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Abstract. We focus on the dynamics of a small particle near the Lagrangian points of the Sun-
Jupiter system. To try to account for the effect of Saturn, wedevelop a specific model (a restricted
four body problem) based on the computation of a true solution of the planar three-body problem for
Sun, Jupiter and Saturn. Then, we study the dynamics of this model near the triangular points. The
tools are based on computing, up to high order, suitable normal forms and first integrals.

1. Introduction

It is a known fact that Trojan asteroids move in a neighbourhood of the triangular
points of the Sun-Jupiter system. Our final goal is to study the dynamical properties
of their orbits. In order to achieve this, we are going to construct a new model, more
sophisticated than the Sun-Jupiter RTBP, that tries to be closer to the real system.

Before discussing the model, let us explain an easy numerical experiment. We
integrate the orbit of 588-Achilles using the JPL Ephemerisin two cases: In the
first one, we assume that the gravitational forces coming from all the planets are
acting on the asteroid, and in the second one, we consider only the actions of Sun
and Jupiter on the asteroid, while these two (main) bodies are moving according
to JPL Ephemeris model. The result of the integration in a short time interval is
shown in Figure 1. From this plot, we can see that what really matters in order
to study the dynamics of the Trojan asteroids is the Sun-Jupiter relative motion.
Thus, if we want to build models to study the Trojans, we have to try to simulate
in a more realistic way this relative motion.

Then, a natural improvement to the Sun-Jupiter RTBP is to include the effect of
Saturn on the motion of Sun and Jupiter. We develop a model where the Sun, Jupiter
and Saturn move in a periodic solution of the (full) planar three body problem, with
a (relative) period close to the real one. Then, it is possible to write the equations of
motion of a fourth massless particle that moves under the attraction of those three.
This is a restricted four body problem and we have call it Bicircular Coherent
Problem (BCCP, for short). This talk is devoted to study the triangular points of the
RTBP using this model. The details can be found in (Gabern andJorba, 2001).
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Figure 1.Projection in the (x,y)-plane of the 588-Achilles orbit in the JPL Ephemeris model, when
all the forces act on the asteroid (continous line) and when only the direct actions of the Sun and
Jupiter on the asteroid are considered (dashed line).

2. The BCCP model

It is possible to find, in a rotating reference frame, periodic solutions of the planar
three body Sun-Jupiter-Saturn problem by means of a continuation method using
the masses of the planets as parameters (Gabern and Jorba, 2001). The relative
Jupiter-Saturn period can be chosen as the actual one, and its related frequency is
ωsat = 0:597039074021947.

Assuming that these three main bodies move in this periodic orbit, it is possible
to write the Hamiltonian for the motion of a fourth massless particle as:

H =

1
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y+ p2
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whereq2
S= (x�µ)2+y2

+z2, q2
J = (x�µ+1)2+y2

+z2 andq2
sat= (x�α7(θ))2+

(y�α8(θ))2+z2. The functionsαi(θ) are periodic functions inθ = ωsatt and can
be computed with a Fourier analysis of the periodic solutionof the three body
problem.

At that point, we want to mention that a Bicircular Coherent problem was
already developed by Andreu (1998) for the Earth-Moon-Sun case to study the
dynamics near the Eulerian points.

3. Diffusion in a neighbourhood of the triangular points

It is very interesting to determine zones of effective stability (that is, stability for
very long time spans) around the triangular points. We will use the BCCP model
and different techniques to estimate these zones. The toolsused are direct numeri-
cal simulation, normal forms and first integrals. It is enough to focus on the study
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of a single Lagrangian point,L5 for instance, because of a particular symmetry of
the Hamiltonian (1).

In Figure 2 (top left), we can see the (x,y) projection of a region aroundL5,
computed by a simple numerical integration of the BCCP. The time to escape from
this region is larger than 1 Myr.

3.1. SEMI-ANALYTICAL LOCAL STUDY AROUND L5

In the BCCP system, the RTBPL5 point is replaced by a periodic orbit. The linear
dynamics of this orbit is totally elliptic.

In order to make a local study around the periodic orbit that replacesL5, we
write the Hamiltonian (1) in a more convenient way by means ofa composition
of three linear changes of variables: a periodic translation (to see the periodic
orbit as a fixed point), a symplectic Floquet transformation(to remove the lin-
ear time-dependence) and a complexification (to diagonalize the second degree
of the Hamiltonian); and expanding it in Fourier-Taylor series. The real linear
behaviour is given byH2 =

1
2ω1(x2

1+y2
1)+

1
2ω2(x2

2+y2
2)+

1
2ω3(x2

3+y2
3) where the

frequencies areω1 = �0:08047340341466,ω2 = 0:99668687782956 andω3 =

1:00006744139040. Thus, it is possible to write the expanded Hamiltonian (in
complex variables) as:

H(q; p;θ; pθ) = ωsatpθ+H2(q; p)+ ∑
n�3

Hn(q; p;θ) (2)

3.1.1. Truncated normal form
Using the Lie series method (the computer implementation has been done in
C++, using the methods explained by Jorba (1999)), we transform the expanded
Hamiltonian to a truncated normal form up to degree 16 in the(q; p) variables:

H = ωsatpθ+
16

∑
n=2

Hn(qp)+ ∑
n�17

Hn(q; p;θ)

Bounding the norm of the remainder, it is possible to determine a zone of effec-
tive stability (for a time span of� 5000 Myrs.) around the periodic orbit. The x-y
projection of a slice fort = 0 of this zone is plotted in Figure 2 (top right).

3.1.2. Approximate first integrals
Given the expanded Hamiltonian (2) we look for a function

F(q; p;θ) = ∑
n�2

Fn(q; p;θ)

such thatfH;Fg= 0. This equation gives a recursive way of computingF. It is
solved up to order 16 andF2 is chosen to beF2 = iq1p1+ iq2p2+ iq3p3.
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Figure 2.Top left: Numerical estimation of the stability region for the BCCP, fort = 0. Top right:
Region of effective stability fort = 0 from the normal form computation. Bottom left: Zone of
effective stability around the periodic orbit computed with the first integral. Bottom right: A slice
for t = 0 of the previous plot. The axis are thex andy synodical coordinates of the RTBP for all the
plots.

Estimating the norm oḟF (that is, the part offH;Fg that is not exactly zero),
we can also found (see Celletti and Giorgilli, 1991) a regionof effective stability
around the periodic orbit. The x-y projection of this zone and a slice of it fort = 0
are plotted in Figure 2 (bottom right and left, respectively).

4. Conclusions

We have constructed a model that tries to account the effect of Saturn on the
Sun-Jupiter system and using semi-analytical tools we havestudied the effective
stability around the triangular points. The study of the normal form of the Hamil-
tonian gives us a smaller zone of stability than the first integral, but it can provide
much more information of the dynamics around those points.
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