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Abstract

This paper revisits the Taylor method for the numerical integration of initial
value problems of Ordinary Differential Equations (ODEs). The main goal is to
show that the Taylor method can be competitive, both in speed and accuracy, with
the standard methods. To this end, we present a computer program that outputs an
specific numerical integrator for a given set of ODEs. The generated code includes
adaptive selection of order and step size at run time. The package provides support
for several extended precision arithmetics, including user-defined types.

The paper discusses the performance of the resulting integrator in some ex-
amples, showing that it is a very competitive method in many situations. This
is specially true for integrations that require extended precision arithmetic. The
main drawback is that the Taylor method is an explicit method, so it has all the
limitations of these kind of schemes. For instance, it is not suitable for stiff systems.
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1 Introduction

Let us consider the following problem: find a smooth function x : [a, b] → R
m such that

{

x′(t) = f(t, x(t)),
x(a) = x0,

(1)

where f : [a, b] × Ω ⊂ R × R
m → R

m is a smooth function, Ω =
◦

Ω and m ≥ 1. There
is a classical result of the theory of ODE that ensures the existence and uniqueness of a
function x(t), defined on [a, b0] ⊂ [a, b], satisfying (1). However, the effective computation
of such a function is a much more difficult question.

The search of good numerical methods for (1) is one of the classical problems in
numerical analysis. The usual procedures are based on approximating the values x(t) on
a suitable mesh of values of t. For the moment, and to simplify the presentation, we will
use an equispaced mesh and we will assume that x(t) is defined on the whole interval
[a, b]. Therefore, if M ∈ N, we define

h =
b − a

M
, tm = a + mh, 0 ≤ m ≤ M.

The problem now is to find approximations xm to the exact values x(tm). The compu-
tation of these approximations xm is usually performed recurrently from the (previously
computed) values x0, . . . , xm−1. Each step of this recurrence is known as a time step, and
its computer implementation is also called a time-stepper.

In this paper we will revisit one of the oldest numerical procedures for the numerical
integration of ODEs: the Taylor method. For simplicity, we will assume that the function
f is analytic for (t, x) ∈ [a, b]×Ω. The idea of the method is very simple: given the initial
condition x(tm) = xm, the value x(tm+1) is approximated from the Taylor series of x(t)
at t = tm. The algorithm is then,

x0 = x(a),

xm+1 = xm + x′(tm)h +
x′′(tm)

2!
h2 + · · ·+

x(p)(tm)

p!
hp, m = 0, . . . , M − 1.

(2)

We refer to [HNW00] for a discussion of the basic properties of the method. One of the
key points for a practical implementation is the effective computation of the values of the
derivatives x(j)(tm). A first procedure to obtain them is to differentiate the first equation
in (1) w.r.t. t, at the point t = tm. Hence,

x′(tm) = f(tm, x(tm)), x′′(tm) = ft(tm, x(tm)) + fx(tm, x(tm))x′(tm),

and so on. Therefore, the first step to apply this method is, for a given f , to compute these
derivatives up to a suitable order. Then, for each step of the integration (see (2)), we have
to evaluate these expressions to obtain the coefficients of the power series of x(t) at t = tm.
Usually, these expressions will be very cumbersome, so it will take a significant amount
of time to evaluate them numerically. This, jointly with the initial effort to compute the
derivatives of f , is the main drawback of this approach for the Taylor method.



4 Numerical integration of ODEs by means of Taylor methods

This difficulty can be overcomed by using the so-called automatic differentiation
([BKSF59], [Wen64], [Moo66], [Ral81], [GC91], [BCCG92], [BBCG96], [Gri00]). This
is a procedure that allows for a fast computation of the derivatives of a given function,
up to arbitrarily high orders. As far as we know, these ideas were first used in Celestial
Mechanics problems ([Ste56], [Ste57]; see also [Bro71]).

An inconvenience of this method is that the function f has to belong to a special
class; fortunately, this class is large enough to contain the functions that appear in many
applications. We also note that the program that computes these derivatives by automatic
differentiation has to be specifically coded for each function f . This coding can be either
done by a human (see, for instance, [Bro71] for an example with the N -body problem) or
by another program (see [BKSF59, Gib60, CC94] for general-purpose computer programs).
An alternative procedure to apply the Taylor method can be found in [SV87] and [IS90].

One of the goals of this work is to present a software that, given a function f (belonging
to a suitable class), generates a complete time-stepper based on Taylor method. The
generated code is ANSI C, but we also provide a Fortran 77 wrapper for the main call to
the time-stepper.

A software package that performs a similar task is ATOMFT (written by Y.F. Chang)
that can be freely downloaded from the Internet (to get a copy you can visit, for in-
stance, http://www.eng.mu.edu/corlissg/FtpStuff/Atom3_11/ and retrieve the file
atom3_11.tar.Z). ATOMFT is written in Fortran 77 and it reads Fortran-like state-
ments of the system of ODEs and writes a Fortran 77 program that is run to numerically
solve the system using Taylor series.

One of the nicest characteristics of Taylor method is the possibility of using interval
arithmetic to derive bounds for the total error of the numerical integration. These ideas
have been used in ATOMFT to compute a step size that guarantees a prescribed accuracy,
but using the standard floating point of the computer instead of interval arithmetic. We
also want to note that the step size selections in “usual” numerical integrators (Runge-
Kutta, Adams-Bashford, etc.) are based on the asymptotic behaviour of the error, and
they do not provide true bounds for the truncation error of the method. On the other
hand, the derivation of the time step in ATOMFT is a substantial part of the computing
time, while an estimation based on the asymptotic behaviour of the error is usually much
faster.

Here, we have implemented a step size control based on an asympotic estimate of the
error. The main reason for this selection is that we want to compete against the “usual”
numerical integrators – which use similar step size control techniques. Moreover, as we
will see later, our software allows the user to plug in its own step size control, so it is not
difficult to implement different strategies.

For an efficient numerical integration, we need some knowledge of the order p ∈ N up
to which the derivatives have to be computed, and an estimate of the step size h, in order
to have a truncation error of the order of a given threshold value ε. We note that, as we
have to select the value of two parameters (p and h), we can ask for a second condition
besides the size of the truncation error. Here we have chosen to minimize the number of
operations needed to advance the independent variable t in one unit ([Sim01]). We have
also coded the algorithms to do these tasks so that the output of the program is, in fact, a
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complete numerical integrator –with automatic order and step size control– for the initial
value problem (1).

We have tested this Taylor integrator against some well-known integration methods.
The results show that Taylor method is a very competitive method to integrate with the
standard double precision arithmetic of the computer. However, the main motivation
for writing this software is to address the need of highly accurate computations in some
problems of Dynamical Systems and Mechanics (see, for instance, [MS99], [SV01] and
[Sim]). Methods whose order is not very high (less than, say, 12) can be extremely slow
for computations requiring extended precision arithmetic. This is one of the strong points
of the software presented here: note that Taylor method does not need to reduce the step
size to increase accuracy; it can simply increase the order (see Section 3.4). As we will
see, this allows to greatly reduce the total number of arithmetic operations during the
numerical integration.

As any explicit scheme, the Taylor method is not suitable for stiff equations because,
in this case, the errors can grow too fast. However, there are modifications of the Taylor
method to deal with these situations ([Bar80], [JZ85], [KC92] and [CGH+97]). These
modifications have not been considered in our software.

In the paper we present the main details of our implementation. We have tried to
produce an efficient package, in the sense that the produced Taylor integrator be as fast
as possible. Moreover, we have also included support for multiple precision arithmetic.
We have done several test to compare the efficiency and accuracy of the generated Taylor
routine against other numerical integrators.

There are several papers that focus on computer implementations of the Taylor method
in different contexts; see, for instance, [BWZ70], [CC82], [CC94] and [Hoe01]. A good
survey is [NJC99] (see also [Cor95]).

The package has been released under the GNU Public License, so anybody with In-
ternet access is free to get it and to redistribute it. To obtain a copy, yo can visit the
URLs

http://www.ma.utexas.edu/~mzou/taylor/ (US)
http://www.maia.ub.es/~angel/taylor/ (Europe)

We note that the actual version of the package is written to run under the GNU/Linux
operating system. We do not expect major problems to run it under any version of Unix,
but we do not plan to write ports for other operating systems.

The paper has been split as follows: Section 2 contains a survey about automatic
differentiation, Section 3 is devoted to the selection of step size and truncation degree,
Section 4 gives some details about the software and Section 5 provides some tests and
comparisons.

2 A short summary on automatic differentiation

Before starting with the discussion of the package, we will summarise the main rules of
automatic differentiation.

Automatic differentiation is a recursive procedure to compute the value of the deriva-
tives of certain functions at a given point (see [Moo66, Ral81]). The considered functions
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are those that can be obtained by sum, product, quotient, and composition of elemen-
tary functions (elementary functions include polynomials, trigonometric functions, real
powers, exponentials and logarithms).

2.1 Rules of automatic differentiation

To simplify the discussion let us introduce the following notation: if a : t ∈ I ⊂ R 7→ R

denotes a smooth function, we call its normalized n-th derivative to the value

a[n](t) =
1

n!
a(n)(t). (3)

where a(n)(t) denotes the n-th derivative of a w.r.t. t. In what follows, we will focus on
the computation of the values a[n](t).

Assume now that a(t) = F (b(t), c(t)) and that we know the values b[j](t) and c[j](t),
j = 0, . . . , n, for a given t. The next proposition gives the n-th derivative of a at t for
some functions F .

Proposition 2.1 If the functions b and c are of class Cn, and α ∈ R \ {0}, we have

1. If a(t) = b(t) ± c(t), then a[n](t) = b[n](t) ± c[n](t).

2. If a(t) = b(t)c(t), then a[n](t) =
n
∑

j=0

b[n−j](t)c[j](t).

3. If a(t) =
b(t)

c(t)
, then a[n](t) =

1

c[0](t)

[

b[n](t) −
n
∑

j=1

c[j](t)a[n−j](t)

]

.

4. If a(t) = b(t)α, then a[n](t) =
1

nb[0](t)

n−1
∑

j=0

(nα − j(α + 1)) b[n−j](t)a[j](t).

5. If a(t) = eb(t), then a[n](t) =
1

n

n−1
∑

j=0

(n − j) a[j](t)b[n−j](t).

6. If a(t) = ln b(t), then a[n](t) =
1

b[0](t)

[

b[n](t) −
1

n

n−1
∑

j=1

(n − j)b[j](t)a[n−j](t)

]

.

7. If a(t) = cos c(t) and b(t) = sin c(t), then

a[n](t) = −
1

n

n
∑

j=1

jb[n−j](t)c[j](t), b[n](t) =
1

n

n
∑

j=1

ja[n−j](t)c[j](t).

Proof: These proofs can be found in the literature, so we only give some hints about
them.

1. Obvious.
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2. It follows from Leibniz’s formula:

a[n](t) =
1

n!
a(n)(t) =

1

n!

n
∑

j=0

(

n

j

)

b(n−j)(t)c(j)(t) =

n
∑

j=0

b[n−j](t)c[j](t).

3. Apply item 2 to a(t)c(t) = b(t).

4. Take logarithms and derivatives to obtain a′(t)b(t) = αa(t)b′(t). Use item 2 and (3).

5. Take logarithms and derivatives to obtain a′(t) = a(t)b′(t). Use item 2 and (3).

6. Take derivatives to obtain a′(t)b(t) = b′(t). Use item 2 and (3).

7. Take derivatives to obtain a′(t) = −b(t)c′(t) and b′(t) = a(t)c′(t). Use item 2 and (3).

Remark 2.1 It is possible to derive similar formulas for other functions, like inverse
trigonometric functions.

Corollary 2.1 The number of arithmetic operations to evaluate the normalized deriva-
tives of a function up to order n is O(n2).

Proof: The number of operations to obtain the j-th derivative once we know the previous
ones is O(j). Hence, the total number of operations is

∑n

j=1 O(j) = O(n2).

Although these methods only allow for the derivation of a reduced subset of the set of
analytic functions, we note that they cover the situations found in many applications.

2.2 An example: The Van der Pol equation

These rules can be applied recursively so that we can obtain recursive formulas for the
derivatives of a function described by combination of these basic functions. As an example,
we can apply them to the Van der Pol equation,

x′ = y
y′ = (1 − x2)y − x

}

.

To this end we decompose the right-hand side of these equations in a sequence of simple
operations:

u1 = x
u2 = y
u3 = u1u1

u4 = 1 − u3

u5 = u4u2

u6 = u5 − u1

x′ = u2

y′ = u6















































(4)
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Then, we can apply the formulas given in Proposition 2.1 (items 1 and 2) to each of the

equations in (4) to derive recursive formulas for u
[n]
j , j = 1, . . . , 6,

u
[n]
1 (t) = x[n](t),

u
[n]
2 (t) = y[n](t),

u
[n]
3 (t) =

n
∑

i=0

u
[n−i]
1 (t)u

[i]
1 (t),

u
[n]
4 (t) = −u

[n]
3 (t),

u
[n]
5 (t) =

n
∑

i=0

u
[n−i]
4 (t)u

[i]
2 (t),

u
[n]
6 (t) = u

[n]
5 (t) − u

[n]
1 (t),

x[n+1](t) =
1

n + 1
u

[n]
2 (t),

y[n+1](t) =
1

n + 1
u

[n]
6 (t).

The factor 1
n+1

in the last two formulas comes from the definition given in equation (3).
Then, we can apply recursively these formulas for n = 0, 1, . . ., up to a suitable degree p,
to obtain the jet of normalized derivatives for the solution at a given point of the ODE.
Note that is not necessary to select the value of p in advance.

One of the tasks of the software we present is to read the system of ODEs, to decompose
it into a sequence of basic operations, and to apply the formulas in Proposition 2.1 to this
decomposition. This results in an ANSI C routine that, given an initial condition x0 and
a degree p, returns the jet of normalized derivatives of the solution at the pont x0 up to
degree p.

3 Degree and step size control

In this section we will discuss the sources of error of the Taylor method, and how to select
the order p and step size h (see eq. (2) for the notation) to control both accuracy and
efficiency.

First, note that the power expansion of the solution x(t) at t = tm can have very
different radius of convergence for different tm, and that an efficient integration algorithm
must take this into account. This means that, at each step (i.e., for each m), we have to
compute suitable values p = pm and h = hm.

Moreover, as we have two parameters (order and step size) to achieve a given level of
accuracy, we can try to impose a second requirement: to minimise the total number of
arithmetic operations to go from t = a to t = b, so that the resulting method is as fast as
possible.
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3.1 The effect of roundoff errors

An extra source of error comes from the use of floating point arithmetic, and it mainly
affects to the computation of the sequence of normalized derivatives and the evaluation
of the Taylor polynomial.

3.1.1 On the Taylor polynomial

Before discussing the selection of order and step size, we want to note that different selec-
tions of p and h (with the same truncation error) can lead to very different propagation
of roundoff errors in the evaluation of the Taylor polynomial.

As an example, consider the initial value problem

x′′ = −x, x(0) = 0, x′(0) = 1,

and assume we are interested in computing x(8π), by numerical integration of the ODE,
with an error below 10−15. We know that the solution is x(t) = sin(t), so x(8π) = 0. The
Taylor series of the solution x(t) at t = 0 is:

x(h) =

∞
∑

j=0

(−1)j h2j+1

(2j + 1)!
. (5)

Due to the entire character of this function, we can think of using the step h = 8π (so
only one step will be needed) combined with a sufficiently high order. It is not difficult to
check that it is enough to sum the previous power series up to j = 95 to have a truncation
error less than 10−15. Then, a straightforward application of Horner’s method with double
precision arithmetic gives x(8π) ≈ 2.6965 × 10−7, which is unacceptable.

The source of the problem is that, in our case, the series (5) contains large terms that
cancel out and lead to the loss of many significant digits when the sum is carried out with
floating point arithmetic.

A solution for this problem is to use smaller values of h, to avoid these cancellations.
In fact, these cancellations cannot happen if we use a step size such that the terms in the
series are decreasing in modulus. For instance, in this case we should use h = 1 (and then
several integration steps to reach t = 8π). This phenomenon will be discussed again in
Section 4.3.2.

3.1.2 On the normalized derivatives

Due to the use of floating point arithmetic, the computation of the derivatives is also
affected by the roundoff. Moreover, the recurrent character of this computation implies
that these errors can propagate such that higher derivatives will have, in principle, larger
errors. Although a detailed study strongly depends on the vector field considered, here
we will discuss this issue in an informal manner.
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For instance, let us assume that we are making a single step of the Taylor method
with order p an step size h, to achieve an accuracy ε. Let us write this step as

xm+1 =

p−1
∑

j=0

x[j]
m hj + x[p]

m hp,

and let us focus on the last term x
[p]
m hp. Note that, if ε is small, the contribution of this

term to the total sum should be small. Therefore, this term (and, hence, x
[p]
m ) does not

need a high relative accuracy because, roughly speaking, we do not need digits whose
contribution goes below ε. Of course, we can apply this reasoning to all the normalized
derivatives so that we can allow for an increasing error in x

[j]
m when j increases, without

affecting the global error.
This property results in a very good behaviour for the error propagation of the Taylor

method.

3.2 On the optimal selections

Assume that, for a given time tm, the solution is at the point xm, and that we want to
compute the position of the trajectory for a new time tm+1 = tm +hm within a given error
ε. We will not assume that tm+1 is fixed in advance, so we have to determine not only
the degree of the Taylor expansion to be used but also the value hm.

So, let us denote by {x
[j]
m (tm)}j the jet of normalized derivatives at tm of the solution

of (1) that satisfies xm(tm) = xm. Then, if h = t − tn is small enough, we have

xm(t) =

∞
∑

j=0

x[j]
m (tm)hj.

Therefore, we want to select a sufficiently small value hm and a sufficiently large value p
such that the values

tm+1 ≡ tm + hm, xm+1 ≡

p
∑

j=0

x[j]
m (tm)hj

m,

satisfy
‖xm(tm+1) − xm+1‖ ≤ ε,

and, moreover, we want the total number of operations of the numerical integration to
be as small as possible. To determine such values, we need some assumptions on the
analyticity properties of the solution x(t). The following result can be found in [Sim01].

Proposition 3.1 Assume that the function h 7→ x(tm +h) is analytic on a disk of radius
ρm, and that there exists a positive constant Mm such that

|x[j]
m | ≈

Mm

ρj
m

, ∀ j ∈ N.
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Then, if the required accuracy ε tends to 0, the optimal value of h that minimizes the
number of operations tends to

hm =
ρm

e2
,

and the optimal order pm behaves like

pm = −
1

2
ln

(

ε

Mm

)

− 1.

Remark 3.1 Note that the optimal step size does not depend on the level of accuracy.
The optimal order is, in fact, the order that guarantees the required precision once the
step size has been selected.

Proof: Although the proof can be found in [Sim01], we will include it here for the
convenience of the reader.

The error introduced when cutting a Taylor series to a given degree p is of the order
of the first neglected term,

E ≈ Mm

(

h

ρ

)p+1

.

Hence, to obtain an error of order ε we have to select

h ≈ ρ

(

ε

Mm

)
1

p+1

, (6)

On the other hand, the computational effort to obtain the jet of normalized derivatives
up to order p is O(p2) ≈ c(p + 1)2 (see Corollary 2.1). So, the (instantaneous) number of
floating point operations per unit of time is given, in order of magnitude, by

φ(p) =
c(p + 1)2

ρm

(

ε
Mm

)
1

p+1

,

and, solving φ′(p) = 0, we obtain

p = −
1

2
ln

(

ε

Mm

)

− 1.

Finally, inserting this value of p in (6) we have h =
ρ

e2
.

There are strategies to use step sizes that are larger than the radius of convergence
of the series (see [CC82]), but they only work for some singularities and require some
computational effort (although this effort can pay off when the solution is close enough to
one of the considered singularities). As it has been mentioned before, we have implemented
a more straightforward algorithm based on Proposition 3.1.
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3.3 Estimations of order and step size

The main drawback of Proposition 3.1 is that it requires information that we cannot
obtain easily, like the radius of convergence of the Taylor series or the value of Mm. In
this section we will first describe, schematically, the numerical implementation and, then,
we will give some comments on it.

Let us denote by εa and εr the absolute and relative tolerances for the error. The
method we propose uses only one of these two requirements: if εr‖xm‖∞ ≤ εa we will try to
control the absolute error using εa; otherwise we will try to control the relative error using
εr. Note that, in any case, we are controlling the absolute error by max{εa, εr‖xm‖∞}.

First, we compute the order pm for the Taylor method as follows: we define εm as

εm =

{

εa if εr‖xm‖∞ ≤ εa,
εr otherwise,

(7)

and then,

pm =

⌈

−
1

2
ln εm + 1

⌉

. (8)

where d.e stands for the ceiling function. If we compare with Proposition 3.1, we see that
here the value Mm has been taken as 1 and that pm is two units larger. The reason for
these differences will be discussed later on.

To derive the step size, we will also distinguish the same two cases as before: if
εr‖xm‖∞ ≤ εa, we define

ρ(j)
m =

(

1

‖x
[j]
m‖∞

)
1

j

, 1 ≤ j ≤ p, (9)

and, if εr‖xm‖∞ > εa, we take

ρ(j)
m =

(

‖xm‖

‖x
[j]
m‖∞

)
1

j

, 1 ≤ j ≤ p. (10)

In any case, we estimate the radius of convergence as the minimum of the last two terms,

ρm = min
{

ρ(p−1)
m , ρ(p)

m

}

, (11)

Hence, the estimated time step is

hm =
ρm

e2
. (12)

Now, it is natural to ask for the truncation error corresponding to order pm and step
hm, specially in the case Mm 6= 1.

Proposition 3.2 Assume that the hypotheses in Proposition 3.1 hold, and that Mm is
not necessarily 1. Then:
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1. If εr‖xm‖∞ ≤ εa, and pm and hm are defined as before, we have

‖x[pm−1]
m hpm−1

m ‖∞ ≤ εa, ‖x[pm]
m hpm

m ‖∞ ≤
εa

e2
.

2. If εr‖xm‖∞ > εa, and pm and hm are defined as above, we have

‖x
[pm−1]
m hpm−1

m ‖∞
‖xm‖∞

≤ εr,
‖x

[pm]
m hpm

m ‖∞
‖xm‖∞

≤
εr

e2
.

Proof: From (8), it follows that e2(pm−1) ≥ ε−1
m .

1. This corresponds to use (9) in (11). Therefore,

‖x[pm−1]
m hpm−1

m ‖∞ ≤
‖x

[pm−1]
m ρpm−1

m ‖∞
e2(pm−1)

≤ εa,

and a similar reasoning shows the second inequality.

2. In this case we have used (10) in (11). So,

‖x
[pm−1]
m hpm−1

m ‖∞
‖xm‖∞

≤
‖x

[pm−1]
m ρpm−1

m ‖∞
‖xm‖∞e2(pm−1)

≤ εr,

and the the second inequality follows easily.

Remark 3.2 Note that the term of order pm − 1 in the Taylor series has a contribution
of order εm while the term of order pm (the last term to be considered) has a contribu-
tion of order εm/e2. Hence, this shows that the proposed strategy is similar to the more
straightforward method of looking for an hm such that the last terms in the series are of
the order of the error wanted.

Remark 3.3 Although to derive the order and step size we have assumed Mm = 1, its
real value is taken into account in formulas (9) and (10). This is the reason why Propo-
sition 3.2 also holds when Mm 6= 1.

3.4 High accuracy computations

An important property of high order Taylor integrators is their suitability for computa-
tions requiring high accuracy. For instance, assume that we are solving an IVP like (1)
and that, at a given step, we are using a step size h � 1 and an order p to obtain a local
error ε � 1. The number of operations needed to compute all the derivatives is O(p2)
(see Corollary 2.1). As the number of operations to sum the power series is only O(p),
the total operation count for a single step of the Taylor method is still O(p2). Hence, if
we want to increase the accuracy to, say, ε` (` ≥ 2) we can simply increase the order of



14 Numerical integration of ODEs by means of Taylor methods

the Taylor method to `p so the number of operations is increased by a factor `2. Note
that, if we want to achieve the same level of accuracy not by increasing the order but by
reducing the step size h, we have to use an step size of h`. This means that we will have
to use 1/h`−1 steps (of size h` each) to compute the orbit after h units of time so the total
number of operations is now increased by a factor of 1/h`−1, usually much larger than `2.

Hence, it requires much less work to increase the order rather than to reduce the step
size (this observation was already implicit in Proposition 3.1, where it was shown that
the optimal step size is independent from the level of accuracy required). Therefore, fixed
order methods are strongly penalized for high accuracies, compared with varying order
methods. For this reason, if the required accuracy is high enough, Taylor method –with
varying order– is one of the best options.

4 Software implementation

In this section we will discuss our implementation of the Taylor method. More details
can be found in the documentation that comes with the software.

The installation process of the package produces a binary file, called taylor, whose
basic operations are: a) to parse the differential equations to reduce them to a sequence
of binary operations and calls to the usual mathematical functions, and b) to apply the
rules of automatic differentiation (see Section 2) to produce a C function that evaluates
the jet of normalized derivatives up to an arbitrary order. Under user request, taylor
can code automatic degree and step size controls, in such a way that the final output is
a complete time-stepper for the given set of ODEs. Moreover, the user can also ask for
code with extended precision accuracy. Finally, taylor can also produce a simple main
program to call the time-stepper to integrate a single orbit. Under request, it can also
generate a Fortran 77 wrapper for the main call to the time-stepper.

In what follows, we will discuss these features with more detail, and we refer to the
user’s manual (included in the package) for complete explanations. A concrete example
can be found in Section 4.5.

4.1 The input file

This is an ASCII file with the description of the set of ODEs. For instance, Figure 1 shows
an example of such file. At present (version 1.4.0), the language supports any number
of phase space variables (some users have used taylor with a set of 200 eqs. without
trouble), external parameters, and loops involving parameters. It is not difficult to use a
high level language to output more sophisticated vector fields in the taylor grammar.

4.2 The jet of normalized derivatives

The first task of taylor is to decompose the formulas in the input file as a sequence of
binary and unary operations. Next, it applies first some optimizations to the resulting
tree –basically, to identify common expressions so that they are only computed once–, and
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then the rules of automatic differentiation (see Section 2.1). The result of this process is
a C function that computes the jet of the normalized derivatives: given a point in phase
space and a positive integer p, this routine computes the jet of derivatives up to order p.
If then we decide that we need a higher order, we can call this function again (now with
a higher value of p) and it will extend the calculation re-using the previously computed
derivatives.

4.3 Order and step size control

Under request, taylor also generates code for order and step size control, based on
the formulas of Section 3. The user has to provide, at run time, absolute and relative
thresholds that are first used to estimate the optimal degree by means of eqs. (7) and
(8). Then, the jet of derivatives is computed up to this order. We provide two methods
for deriving the step size, that are explained in the next sections.

4.3.1 First step size control

This corresponds to use formulas (7) and (8) for the order and (9), (10) and (11) for the
radius of convergence. Since these calculations are based on asymptotic estimates, we will
add a safety factor to formula (12) to derive the step size:

hm =
ρm

e2
exp

(

−
0.7

pm − 1

)

.

For instance, for pm = 8 the safety factor is 0.90 and for pm = 16 is 0.95. Those are
typical safety factors used in many step size controls.

4.3.2 Second step size control

This is a correction of the previous method to avoid too large step sizes that could lead to
cancellations (see Section 3.1.1). A natural solution is to look for an step size such that
the resulting series has all the terms decreasing in modulus. However, if the solution x(t)
has some intermediate Taylor coefficients that are very small, this technique could lead
to a very drastic (and unnecessary) step reductions. Therefore, we have used a weaker
criterion: let h̄m be the step size control obtained in Section 4.3.1 and let us define z as

z =

{

1 if εr‖xm‖∞ ≤ εa,
‖xm‖∞ otherwise.

Let hm ≤ h̄m be the largest value such that

‖x[j]
m‖∞hj

m ≤ z, j = 1, . . . , p.

In many cases it is enough to take hm = h̄m to meet this condition. On the other hand,
in situations like the example in Section 3.1.1, this strategy avoids selecting a too large
step size.
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4.3.3 User defined step size control

The time-stepper generated by taylor can work with fixed order and step size, or it
can use the procedures explained in Sections 4.3.1 and 4.3.2. We also offer the option of
calling external functions so that the user can easily plug in his own code for automatic
control of order and step size. This can be very useful in some specific cases where some
special properties of the solution are known. For more details, see the documentation.

4.4 Extended arithmetic

When taylor generates the code for the jet of derivatives and/or the step size control, it
declares all the real variables with a special type called MY FLOAT, and each mathematical
operation is substituted by a suitable macro call (the name of these macros is independent
from the arithmetic).

The definition of the type MY FLOAT and the body of the macros is contained in a
header file. This file is produced invoking taylor with the flag -header plus a flag
specifying the arithmetic wanted. For instance, to multiply two real numbers (z = xy),
taylor outputs the code

MultiplyMyFloatA(z,x,y);

If we call taylor with the -header flag and without specifying the desired arithmetic, it
will assume we want the standard double precision and it will generate a header file with
the lines,

typedef double MY_FLOAT;

to define MY FLOAT as double. We will also find the line

/* multiplication r=a*b */

#define MultiplyMyFloatA(r,a,b) (r=(a)*(b))

but, if we use the flag -gmp to ask for the GNU multiple precision arithmetic (see below),
we will get

#define MY_FLOAT mpf_t

and

/* multiplication r=a*b */

#define MultiplyMyFloatA(r,a,b) mpf_mul(r,(a), (b))

Here, mpf mul is the gmp function that multiplies the two numbers a and b and stores
the result in r. Then, the C preprocessor will substitute the macros by the corresponding
calls to the arithmetic library.

The package includes support for several extended precision arithmetics, namely
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doubledouble This is a C++ library that defines an extended float type, in which each
number is stored as the sum of two double numbers. The accuracy is then of nearly
30 decimal digits. The standard way of using this library is by means of overloading.
See http://members.lycos.co.uk/keithmbriggs/doubledouble.html

dd real, qd real This is also a C++ library, similar to doubledouble, that defines
the types dd real (2 doubles) and qd real (4 doubles), providing accuracies of
nearly 32 and 64 decimal digits, respectively. For more details, visit the URL
http://www.nersc.gov/~dhbailey/mpdist/mpdist.html

GNU Multiple Precision Library (gmp) This is the standard GNU library for ex-
tended precision. This library allows to define arbitrarily long integer, rational and
real types, and to operate on them by means of function calls (more details on the
library can be found in http://www.swox.com/gmp/). Unfortunately, this library
does not provide transcendental functions so, in principle, we are restricted to vec-
tor fields that can be written with the basic arithmetic functions plus square root
(those are the only functions provided for floating point types). However, as many
trascendental functions satisfy ordinary differential equations, we can simply add
those equations and integrate the whole set with taylor with the gmp arithmetic.
For instance, to code the vectorfield of the classical pendulum, ẍ + sin x = 0, we
can define x1 = x, x2 = ẋ, x3 = sin x and x4 = cos x so that the pendulum equation
takes the form

ẋ1 = x2, ẋ2 = −x3,
ẋ3 = x2x4, ẋ4 = −x2x3.

None of these floating point libraries is included in our package. They are only needed if
extended precision is required.

Note that to use an arithmetic different from the ones provided here we only have to
modify the header file. For more details, see the manual that comes with the software.

4.5 Using the package

Here we will shortly describe how to use the taylor program in a concrete example,
the Restricted Three-Body Problem (RTBP for short). This is a well-known problem in
Celestial Mechanics, that boils down to describe the solutions of the differential equations

ẋ = px + y,
ẏ = py − x,
ż = pz,

ṗx = py −
1−µ

r3
PS

(x − µ) − µ

r3
PJ

(x − µ + 1),

ṗy = −px −
(

1−µ

r3
PS

+ µ

r3
PJ

)

y,

ṗz = −
(

1−µ

r3
PS

+ µ

r3
PJ

)

z,

(13)

being µ a mass parameter, r2
PS = (x−µ)2 + y2 + z2 and r2

PJ = (x−µ+ 1)2 + y2 + z2. For
a more complete description of the problem see, for instance, [Sze67] or [MH92].
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/* ODE specification: rtbp */

mu=0.01;

umu=1-mu;

r2=x1*x1+x2*x2+x3*x3;

rps2=r2-2*mu*x1+mu*mu;

rps3i=rps2^(-3./2);

rpj2=r2+2*(1-mu)*x1+(1-mu)*(1-mu);

rpj3i=rpj2^(-3./2);

diff(x1, t)= x4+x2;

diff(x2, t)= x5-x1;

diff(x3, t)= x6;

diff(x4, t)= x5-(x1-mu)*(umu*rps3i)-(x1+umu)*(mu*rpj3i);

diff(x5, t)=-x4-x2*(umu*rps3i+mu*rpj3i);

diff(x6, t)=-x3*(umu*rps3i+mu*rpj3i);

Figure 1: Input file for the restricted three-body problem.

An input file for this vector field is shown in Figure 1. Let us start by describing
its syntax. First of all, anything between /* */ is ignored, so we can use them to put
comments in the file. Next, we have some lines to define numerical constants, plus some
operations with the variables of the system. The variables of the equation are labeled as
x1, x2 and so on, and the independent variable is labeled as t. Finally, the last 6 lines
are the definition of the differential equations.

Although we think that the notation used is clear and self-explicative, we want to
make some comments about it. First, the taylor translator does not make any kind of
optimization on the input description of the vector field, with the exception of common
expression eliminations. If one of your main concerns is the efficiency of the code generated
by taylor, you should apply other kind of optimizations “by hand” in your input file (for
instance, to simplify algebraic expressions to minimize the number of operations).

A second point we want to comment on is the use of the exponent “−3.0/2” in the
expressions. There are several ways of introducing such an exponent. If we use the
expression “−1.5”, the program will use the exp and ln functions to define it (this is true
for any real exponent). If we use “−3.0/2”, then we can use the flag “-sqrt” of the
translator to force the program to use the square root function instead of the exp and ln
functions. Without this flag, the value “−3.0/2” is treated as “−1.5”.

The input file supports more features than the ones showed here (like the use of
extern variables to receive parameters from the user’s programs); for details check the
documentation of the package.

To produce a numerical integrator for this vector field, assume that we have the code
of Figure 1 in the file rtbp.in. Then, you can type

taylor -name rtbp -o taylor_rtbp.c -step -jet -sqrt rtbp.in

taylor -name rtbp -o taylor.h -header
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(we have assumed that the taylor binary is in a directory contained in your path; other-
wise you should specify its location). The first line outputs the file taylor rtbp.c with
the code for the step size control and the jet of derivatives. The second line produces the
header file; it is needed for the file taylor rtbp.c, and the user may also want to include
it in the calling routine, since it contains the prototype for the call to the integrator.
There are more options to control the output of taylor, see the documentation for more
details.

Fortran 77 users can use a single instruction:

taylor -name rtbp -o taylor_rtbp.c -step -jet -f77 -header -sqrt rtbp.in

This will put everything in the file taylor rtbp.c, so you can simply compile and link it
with your (Fortran) calling routine. For details about how to call the Taylor integration
routine, look at the documentation.

Then, you can call the routine taylor_step_rtbp (with suitable parameters), to per-
form a numerical integration of the previous vector field. As it is usual in one step explicit
methods, each call advances the independent variable in some amount that depends on
the level of accuracy required. The details about this call (parameters, etc.) can be found
in the documentation.

5 Some tests and comparisons

We have selected three vector fields to show the main features of taylor. In the first
example (the RTBP) we have performed a detailed study of error propagation, including
comparisons with different floating point arithmetics. In Section 5.2 we will compare the
speed of the Taylor integrator with some common methods. We have also compared the
speed of generation of the jet of derivatives with ADOL-C, a public domain package for
automatic differentiation.

5.1 The Restricted Three-Body Problem

We will start by doing some numerical integrations of the RTBP (see Section 4.5). It is
well-known that the solutions of (13) have a preserved quantity,

H =
1

2
(p2

x + p2
y + p2

z) + ypx − xpy −
1 − µ

rPS

−
µ

rPJ

.

This function is known as the Hamiltonian function of the RTBP, and it plays the role of
the mechanical energy of the system.

As before, we will select µ = 0.01. We will use as initial condition the values x1=-0.45,
x2=0.80, x3=0.00, x4=-0.80, x5=-0.45 and x6=0.58, that produce a stable orbit that
seems to lay in a region almost filled up with quasi-periodic motions. In particular, the
trajectory stays away from the singularities of the vector field.
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t e(x) e(y) e(z) e(px) e(py) e(pz)

0.2401192324190174 0.00 0.00 -1.00 1.00 -1.00 0.00

0.4952158876100076 0.00 1.00 -1.00 0.00 -2.00 -0.50

0.7653659470347371 0.00 1.00 -1.50 0.00 -1.50 1.00

1.0000000000000000 0.00 1.00 -0.50 0.00 -1.50 2.00

Table 1: Local relative error for an orbit of the RTBP. The first column denotes the time
and the remaining ones the relative error for each coordinate, in multiples of the machine
precision. See the text for more details.

5.1.1 Local error

We will perform first a numerical integration with the standard double precision of the
computer, for 1 unit of time, using a threshold for the error of 10−16, with the step size
algorithm explained in Section 4.3.2 (in this case, the order of the Taylor expansion is 20).
To check the accuracy, we have performed the same integration with extended arithmetic
(GMP), using the same time step but with a higher order Taylor series (typically, two
times the degree used in the double precision integration). To measure the error, we have
computed the relative difference between these two approximations. For instance, for the
x coordinate, the exact operations we have implemented are,

e(x) = 1 −
x̃

x
, (14)

where x is the extended precision approximation and x̃ is the double precision result. All
the computations in (14) have been done in double precision. Due to the high level of
accuracy, and that we are computing the relative error (in double precision), we have
written the result as multiples of the machine precision eps. In our case (an Intel-based
computer), eps = 2−52 ≈ 2.22 × 10−16. Moreover, to evaluate (14) (and only for this
case) we have forced the compiler to produce code such that the result of each arithmetic
operation is stored in memory, to avoid using the extra precision available in the registers
of the processor.

The results are shown in Table 1: the first column is the time and the remaining
columns are the relative error, in multiples of eps, for each coordinate. The “halved”
factors (0.50, 1.50, etc) are due to the fact that, due to the roundoff, the smallest (non-
zero) number we can obtain from the substraction in (14) is 1

2
eps. The reasons for this

extremely small error have been discussed in Section 3.1.

5.1.2 Global error

An interesting point is the behaviour of the error for longer integrations. To this end, we
will perform two test.

The first test is based on a computation of the local error for a very long time span. We
note that, in such a test, there is an extra source of error in the time parametrization of
the orbit: even if we force the same time step in both integrations, the different precision
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Figure 2: Error of a numerical integration of the RTBP. The horizontal axis denotes the
number of intersections with the Poincaré section z = 0. Left: the first 100 intersections.
Right: 10000 intersections, that correspond to a total integration time of 62837.969279
units. See the text for more details.

introduces an extra time-shift that adds a small error to the comparison. For this reason,
during the integration, we have computed the sequence of intersections of the orbit with
z = 0 (the initial condition is already given in this section). Then, for each intersection,
we compute the sup norm of the difference between the double and extended arithmetic
results to obtain the graphic shown in Figure 2. Looking at these plots, there is a clear
propagation of error in the trajectory. We want to note that we are following a quasi-
periodic orbit in a region that is almost completely filled by quasiperiodic orbits, each
with their own frequencies. This implies that two neighbouring orbits should separate at
linear speed. As we are using a log scale in the vertical axis of Figure 2, this drift must
have the shape of a log curve which, roughly speaking, coincides with these plots.

As the Hamiltonian function H is constant on each orbit, a second test is simply to
check for its preservation. Although the level of preservation of H does not need to be
equal to the error of the integration, checking its preservation is a common test for a
numerical integrator. Now we have selected εa = εr = 10−16, with an integration time of
106 units. A first version of the results is shown in Figure 3, where the horizontal axis
denotes the time and the vertical axis is the difference between the actual and the initial
value of H, in multiples of eps ≈ 2.22 × 10−16. Although this plot seems to indicate the
presence of a bias in the values of H, we want to point out that the smallness of the
drift in H compared to the length of the integration time do not allow to consider this
bias meaningful from a statistical point of view. Let us discuss this point in detail. Let
Hj be the value of H at the step number j of the numerical integration and, instead of
consider Hj − H0, let us focus on the local variation Hj − Hj−1. In Table 2 we show a
summary of the results for the same trajectory as before, but for several local thresholds
for the error. To do an standard statistical analysis, let us assume that the sequence of
errors Hj − Hj−1 is given by a sequence of independent, identically distributed random
variables, and we are interested in knowing if its mean value is zero or not. Therefore,
we will apply the following test of significance of the mean. The null hypothesis assumes
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Figure 3: Long term behaviour of the energy for local thresholds εr = εa = 10−16.
Horizontal axis: time. Vertical axis: relative variation of the value of the Hamiltonian, in
multiples of the machine precision.

that the true mean is equal to zero. If we define

n =
∑

|k|≤4

νk,

where k denotes a multiple of eps and νk the number of times that this deviation has
occurred, then the sample mean is

m =
1

n

∑

|k|≤4

kνk.

and the standard error of the sample mean is

s =

√

1

n2

∑

|k|≤4

(k − m)2νk.

Under the previous assumptions (independence and equidistribution of the observations),
the value

τ =
m

s
,

must behave as a N(0, 1) standard normal distribution. To test the null hypothesis (i.e.,
zero mean) with a confidence level of 95%, we have to check for the condition |τ | ≤ 1.96.
The last row of Table 2 shows the value of τ for the different integrations. It is clear that
for ε = 10−14 we must reject that the drift has zero mean, and it is also clear that this
hypothesis cannot be rejected in the other cases.

For the case ε = 10−14 the main source of error is truncation that, from an statistical
point of view, does not behave as having zero mean. When the local threshold is reduced,
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ε = 10−14 ε = 10−15 ε = 10−16 ε = 10−17 ε = 10−18

-4 0 0 0 0 0

-3 45 2 7 5 6

-2 32,904 21,155 21,377 21,372 21,662

-1 772,723 745,668 760,755 768,334 777,760

0 1,970,571 2,084,758 2,134,729 2,157,287 2,174,276

1 765,519 744,438 760,183 767,596 776,776

2 32,444 21,174 21,576 21,696 21,949

3 42 6 5 3 5

4 0 0 0 0 0

τ -6.0613 -0.9160 -0.1383 -0.0735 -0.3141

Table 2: Local variation of the energy for several error thresholds εa = εr ≡ ε, during 106

units of time. The first column denotes multiples of the machine precision eps and the
remaining columns contain the number of integration steps for which the local variation
of energy is equal to the multiple of eps in the first column. The last row is an statistical
index to test for zero mean, see the text for details.

then the main source of error turns out to be the roundoff of the underlying arithmetic
(see Section 3.1), which looks like a zero mean random process, at least under the standard
statistical tests.

A natural question is whether the Taylor method, with a sufficiently small local thresh-
old (like 10−16 in the previous example), can compete with a symplectic integrator in the
preservation of the geometrical structure of the phase space of a Hamiltonian system.
From a local point of view, we want to note that the Taylor method can deliver machine
precision so it is not possible to be “more symplectic”. However, one has to be more
careful when extending this reasoning to long term integrations since it is possible that
there exist little biases that are only visible in very long integrations. A deeper study is
actually in progress.

5.1.3 On the influence of the underlying arithmetic

As an example of the effect of the arithmetic, we will show the different behaviour of the
energy. We will use the same trajectory of the RTBP as before, and we will compute
the relative variation of the energy. The results for εr = εa = 10−16 using the standard
double precision arithmetic on different hardware are shown in Figure 4. Both graphics
show that the error behaviour seem to be dominated by the “noise” of the floating point
arithmetic.

5.1.4 Extended precision calculations

We will use the same example as in the previous section. The main difference when
generating the code for the Taylor integrator with extended precision is that we have to
tell the translator to use extended arithmetic. For instance, to generate code using gmp,
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Figure 4: Long term behaviour of the energy for local thresholds εr = εa = 10−16. Left
plot: different optimization levels in an Intel processor (the upper curve corresponds to the
-O2 option). Right plot: different processors (the upper curve is for the AMD processor).
See the text for more details.

t e(x) e(y) e(z) e(px) e(py) e(pz)

1.0000000000000000 0.50 -2.50 -1.00 -0.50 6.50 -5.50

Table 3: Local relative error (in multiples of the machine precision) for an orbit of the
RTBP, after a unit of time, using gmp with 256 bits of mantissa. The meaning of the
columns is the same as in Table 1. See the text for more comments.

we can do

taylor -name rtbp -o taylor_rtbp.c -step -jet -sqrt rtbp.in

taylor -name rtbp -o taylor.h -gmp -header

Note that the first line is exactly the same as for the double precision case, while the
arithmetic is only specified in the generation of the header file. The calling routine must
take care of setting the desired level of accuracy when initializing the gmp package.

As a first test, we can compute the local error of a numerical integration of the RTBP,
as it has been done in Section 5.1.1. We have selected a 256 bits mantissa (this means
that the machine precision is eps = 2−256 ≈ 8.636168 × 10−78), and the value 10−80 for
both the relative and absolute error thresholds. The method has selected a step size near
0.2 and order 94. To obtain the exact solution, we have used a mantissa of 512 bits and
an error threshold of 10−155. The local error of the solution after one unit of time (this has
required 4 calls to the Taylor integrator) is shown in Table 3. Comparing with Table 1,
we see that the relative error here is a little bit larger. We should note that the double
precision arithmetic of the Pentium processor is carried out inside registers having extra
accuracy, so it is natural to expect a slightly better behaviour for the roundoff errors.

We have also tested the variation of the value of the Hamiltonian for a long-time
integration, for different local thresholds. Figure 5 shows the difference between the
initial value of the Hamiltonian and its value at each step of integration, for mantissas
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Figure 5: Long term behaviour of the Hamiltonian for several integrations with gmp

arithmetic. The horizontal axis displays the time and the vertical axis shows the variation
of the Hamitonian with respect to its initial value. Left plot: results for gmp arithmetic
with a 128 bits mantissa, and several local thresholds εa = εr = ε as shown in the graphic.
Right plot: results for gmp arithmetic with a 256 bits mantissa. See the text for more
details.

of 128 (left) and 256 (right) bits. The differences are shown in multiples of the machine
precision of each arithmetic. The lower curve on these plots corresponds to the largest
threshold (εa = εr = 10−36 and εa = εr = 10−75 for the left and right plot, respectively)
where the main source of error is the truncation of the Taylor series. The remaining curves
correspond to smaller thresholds for which the error mainly comes from the roundoff of
the gmp arithmetic. We clearly see the different behaviour of these two sources of error,
as well as the drift introduced by the roundoff of the artihmetic.

We have also tested the preservation of the Hamiltonian for a different extended arith-
metic, the qd library. The results are shown in Figure 6. Again, we have used the
dd real type (two doubles) for the left plot and qd real type (four doubles) for the right
one. For this arithmetic, it does not make sense to use the machine precision as a unit
for the error.1. Hence, we have simply multiplied the differences in the Hamiltonian by
1032 (dd real) and 1064 (qd real). In the left plot, the bottom curve corresponds to
εa = εr = 10−30 to the largest error threshold while the effect of the truncation dominates
the error. The remaining curves show the behaviour of the roundoff error of the arith-
metic. In the right plot, is the upper curve that corresponds to the largest error threshold
(in this case, εa = εr = 10−61) showing the effect of the truncation error. The remaining
curves show the drift due to the roundoff of the arithmetic.

5.2 Speed

There is plenty of numerical methods in the literature, and we do not plan to survey all
of them but simply to compare our implementation of Taylor method against a few well

1A dd real number is defined as the sum of two doubles. Therefore, the sum 1 + ε is always different
from 1 as long as ε can be represented in a double.



26 Numerical integration of ODEs by means of Taylor methods

-10000

-8000

-6000

-4000

-2000

 0

 2000

 4000

 0  250000  500000  750000  1e+06

1.e-30
1.e-31
1.e-32
1.e-33
1.e-34

-3000

-2000

-1000

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0  250000  500000  750000  1e+06

1.e-61
1.e-62
1.e-63
1.e-64
1.e-65
1.e-66

Figure 6: Long term behaviour of the Hamiltonian for several integrations with qd arith-
metic. The horizontal axis displays the time and the vertical axis shows the variation
of the Hamitonian with respect to its initial value. Left plot: results for dd real arith-
metic (nearly 32 decimal digits), and several local thresholds εa = εr = ε as shown in the
graphic. Right plot: results for the qd real arithmetic (nearly 64 decimal digits). See
the text for more details.

known methods. A characteristic of these methods is that they have a freely available
implementation, which is the one we have used. These implementations are coded in
FORTRAN77, which adds an extra difficulty on the comparisons, since the observed
differences may come from the different compilers. Therefore, to help the readers with
these comparisons, the package includes the code for all the examples, so that they can
be run on any combination of compiler/computer for comparisons.

Our tests have been done in a GNU/Linux workstation, with an Intel Pentium III
processor running at 500 MHz. We have used the following GNU compilers:

$ gcc -v

gcc version 2.95.4 20011002 (Debian prerelease)

$ g77 -v

g77 version 2.95.4 20011002 (from FSF-g77 version 0.5.25 20010319)

The methods considered are dop853, an explicit Runge-Kutta code of order 8, and
odex, an extrapolation method of varying order based on the Gragg-Bulirsh-Stoer al-
gorithm. Both methods are documented in [HNW00] and the code we have used is
the one contained in this book, that can be downloaded from E. Hairer’s web page,
http://www.unige.ch/math/folks/hairer/software.html. We note that extrapola-
tion methods are similar to Taylor in the sense that they can use arbitrarily high orders,
so they are the natural methods to compare with.

For the tests, we have used three vector fields: the RTBP, the Lorenz system, a
periodically forced pendulum, and the RTBP. The equations for the Lorenz system are

ẋ = 10(y − x),

ẏ = x(28 − z) − y,
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ż = xy −
8

3
z,

and the equations for the forced pendulum are

ẋ = y,

ẏ = − sin(x) − 0.1y + 0.1 sin(t)

The RTBP (see equations (13)) has been coded as in Figure 1 so that, in all the cases,
the vector field has the same number of operations.

As before, we have used the same formulas to code the vector fields for dop853, odex
and taylor.

A first possibility to make the comparisons is to set the same threshold for all the
methods and then compare the speeds. Note that, as the algorithms for the step size
selection are completely different, one of them could be more “conservative” than the
others and predict (unnecessarily) smaller step sizes so that the comparisons would be
meaningless. For this reason we have proceeded in the following way: given an initial
condition, we can compute the corresponding orbit during, say, 16 units of time and to
compare the final point with the true value to obtain the real absolute error.2 In Table 4
we show the computer time and final error for the three methods, using different thresholds
for the step size control. To have a measurable running time, the program repeats the
same calculation 1000 times.

Therefore, we ignore the column labelled ε (the error threshold used for the step size
control), and we only compare the computing time to achieve a prescribed accuracy (this
is equivalent to compare the accuracy obtained for a fixed computing time). The results
clearly show the effectiveness of the Taylor method for these examples.

5.2.1 A simple comparison with ADOL-C

ADOL-C is a public domain package for automatic differentiation. The main differences
between the automatic differentiation of our package and ADOL-C are:

a) ADOL-C is a general purpose package, while taylor is specifically designed for the
numerical integration of ODEs.

b) The input of ADOL-C is a C/C++ function (with some restrictions in the grammar
used), while taylor has its own input grammar, which is a little bit more restrictive.

c) ADOL-C does not include code for the step size control. This means that ADOL-C
can only be used to generate the Taylor coefficients and the user must supply code
for the order and step size control.

For this reason, we will only test the speed of the generation of the Taylor coefficients.

As before, the tests have been done on an Intel Pentium III running at 500 MHz,
using ADOL-C version 1.8.7. The examples considered are the Lorenz system, RTBP,

2The true value has been obtained from an integration with the Taylor method using the gmp arithmetic
with mantissas of 128 and 256 bits.
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Lorenz
dop583 odex taylor

ε time error ε time error ε time error
1.e-10 7.01 5.9e-03 1.e-10 8.73 6.2e-02 1.e-10 7.61 3.1e-06

1.e-11 8.91 5.0e-04 1.e-11 10.11 3.3e-03 1.e-11 7.99 4.4e-07

1.e-12 11.65 4.3e-05 1.e-12 11.54 2.0e-04 1.e-12 8.40 4.8e-08

1.e-13 15.31 3.7e-06 1.e-13 12.74 5.8e-06 1.e-13 8.80 3.3e-08

1.e-14 20.19 1.2e-06 1.e-14 15.04 6.4e-06 1.e-14 9.22 3.4e-08

1.e-15 26.76 8.9e-07 1.e-15 17.81 3.7e-06 1.e-15 9.75 9.2e-09

1.e-16 35.51 9.5e-07 1.e-16 50.47 1.9e-06 1.e-16 10.75 7.5e-09

Perturbed pendulum
dop583 odex taylor

ε time error ε time error ε time error
1.e-10 0.62 3.4e-11 1.e-10 1.49 6.9e-10 1.e-10 0.38 2.8e-13

1.e-11 0.78 3.6e-12 1.e-11 1.70 4.9e-11 1.e-11 0.42 2.1e-14

1.e-12 1.03 3.1e-13 1.e-12 1.93 1.7e-12 1.e-12 0.44 7.6e-15

1.e-13 1.38 2.7e-14 1.e-13 2.17 9.1e-14 1.e-13 0.47 1.2e-15

1.e-14 1.83 2.3e-15 1.e-14 2.36 4.4e-15 1.e-14 0.48 8.7e-16

1.e-15 2.45 2.1e-15 1.e-15 2.68 3.1e-15 1.e-15 0.52 5.8e-16

1.e-16 3.24 3.2e-15 1.e-16 3.09 1.1e-14 1.e-16 0.59 3.8e-16

RTBP
dop583 odex taylor

ε time error ε time error ε time error
1.e-10 1.43 1.1e-09 1.e-10 1.74 1.8e-09 1.e-10 1.68 6.2e-12

1.e-11 1.84 9.4e-11 1.e-11 2.02 9.2e-11 1.e-11 1.86 4.6e-13

1.e-12 2.44 8.6e-12 1.e-12 2.43 2.4e-11 1.e-12 2.08 4.4e-14

1.e-13 3.24 8.0e-13 1.e-13 2.74 3.7e-13 1.e-13 2.27 7.2e-15

1.e-14 4.32 7.5e-14 1.e-14 3.14 1.5e-13 1.e-14 2.50 4.2e-15

1.e-15 5.73 9.9e-15 1.e-15 3.71 2.4e-13 1.e-15 2.82 1.7e-15

1.e-16 7.63 2.0e-15 1.e-16 4.85 1.3e-13 1.e-16 3.26 5.8e-15

Table 4: Speed comparison between dopri853, odex and taylor. ε is the selected thresh-
old for the error (both relative and absolute thresholds have been set to the same value),
computer time is given in seconds, and the error is the absolute error at the end point
of the integration. To have a measurable computer time, we have repeated the same
integration 1000 times. See the text for more details.
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degree Lorenz Pendulum RTBP

ADOL-C 40 92.82 140.57 403.22

Taylor 40 3.59 3.43 14.75

ADOL-C 20 24.44 34.82 87.99

Taylor 20 1.13 1.07 4.65

ADOL-C 10 9.13 11.58 26.20

Taylor 10 0.41 0.39 1.62

Table 5: Time (in seconds) to compute 100,000 times the jet of derivatives for the Lorenz
system, a periodically forced pendulum and the RTBP.

the Lorenz system and a periodically forced pendulum. To measure the time, we have
computed the jet of derivatives 100,000 times. The results are contained in Table 5, and
clearly show the efficiency of taylor.

6 Conclusions

In this paper we have discussed a new publicly available implementation of the classical
Taylor method for the numerical solution of ODEs. This program reads the differen-
tial equations from a file and outputs a complete Taylor integrator (including adaptive
selection of degree and step size) for the given system.

The package has been tested against freely available implementations of two well-
known numerical integrators. We do not claim that the results from these tests can be
extrapolated to any example, but simply that taylor can be very competitive in many
situations. We believe that the fact that the the methods used for the comparisons are
coded in FORTRAN 77 while the output of taylor is ANSI C has a small impact in the
results. However, the package includes the source code used for tests, so that the user
can try them with different compilers/computers. In fact, the best way to know whether
taylor is suitable for a concrete application, with a given compiler and computer, is
simply to try it.

Finally, let us remark that one of the strong points of the package is the support for
extended precision arithmetic.
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