’zo i Qi Then a; — qa; = 0, which

20 10 20 z 10
is irreducible.

e Ay UD : It can readily be seen that we need A = p and ¢ = 0 in order
to have a confluent system. In this case, an argument like the one we
used in case A, allows us to prove that (P3) is not satisfied.

0A3Z

—Ifr #0: S = {aa =1 —ﬁZaj i ~aj—>qa;rai|i # j} is
confluent and adapted to <, (no ambiguities). Using the basis
T = {afa,} it can be shown that (P3) does not hold (see [Besl]).

— sir =0 : Let’s look at the two possible reduction systems :
* (a) : we have 0«a,a}a,—a, — 3%, af a;a;, and there is no
confluence.

% (b) : For i # iy, 0<a,a; a;,—a,, af a; , which is irreducible.

(] A1U31UF3

1
— (a) We have a,; af a; < a;a; a; — ﬁ(a — aa;a;,a;). The term on

the left may be reducible to ¢'a;,
is not solvable.

i @i 10 In any case, the ambiguity
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- 8\)}) : Wilthdz' # i](:)) vae have < (a; — Bafa; a;) < a;a] a; — a;afa; .
e conclude as before.

) +
o AiUD: If aia is reducible then qajo i aZaJO o T Qi 2025000 O
Now these two expressions cannot be reduced to a common form, so

Vi # jo, aia is irreducible. Consequently amaZ is reducible.

— Ifn > 3, orn=2andi0=j0,wecantakei7éi0,j0 We have
qaa+a+ +— a+aa+ — ala; a+ Then if 39 # jo, ala, a+ —

t7J0 Jo Jo %0 Jo "io .
q¢'a;,a;, 0, and the reduction systern is not confluent. If iy = j,
+, o4 +_ +
Qi Qg Qi —> Qi — D2 O ajam, which is irreducible.

We leave the case n = 2 and ig # jo to the reader (the system is
not confluent).

e C: Asin case (1,1). U (1,—1), the homomorphism ¢ can be defined
and used to rule out this case.

e CUD:

— If 3k # jo such that a,aj; is reducible, then qa a0, <—aka]0a]0—>

Mak—quelca;rakaj—Zjeﬁak Ja;—aaiay, with K = {J # Jolayaf
reducible}, and £ = {j # j0|akajirreducible}. We see that the
expression is irreducible if k£ # 4. If & = 4, it can be reduced
to (1 — ANay — ¢ ex 0F a0 — Ljep 0307 0 + X jexr 007 @y +
q Yjer ajaka;r. Therefore we must have 4 = A. But in this
case we can use ¢, as in case (C), and (Ps) is not satisfied. Thus
we must have Vk # jo, ayaf, is irreducible, which entails a} a, is
reducible.

+ .
a; in

— If 3k # 4o such that a; a, is reducible, we can reduce a; a;

two different ways, and come to a contradiction.

—Ifn>2, orn—2andz’0—jo
Let k& # 19, jo, then qaka <—a aka —>qa ak Since these
two expressions are 1rredu(31ble thls case is ruled out.

—n =214 =1, jo = 2. We leave this case to the reader (reduce
a3 a,a;i in two different ways).

e Eyor El:
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—Ifr #0, S = {a,0] =1 - fraj a; — B2 X af a;, a0] —qafali # j}
is confluent and adapted to <,. T = {afa_} is the corresponding
basis of irreducible monomials. By using the same method as in

case As, we find that (Ps) does not hold.

— Ifr =0, 8 = {a; 0,0, 0 ;=1 — 010,60, — 2 X4; a4,a5 } is con-
fluent and adapted to <,. The corresponding basisis T = {aza}}.
If 7 does not begin with n, we have [azak, o] = azaka;. More-

+ _ + + + +o ot
over, [a a0, at] = a,az0t 0 —aral a0t aral o Y, a0 azal.

Thus we see that if Z does not begin with n, Im([a,aza’, a}f]) =

a,azabat, and we get by induction : if Z # (n, ..., n), Im([a,azaZ,
o)) = a,azalat, and [a,fat”, af] = (1 - (—1)*ab)a, et +u,

with u < a,%a*"". Then if Im(Ny) # a,*at®, Im([Ny, a}]) =Im(N:)a;,

n

which is irreducible : a contradiction. And if Im(N;) = a *at”

we show that lm([Vy, afk]) =a,*a’ "o ", which is irreducible as
well. Thus (P3) cannot hold.

.E1UOUD:

—r=0:1IfieL 0=aq0a; = %(va; — faj a;a;), contradiction.
Thus £ = (). But now, with j # g, aioa;(’)aj = )\aj—zjﬂoaia;’aj =
Aa; — aja;“aj, which also contradicts the confluence.

— s =0 : Symmetrical case.

— rs # 0 : We have q; > a;L, Vj € L, and af > a;, Vj € K. The
reader can then easily verify that a} a;, af

i0@i,@; can be reduced in two
different ways which lead to distinct irreducible expressions.

— «a # —f: We define an homomorphism ¢ : B — @ K|z;, y;]/{({z:yi—
o7 )}): and we use lemma 5.

— a= —f: Suppose a = 1. We have Y a,af — Y afa, =1
_ + + — + +,. —
If r = 0 then ¢;0;"a;,—3; aj a;a;, = a;, and a; 3; a0 —a;a; a; = a;.
But both expressions are irreducible. This is impossible.

. — + + g0t +o 17
Nowifr # 0, S = {a,af =1+ 0] 0, X, 0,07, a;05 —qa] a,]i #
j} is confluent and adapted to <,. The basis 7" is made of monomi-
als of the form a}’lajlaila;;a%:a%aizaa;r ..., with i1,+z'2, e f n. Ift
: : + = +
is such a monomial we have [t, a}] = af,ayz, ... (a;,a) ... azaza} —

atafay ... Set t =lm(N,).
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« If t = aju, j # n, then lm(p([t, a;])) = a,t, thus (Ps) does
not hold.
x If t = afu, then lm(p([t,a,])) = a, ,a!_ju, (Ps) does not
hold.
* If t = a;u, Im(p([t, a,])) = a,t, (Ps) does not hold.
(1,1). : This case is rather easy, and we only state the results.

A, A3U By, AU D, and A, U D : Tt is easily shown that ¢, = 0, but

since @, is irreducible, this contradicts (Py).

C : Use the same ¢ as in case (1,1). U (1, —=1),.

CuUD: If A\ =pu, we can do the same as above. If X\ # p, it can be
shown that a,® = 0.

e £y, E\, F, E; UCUD : (P,) does not hold.
(1:1)b:
[} AQ, AQUBl, AQUBQ : Let ¢ :B — C, C = K[x,y]/(:vy— 1>, be the

only homomorphism such that ¢(a;) = z, ¢(a]) = y. ¢ is clearly well
defined and we conclude by lemma 5.

Ay U D : With ig = n, we have \a, < a,a, a, — pa, + Ycn 0,0; ;.
Thus (P;) cannot hold.

A3 :
— B# —1/n: Asin Ay we can define ¢ : B — C := K|z, y]/{xy —
1/(14+nB)).
— B=—1/n: We define ¢ : B — A; = K{(a,a")/{aat —aTa —1)
by setting ¢(a;) = a, ¢(a]) = a™. We then use lemma 8.
Ay UB; UF : Same method as above.

A;UD : We send B to K|x,y]/{xy —1/n) by a, — z, aj + y, and we
use lemma 5.

C': Here we send B to @, K [z;, y;]/{z;y;—1), as in case (1,1).U(1, —1).
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e CUD : We are going to show that (P3) does not hold if n = 2. We will
then be able to deduce that (P3) never holds with the help of lemma
6, since the projection L,, — Ly goes over to the quotient
S = {a,af =)\ — ayas, a3 a,—p — afay, a,a5—asa, a3 af —afa} is
confluent (no ambiguity) and adapted to the deglex ordering com-

ing from a, < a; < af < aj. The corresponding basis is T =

{a,a™ .. an’aJ’lT Mag™ . a,™ a3}, with k;, 1, mi, n; > 0.

Let x € T'N L2 , * # 1. Then z begins with an a, or an a;, and

ends with an a, or an af, therefore zaf is reducible, meanwhile a{

is irreducible. Moreover afz > zai, so Im(p([Ny,a{])) = aflm(Ny).

This is absurd : (P3) cannot hold.

e FE, or El : This case looks like A;. We have to use different kinds of
morphisms depending on whether 31 + (n — 1) + 1 vanishes or not.
We leave the details to the reader.

e E;UCUD : Let’s deal with the case K # (), the case £ # () being
symmetrical. Let ¢ be such that q, —min{aJ|1 < j < n} We must
have i # do. We get a; a,a, <0 a; a;—p'a; — X af a0, 4§ 5 2K a; af a;
and this contradicts (FPy).

e F': Quotienting out by the ideal generated by 3" a,a; —\; and 3" a; a, —
A2, with A\ + Ay = X\ # 0, we are brought back to case C' U D, and we
conclude by lemma, 6.

1,1),

( Y

o A, Ag UBi, AyU B, : Let 4,j be st. a; > a;. Then —a;a,a]

j
a;a;a; — a; and (Py) cannot hold.

o Ay UD : We have Aay, < a;,a;5a;, — pa;, — >z 0;,0; a; and (Py)
cannot hold.

e A;UD : Wedefine § : B — Cl(n,0) := K{(x1,...,Tn)/{ziz;+x;x;i—0:ij)
by 6(a;) = 6(a) = ﬁxi, we then use lemma 7.

2

.Agl

— (a) : Suppose that a, is the sup of the a,’s, and choose j # i. We

find: —a;0;0] < a;0;0] = (1=PB)a; + B°Xaf apa;— BE 0,05 ay.

This contradlcts (Py).



46 F. Besnard

— (b)'Ifn>3 let 1,7 # ig bes.t. a; < a;. Then —q;a;0] 00,0 —

7 ] 771
—azoa]am, which contradicts (P4) If n =2, one cain easﬂjy show
that i # jo leads to a contradiction. We can then assume that
io = jo = 2. If we define < by a, < a; < af < aj, we see
that S = {a1a2—> —ayay, a3 af — —afad,a,af —va,a] , afa,—\ —
aayay — aja,} is confluent and adapted to <.
T = {a,"a" .. afrai"a,™ai™ .. a,™af™}. We proceed ex-

actly as in case (1,1), UC U D.

Ay UB; UF : It can easily be shown that neither the system (a) nor
the system (b) is confluent.

Cor CUD : We do as in case (1, 1),.

E, or EY : Once again, if n > 3, we can easily show that (P;) does not
hold. If n = 2, we find a confluent reduction system, and we show that
(P;) does not hold.

E,uCUD : See (1,1), ((Ps) does not hold).
e F: See (1,1), ((Ps) does not hold).

This is the end of the demonstration for the case n > 2. Let us know look
at the case n = 1.

The only relations we can have are : (2,0), (A3), (Bs), and (F) (by lemma
1).

(2,0) :

e Ay:d’at=0=a=B=0
e B, : Symmetrical to the above case.

e F': Multiplying caa™ + Bata = 1 to the right, then to the left by a we
get a = (3, and we recognize the Clifford algebra C; which is a solution
to our problem.

Ay or By : We can send B to C = K|z, y|/{zy — 1), by a non-zero isomor-

phism, and we conclude by lemma 5.

F:Ifa+p #0, we can send B to K[z, y]/{zy — (1/a+ §)) and use lemma

5.

If B = —a, we find the Weyl algebra A;, which is the bosonic solution.
QED.
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B End of Proof of Theorem 2

We define a well-ordering < on X by a; < a; & af < a}L & 1 < 7 and

(3
al < a; for all i, j € Z,. We call <,, the deglex-ordering defined by <.
As we did in the finite case, we can easily get rid of the ideals that contain
relations (1,1)., (1,—1), or (2,0), on the one hand, and A,, on the other
hand. Furthermore, the relations (2, 0) together with E or A; UB; UE imply
B =1, as is easily seen by multiplying ayad + Baga, = 1 on the left, then on
the right, by a,.

(1,1)cU(1,-1), U (2,0) : The only case to study is E. If we multiply the
relation E on the left by a;, with i # j, we get Aa; = 0. Thus B = 0, in
contradiction with (FPp).

(1,1)g or p U (1,-1), U (2,0) :

e Eor A UB;UE : Let us multiply a,af + Ba; a;, = A on the left by
a; and on the right by a;, with 1, j, k distinct. We get a,a; = 0, and we
are back to the previous case.

(1,1).u(1,-1),U(2,0):

e £, EUA;UBj: We have rs = 0 (see the finite case F'). Now if s = 0,
we see that Aa; = ¢;a;a] + Ba;af a; vanishes if 4 # j. The case r = 0
is symmetrical.

(1,1),u(1,-1), U (2,0) :

e E: We have (with ¢, j, k distinct) :
Araaf = r(aa08 af + Baay agal) = sha;a;)

= (r— s)aia;r =0

If aia;-F = 0, we easily find that B = 0, thus we can assume r — s = 0.
We also have :

{ Aa; = a;%a; + Ba,af a; = Ba,af a,
Aa; = a;a; a; + Ba;a;? = a,a] a,

So =1 by (P,). Thus B is a fermionic algebra C,.
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e F'UA;UB;y: Thanks to the previous case we have r—s =0 and g = 1.
We let the reader use the relations A; and By to show that B = 0.

(1,1)pU(1,-1), U (2,0) : This case is similar to the preceding one, except
that we find pseudo-fermionic instead of fermionic algebras.

(1,1).U (1,-1)p : We can do as in case (1,1). U (1,—1), U (2,0).

(1,1)a or s U (1, 1), : We must have a,a; = 0 (see the finite case).

(1,1) U (1,=1), :

: : +_ + o+ +o o) — +ot, —
e E: We have : ra,aj = r(a,a,0) af + Ba,af apaj) = —sBaafaja), = 0.

It entails that sa;a; = 0. If q;a; = 0, we get \a; = a,a;a] + Ba;afa; =
0, thus B = 0. This is the same if o] a; = 0.

(1,1)pU(1,=1)4 :

e Ay, AgUBy, AgUBy : If r+ 5 # 0, we find B = 0 (see the finite case).
Ifr + s = 0, we define § : B — C := K[(xi)ie.’[a; (y,)zeza]/(xzy, — 1) by
a; — r; and a; — y;. Thus (P;) cannot hold, by lemma 5.

e F : According to the finite case, we must have r + s = 0.

— If B4+ 1=0: We find a bosonic algebra A,.

—If B+1 # 0: We can non-trivially map B onto K[(z;)icz,]/
(x2 —1/(1 + B)) by a;,a; — z;. Thus (P3) cannot hold.

e FUA;UB;: Of course we must also have r +s = 0. If 5+ 1 =0,
we have a quotient of a bosonic (Weyl) algebra, which is simple. Thus
B =0. If $+1# 0, one shows that Z(B) = B° (see the finite case).
Thus (P;) cannot hold.

(1,1)qU(1,—-1), :

o Ay, etc...: If r = 0 we have g;a]a; =a; =0= B =0. Sor #0, and

i

we have :
+ __ +
= a; = —qa;

Thus ¢ = —1 or else B = 0. Now, we can define ¢ : B — C, with
C = K{(z;)iez,)/{Tizj + Tj7; — 2055), by a;,a] — x;, and we conclude
by lemma 7.
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¢ E:r=0=a;=0a0]a;+ fafa0; =0 — Bafaa;=0= B =0.
We can then assume 7 # 0. We have :

aj(az-a;-F + Bata;) = a;

= —q(a;0f + Bafa;)a; = a;
Therefore ¢ = —1.
— B # —1: We define ¢ : B — K{((z;)icz, )/ {Tix; + xj2; —

We conclude as in case As.

2
T+ 500

— B =—1: We have a pseudo-bosonic algebra A,.

e FUA;U By : One can easily show that r = s and 1 4+ 8 # 0. We can
then map B onto C = K(x;|i € L,)/{z;x;+xjr; — 20;;) and use lemma,
7.

(1,1)cU (2,0) : The only case to study is E. In this case B =0 (see (1,1).U
(1, l)a or s U (2, 0)
e F : As we said at the beginning of this section, we have § = 1. There-

fore, we can define ¢ : B — C; := K{(a,a")/{a?,a*?, aa* + ata — 1),
by setting a; — a, aj — a*. We then use lemma 8.

e EUAUB : a0; = a;(a,0] + Bafa;)a; = 0, so we are back to the
case (1,1)..

(1,-1),U(2,0) :

e Eor EUAIUB; : f=1,and if i # k # j, a;(a05 + affay)a; =
Aa;a; = 0, and we are back to a previous case.

(1,-1), U (2,0) :

e £ : B =1. We can assume r # 0, the case s # 0 being symmetri-
cal. S = {a,a7 =1 — a}a,,a,2—0,at’—0, a;0] —qa;a;} is a confluent

1

reduction system, which is adapted to <,. Let J = (j1,...,Jr) and

K = (ki,...,ks) be two tuples of indices. We write af; = a; ...a} and
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ax = ay, ...0,. By convention, ay = ag = 1. With these notations,
the basis of irreducible monomials is T = {a}a,}, with 7, K running
over all tuples such that j,, # jm+1, km # kms1. The notation & > J
shall mean that k is greater than all indices appearing in J. So let
k> J,K. We have :

+ — t +
lagag, ] = a{a’lca’k - a‘lﬁjflc
= Qzax0, — ¢ 070,05

Then if Im(N;)=aka,, we see that for k big enough : Im([N;, q,]) =
atagac, which is different from —a, and from 0. Thus (P;) cannot
hold.

e FUA,UB;: We have :
Aa;a; = a;(agagd + ﬁaf{ao)aj
= Aa,a; = 00,0 a; + faa} aa;
= qa; = 0
(1,=1)y :
e E,EU A, UBy : With k # 4 # [, we have a;(a;a; + Ba; a;)a, = 0.
(L, =1)a:

e Ay : If r = 0 then B =0 (see (1,—1), U (1,1),). If r # 0 then S =
{a,0f =1, a;0] —qa] a;} is confluent and adapted to <,. T = {ajay},
where J and K run over all tuples of indices, is the corresponding basis,
and if k > J, K we have : [a}ay, ] = akaxa;, — ¢¥labagar. Thus,
we see that (Ps) does not hold, as in case (1,—1), U (2,0) U E.

e Ay UBy, A2 U By : 7 # 0 by the above. We have, with 7 # j :

+. ot
a;a;a;0; = 1

oVt 2t
= aj(ai ai)aj =q°a; a;a

+o 2t
jai—qaiai—l

_|_

therefore ¢*a,a; a; = ¢*a; = a;, thus ¢* =1 or else B = 0.

—If g =1: We define ¢ : B = Klz,y]/(zy — 1), by ¢(q;) = =,
#(a;]) = y. We then use lemma 5.

i
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— If g = —1: We define ¢ : B = K((%)iez,)/{Tix; + z;z; — 25;5),

and we use lemma 7.

e £ : We can assume r # 0 (the case s # 0 is symmetrical). S =
{a;a; =1 — Bafa;,a;0] —qa a;} is confluent and adapted to <,, and
T = {a%a,}. We find [aja,c, ai] = ¢™atafar — ajf aax, and we can
do as above.

e FUA;UB;s: Let us assume 7 # 0, the case s = 0 being symmetrical.
We have :
i)

(a,a{ )a; = a;(a] ;)

= a; — Bag aya; = a,a8 ay = qag a;a,
= qafaaya;
=1 - fagay — Bagag(1 = fafay) = ¢*af (1 — Bag ao)ao
= 1+ (=28 - ¢*)afay + Baf (1 — Bafag)ay = —Bq’ag ao
= 1+ (8* =26 — ¢’)agao + (=5° + fe’)ag "ay’ =0 (17)

Now we can define an homomorphism ¢ from the Weyl algebra Ay =
K{a,a%)/{aa™ —ata — 1) to B by ¢(a) = ay, and ¢(a*) = ag. Since
A; is simple, either ¢ = 0 or ¢ is injective. But from (17), Ker(¢) # 0.
Then ¢ = 0, therefore B = 0.

= q;a;] — Baf aya,0;

e E, EUA, UB; : With j # i, we have a,(g;a] + Baa;)a; = a;> =0,
and we find a case already studied.
(1, l)b :

o Ay, etc... : We define ¢ : B — Klz,y|/{zy — 1) by ¢(q;) = =,
#(a]) =y, and we use lemma 5.

e For FUA UB; :

— B# —1: We define ¢ : B— Klz,y]/(zy — 1/(1 + 5))

— B=—1: We define v : B — Ay, by ¥(a;) = a, ¥(a) = a™, and
we use lemma 8.

1,1

—~~
~—
S
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o Ay etc... : We define ¢ : B = K((2;)iez,)/{(xiz; + x;x; — 25;5), as in

case (1,1), U (1, —1),.
E:

— B # —1: We define ¢ as in case (1,1), U (1, —1),.
+

— B = —1: We quotient out B by the ideal generated by a;a;” —a,ag
and a;fa; — af ay, we thus obtain the algebra B’ of case EU A; U
B;. Now this algebra is non-zero and does not contain number
operators (see below), so neither does B.

FUAUB; : If B # —1 we do as above. If 5 =1 we see that the reduc-
+ +

tion system Sy = {a;a] —1+ag ay, a;’aj—marao, @;0;— —0;0;, GF A —>—
ajafli,j € To,i < j}, adapted to <, is not confluent. Let us call
S the confluent reduction system that we get from S, by the non-
commutative Buchberger algorithm (i.e. we inductively reduce ev-
ery ambiguity. See [Berg|, [Ufn| or [Besl] for details on this algo-
rithm). After three iterations (this can be calculated by hand, or
preferably with a computer program, such as bergman, available at
http://www.matematik.su.se/research /bergman/, or the one in [Besl],
available at http://perso.wanadoo.fr/fabien.besnard/), one sees that
Vi, j, k, a;a;a; and a;a] a; are reducible with respect to S (all the de-
tails are in [Besl]).

Now let T be the basis of irreducible monomials corresponding to S,
and let x belong to B0 := {x € B| Vi € T, [N;, 7] = 0}. According
to what we have just said, z is of the form :

— + Ta. at al a. .
(1) ai\ .. af a0, ...a; a5 a; . ...a; ., or
_ + ot
(2) a; 0}, - .. a;a} , or
+ +
- (3) aj,aj, ...aj a;

In each case, the tuple of indices 7 and the tuple of indices j are equal
up to the order.

Since for all 4, , k, a;a;a; and a,a] o) are reducible, one can see that

k
the three cases reduce to : z = ag " a,*. Thus :

BO:-0) — {a:{kaok|k € N}
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As a consequence, we find that Vi, j, N; € B0 is stable under the
action of the transposition automorphism 7;;. Now :

Ti*;[Ni,a;L] = [TizNiaTi?aj

& 750 = [Ny, af
Saf =
Thus (Ps) cannot hold. We must now prove that B # 0.

We first note that the algebra A, generated by the &;’s and & ’s, satis-
fying £, + &€ = 676/ +&16F = 0, for i # j, and & = £/¢, = 1,
is non-zero (we can for instance quotient it by the ideal generated by
the £ — &, thus obtaining a Clifford algebra which is clearly non-zero).
Let us then consider B; := A® A;, and set b, := &, ®a, b =& ®at.
We have, for i # 5 :

bibj +bb; = £, ® a® + £;6,®a” = (£ +€;6) ®a® =0
bbb = et @ ot v EFEf @0t = (7€ v €€ ) @att =0
b —bjb; = () @ata— () ®aTa=1®a"a~1®aTa=0
bt — bt = (£&7) ®aa™ — (§;6)®aat =1®aa” —1®aa” =0
and :
b;b7 —bfb, = (§&7 ) ®aat — (1) ®aTa =1®(aa™ —aTa) =101 =1

We thus see that B can be non-trivially mapped to B; by (a;) := b
and 9 (a;) = b, which proves that B # 0.

(2,0) :

e For EUA;U B, : We already know that 8 = 1. We can thus define
¢ as in case (1,1), U (2,0).

0 : In each sub-case, we can define an homomorphism ¢ as in one of the cases
above.

o Ay etc... : B— Klz,y]/(zy —1)
L] E, EUA1UB1

- B#—-1: B— Klz,y]/(zy —1/(1 + 8))
— /8:—1 : B—)Al
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So we see that the only possibilities were (pseudo)-fermions and (pseudo)-
bosons, that we have respectively found in cases (1, 1), or sU(1, —1),U(2,0)U
E, and (1, ]-)a or » U (1, _1)(1 UE.

C End of Proof of Theorem 3

Let B be an algebra fulfilling the hypotheses of theorem 3. This algebra will
also fulfill the hypotheses of theorem 2, except (P3), which is replaced by
(P3) which is the same as (Ps) except that the N; are allowed to belong to
B instead of B. One can verify that proposition 4 still holds in this context,
since it only depends on the gradation of B by the ¢-numbers. Thus all
we have to do is to re-examine the cases of appendix B which have been
eliminated by the hypothesis (P3). We will have then to verify whether they
fulfill (H,), (H,), and (Ps).

First of all, let us note that in the cases containing B, we have a;° nai” =1,
thus (H;) cannot be true.

Let us look at the remaining cases.

(1,1)p,U(1,-1), U (2,0) :

e £, B = 1: We have the pseudo-fermionic algebra B = (. The
hypotheses of lemma 14 are fulfilled, (H;) and (H;) are easily seen to
be satisfied. The elements of B can be written

m . .
> > Milalafag ..
=0 i.1<”'<i,’"
J1<.--<j;
the second sum being finite for each /.
If x € Z(B), v = limy, 7, with z; € B°, by lemma 15, so that we must
have Vi € Z,,, lim[zg, a,] = 0.

Thus Vn, 3p, k > p = [z, ;] € V. Now [af ...afa; ... aj,0a;] equals
a;i -0 al oooaiag, . ag, if i =g, and 0if @ ¢ {iy,. .., 0k ).

We thus have x, € K+V,+V1 (53, where Vr\ ;) is the left ideal generated
by {a[j # i}. So we see that z € K +V,, + Vp (i}, for all n and for all

1. This shows that z € K.

(1,1)qU (1,—1),U(2,0) : This case is similar to the previous one, except
that for £, 3 =1, we get B = Cr.
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(L,1)pU(1,-1)4 :

Ay : See E, with = 0.

Ay U B; ¢ We must have r +s = 0. As in the finite case one shows that
a;fa; = 1. Thus (H;) cannot be fulfilled.

E : r+ s =0. We are in the bosonic and g-bosonic (¢ = —f) cases.
We can use lemma 14 with T = {afa |i; < ... <4, j1 <... <j}
(H,) is clearly true. One shows that B is central exactly as we did in
case (1,1), U (1,-1)4 U (2,0). For ¢ # +1, one sees that the number
operators are given by

1

S (1—¢q)f &
N,:Z(l_ ,)Ca;’ a;® + i1
k=0 q

(this had been shown in [CS]).

EUAUB; : r+5=0. As we have already seen, we have Z(B) = B°.

Then if (H;), (Hs) and (P3) were true, we would have Z(B) = B°,
which entails that (P3) cannot be true, a contradiction.

(1,1),U (1,-1),: This case is similar to the previous one. We find the

pseudo-g-bosons in case E.
(1,1). U (2,0) : Since Vk > 2, Vi, = {0}, we have B ~ B.
(1a l)a or b U (2a 0)

FE: 3 =1. We define ¢ : B — (7 as in appendix A. Suppose that
there exist number operators Ni € B. Then let u, € B be such that
N; = lim,, u,,. Take j # i. We must have lim, ([u,, ¢;] + @;) = 0 and
limy, [tg, a;] = 0. Thus In such that [u,, a;] +a; € Vo and [ug, ;] € V5.
But ¢(V2) = 0. Thus [¢(uy),a] + a = 0 and [¢(u,),a] = 0, which is
absurd.

F U A, U B, : same as above.

(1,-1), U (2,0)

o F: =1.
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— r # 0: The reduction system S = {a,a; >1—a; a;,a,>°—0, a; —>O

Rt
a;a; —qafagli # j} is confluent. The basis of irreducible mono-

mials is T = {afa|ir # ir+1 and js # jsy1}. Let us define the
degree of a monomial in B to be the degree of its normal form.
Then d°(ak) = k, and a;a7; is a linear combination of monomials
of degree > k. More precisely, they are of degree k£ + 1 whenever
i¢J.

Suppose there exists a number operator N;. Then N; = Y, N,
with d°(NF) = 2k. Now let j be such that j # i and j does
not appear in any monomial of the support of N} or N? (there
is a finite number of such monomials). Then [Nja;] = 0 =
[N}, a;] = 0. Now N} = ¥, \eaff ay, (finite sum). Thus [N}, a,] =
S Melagh aka qafa;a;) =0,s0 Ay, = 0 and N} = 0.

Now only [N}, a;] can provide terms of degree 1 in [N;, q;]. Con-
sequently, N cannot exist.

r = 0: Let us multlply a to the right by a; a + amam, with

11 # 2. We get : 21 = a+a+aZ2 In the same Way we have a+ =
a;;aj;am, with i3 # i, thus a+ a“La“La“Laz:,,(zz2 By 1nduct10n we

see that a; € Ngen- Vi, 80 (Hl) cannot be fulfilled.

e Ay, 7 =0: We do as in the case (1,—1), U (2,0) U E.

e AyUB;, r#0: we find afa; = 1.

o F:

— 17 # 0 : We have a confluent reduction system and we can use the

same argument as in case (1,—1), U (2,0).

+.,+ +

— r=0: Since a;a; a; = a;, we can do as in case (1, 1), U (2,0).
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e Ay U B; : The following relations hold in B :

+ 4+ _ o+ -
ag aga; = aj, Vi #0
to oot ot C o ;o
ajaga =a;japa;, Vj>i, k#1,]
a;0;0; = ai-, Vi < g
a0;08 = a;apa;, Vi< g k#4,j
+ _ _|_ + . . . .
a,a; ai = q, aiaj, Vzgj.,k?éz,j
a;a; aj = a;, Vi < j
+ _ + . . . .
ajap a; = a;apa;, Vi >, k#4,]
+ _ .
a;ag ag = a;, Vji#0

To see it, one should use the non-commutative Buchberger algorithm
on the initial reduction system. This can be done with the computer
programs already cited. See also [Besl] for a detailed account of the
calculations. So, as in appendix B, (1,1), U F U A; U By, we can prove
that B® =Span{ag“a,*|k € N}. Now take i and j, two distinct indices,
and set N; = lim,, z,,. We have : Vn € N, 3k such that [z, ;] +a, € V,,
and [zy,a;] € V,. Now if 7, is the automorphism induced by the
(4, j)-transposition, we have : 77,7y = zy, and 7;V, = V,, so that
75ilTk, 0] = [k, 0;] € Vi, thus a; € V;,, and this is true for all n. So if

(H,) is satisfied, (Ps) is not.

e For FUA UBs:

— B = —1: We can send B onto A; by %, as in the finite case.
Suppose that [V; is a number operator, and take j # . If u, is a
sequence in B that converges towards N;, we must have for n large
enough : [un, a;]+a; € Vi and [ug, a;] € V4, so that [¢(u,),a]+a €
atA; and [p(uy,),a] € atA;. Now (—a+atA;)NatA; =0, a
contradiction.

— B # —1: We can use the same method if we send B onto the
g-bosonic algebra (¢ = —f) Al. Since (—a + aTA?) N A} = 0, we
arrive at the same conclusion.

: Let us prove the following relations by induction :

+ — (1)
a;a;, ---a; 07 = (=1)a; ...q;
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+ ot — (1t +
aag, - - a;a; = (=1)af .. .af

forall ¢ <i; < ... <14; <k. They are true for j = 0, so let us suppose
they are true for j. It suffices to multiply on the left by a;,,, in the first
relation, and on the right by az‘-g ., in the second one, to see that they are
still true for 7+1. It is then easy to see that the reduction system formed

(1) + +ot s(_1)igt +

by a;a;, ... a; a7 = (=1)a; ...q;, aa; ...a;ay—(=1)a .. af, and
+,+ +qt C S g :

a;a;— — a,a;, aja; — — a;a for all j > i, is confluent. So (Hy) is

not satisfied, indeed : Vi, < ... <4y and i ¢ {i1,..., 0}, a;0f ... a; is
irreducible and V;, =Span{a}z| |J| = n and a}z irreducible}.

Ay U By @ We can use the same method as in (1, 1), (see [Besl]| for the
computer calculations).

E : Let us call p the quotient map p : B — B' := B/{{a,a; —
agag ,aia; — aja,li € I}). Suppose B satisfies (Ps) and set N; =
lim, Z,, 7 # 0, with z, € B°. Then p(z,) € B but we know that B’
is generated by the a{kaok’s. Thus p(z,) is invariant by any transpo-
sition 775. For all k there exists an n such that [z,,q,] + a; € Vj, and
[n; a;] € Vi Thus [p(zn), p(a;)] + pla;) € p(Vi) and [p(zn), p(a;)] €
p(Vi). Using 7% on the second equation, and subtracting from the
first, we find p(a;) € p(Vi). Then, using ¢ : B’ — By, defined in the
appendix B :

a®& € (e ®1)Bg

but this is false, as we can see by using the basis {a*"a* ® &}, where
{&} is a basis of A containing &;.

EUA; UB; : We know that B® =Span{aj”“a,*}, thus we can do as in
case (1,1), U Ay U By.
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