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Institute de Mathématiques de Bourgogne, Dijon 21078, France
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In this paper we consider the Hill 3-body problem with the extra effect of the solar radia-

tion pressure as a model for the motion of a solar sail close to an asteroid. To model the sail’s

acceleration, we include both reflectivity and absorption of the sail’s material. We describe

the most relevant dynamical properties of the system for different reflectivity and absorp-

tion coefficients as well as different fixed sail orientations. We show families of periodic

orbits, describe how they relate to the parameters of the sail and discuss their stability.

Introduction

DUE to the small gravitational field around asteroids, solar radiation pressure (SRP) plays an important

role on the dynamics around them. Hence, the systematic use of SRP to propel a satellite via spe-

cialized reflecting areas, such as solar sails, can give rise to new and interesting mission concepts.

When we look at the dynamics of a satellite close to an asteroid there are three effects that must be taken into

account: gravitational field, solar attraction and solar radiation pressure [1]. The first effect includes the shape and

spin states of the asteroid, and it is relevant within a few radii from its surface, in what is known as the gravity

regime. Far from the gravity regime, a good approximation of the asteroid’s contribution to the real dynamics is

obtained by considering it as a point mass. Here effects like SRP and the Sun’s gravity must be taken into account.

For asteroids following very eccentric orbits around the Sun, the variation of the distance to the Sun also plays an

important role.

The goal of this paper is to study the dynamics of a solar sail near an asteroid. A flat solar sail will be considered,

for which we will take into account not only the reflectivity but also the absorption of the sail’s material [2,

3]. Our reference model will be the Augmented Hill 3-body problem, in which the asteroid is considered as a
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point mass and the effect of SRP due to the solar sail is added. We will give a description of some of the most

relevant dynamical properties of the system (fixed points and periodic orbits) and describe some of their possible

applications to asteroid mission analysis.

It is well known that the Hill 3-body problem has two equilibrium points L1 and L2. When we add the effect of

SRP, these two fixed points move towards the Sun. L1 quickly moves away from the small body, while L2 comes

reasonably close to it [4, 5, 6]. For this reason, in this paper we will focus on the dynamics close to L2 as it is

more relevant for future mission applications. It is true that L2 is in the shadow side of asteroids, and this could

compromise observational missions. We will show, however, that there are many orbits on the family of orbits

emanating from L2 that spend most of their orbital period on the Sun side, making them very interesting for this

kind of missions.

As we know, the linear dynamics around the displaced L2 point is of the type center×center×saddle. Hence,

two families of periodic orbits are born from L2: a planar and a vertical family, each one related to the one of

the two center directions. We also find two families of Halo orbits at the 1:1 resonance between the planar and

vertical frequencies as we move along the planar family of periodic orbits. We will see that, as we move along the

family of planar orbits, they acquire a boomerang shape that leaves the asteroid in the middle. On the other hand,

the orbits on the vertical family start with an eight shape, with a large vertical amplitude. As we move along the

family, they loose part of their vertical amplitude to become almost planar, and spend half of their period on the

Sun side of the asteroid. Both the planar and vertical families of periodic orbits are unstable, needing a control

strategy to remain on them for a long period. Finally, as we move along the family of Halo orbits, these ones come

closer to the asteroid, but stay in the shadow side all the time. Nevertheless, the terminating orbits of the family

are linearly stable.

When we change the orientation of the solar sail, we can displace the position of these fixed points and periodic

orbits. Tilting the solar sail vertically with respect to the Sun-line will displace these invariant objects above and

bellow the orbital plane, whereas tilting the solar sail horizontally with respect to the Sun-line will shift these

objects to one side or another of the Sun-asteroid line. We will compute these families of equilibrium points and

periodic orbits for different fixed sail orientations by means of continuation methods, and we will discuss how

different reflectivity parameters for the solar sail affect their shape and properties. We will pay special attention to

the terminating orbits of the families, since they come close to the small body and present interesting features for

asteroid mission analysis.

The Augmented Hill for a Non-Perfectly Reflecting Solar Sail

As it has been mentioned before, to capture the dynamics of a solar sail around an asteroid we use the Aug-

mented Hill 3-body problem (H3BP), that models the motion of two small masses (asteroid and spacecraft) which

interact due to their mutual gravitational attraction and is perturbed by a distant larger body (the Sun). The Aug-

mented H3BP also includes the effect of SRP as our satellite is propelled by a solar sail [7, 8]. Hence, in this model
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the effect of the Sun is included as a uniform gravity vector field and uniform SRP, both in the horizontal direction.

We consider a rotating reference frame centered on the small body, defined such that: the x direction points

from the Sun to the asteroid; the z direction is aligned with the Sun–asteroid angular velocity; and the y di-

rection completes a positive coordinate system. We normalize the units of distance and time such that: L =

(µsb/µsun)1/3R and T = 1/ω respectively, where µsun is the gravitational parameter of the Sun (≈ 1.327 ×

1011km3/s2), µsb is the gravitational parameter of the smaller body, R is the mean distance distance between the

Sun and the asteroid, and ω =
√
µsun/R3 is the angular velocity. Using these normalized units, the equations for

the Augmented Hill Three Body Problem (AH3BP) for a solar sail [5, 6] are:

Ẍ − 2Ẏ = −X
r3

+ 3X + ax,

Ÿ + 2Ẋ = − Y
r3

+ ay,

Z̈ = − Z
r3
− Z + az,

(1)

where (X,Y, Z) denotes the position of the solar sail in the rotating frame, r =
√
X2 + Y 2 + Z2 is the distance

between the solar sail and the center of the asteroid, and asail = (ax, ay, az) is the acceleration given by the solar

sail.

To model the acceleration of the solar sail we use the simplified model for a non-perfectly reflecting (SNPR)

solar sail from [3], which only takes into account absorption and reflection of the sail material: if we denote the

absorption coefficient as a and the reflectivity coefficient as ρ, we have a + ρ = 1. Besides, the force due to

absorption and reflection is given by Fa = PA〈rs,n〉rs and Fr = 2PA〈rs,n〉2n respectively. In the previous

expressions, P = P0(R0/R)2 is the SRP magnitude at a distance R from the Sun (P0 = 4.563µN/m2, the SRP

magnitude at 1AU and R0 = 1AU), A is the area of the solar sail, rs is the direction of SRP and n is the normal

direction to the surface of the sail. Hence, the acceleration for the SNPR solar sail is given by:

asail =
2PA

m
〈rs,n〉

(
ρ〈rs,n〉n +

1

2
(1− ρ)rs

)
. (2)

Notice that ρ = 1 corresponds to a perfectly reflecting solar sail, and ρ = 0 to a perfect solar array where the

absorption of the solar panels is the only effect. According to [3], a solar sail with a highly reflective aluminum-

coated side has an estimated value of ρ ≈ 0.88. Nevertheless, in this paper we present a comparative result of the

dynamical properties of a solar sail for different values for ρ.

Observe that, in the rotating reference frame, rs = (1, 0, 0). We will parametrize the normal direction to the

surface of the sail using two angles α, δ, representing the horizontal and vertical displacement with respect to rs:

n = (cosα cos δ, sinα cos δ, sin δ). As the sail cannot point towards the Sun, we have that α, δ ∈ [−π/2, π/2].

Finally, the efficiency of our solar sail will be measured in terms of β = 2PA/m, also know as the sail lightness
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number. One can check that, with these definitions, the acceleration for the solar sail in Eq.(2) is written as

ax = β̄ cos2 α cos2 δ(ρ cosα cos δ + 0.5(1− ρ)),

ay = β̄ cos2 α cos2 δ(ρ sinα cos δ),

az = β̄ cos2 α cos2 δ(ρ sin δ),

(3)

where β̄ = β(µsbω
4)−1/3 is the sail lightness number in normalized units [5].

Some comments on the normalized units

To derive the equations of motion for the AH3BP, we have considered a set of normalized units. Recall that

the unit of length is defined as L = (µsb/µsun)1/3R, and the unit of time is defined as T = 1/ω. Notice that

they both depend on the target asteroid for our mission. In Table 1 we summarize the physical data for different

asteroids, as well as the normalized units of distance and time in the normalized Hill problem 5. We also include

the maximum radius of the asteroids in the normalized unit of distance, in order to provide an estimate of the

gravity regime for each asteroid (gravity regime is around 3 to 4 times the asteroids’ radii). Notice that, for all the

asteroids considered, the radius distance varies between 0.001 and 0.005.

Table 1: Relevant parameters for different asteroids

asteroid µsb (km3/s2) R (AU) RADII (km / UD) UD (km) UT (day)
Eros 4.463× 10−4 1.45 8.42 (2.5× 10−3) 3265.4 102.2
Vesta 17.8 2.36 265 (1.4× 10−3) 180782 210
Itokawa 2.1× 10−9 1.32 0.165 (3.3× 10−3) 49.57 88.15
Golevka ∼ 1.4× 10−8 2.49 0.265 (1.5× 10−3) 175.96 229.1
Apophis ∼ 1.8× 10−9 0.92 0.163 (4.9× 10−3) 32.89 51.4

The normalized sail lightness number is β̄ = β(µsbω
4)−1/3. We recall that β = 2PA/m, ω =

√
µsun/R3

and P = P0(R0/R)2. Taking this into account, we can rewrite β̄ as

β̄ =
2P0R

2
0(A/m)

µ
2/3
sunµ

1/3
sb

= K1(A/m)µ
−1/3
sb , (4)

where K1 ≈ 7.8502 if A is given in m2 and m in kg. Hence, the value of β̄ depends on both: σ = (A/m), the

area-to-mass ratio of the satellite, and µsb, the gravitational parameter of the small body. We could have the same

β̄ for two completely different missions scenarios. Notice that β̄ is inversely proportional to µ1/3
sb . Hence, for a

fixed area-to-mass ratio, the smaller the asteroid the larger the effect of SRP will be.

In Fig. 1 we show the contour levels of the normalized sail lightness number β̄ as a function of σ and µsb. As

we can see, for small asteroids (µsb ≈ 10−9) and an area-to-mass ratio of a regular spacecraft (σ ≈ 0.01), β̄ takes

values between 50 and 100. In Table 2 we summarize the values of β̄ for the 5 asteroids in Table 1 and different
5The physical parameters have been taken from http://ssd.jpl.nasa.gov/sbdb.cgi
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area-to-mass rations. As examples, we have taken an estimated area-to-mass ratio for Ikaros (σ ≈ 0.63m2/kg),

NanoSail-D2 (σ ≈ 2.5m2/kg), Hayabussa (σ ≈ 0.032m2/kg) and Dawn (σ ≈ 0.17m2/kg). Although Hayabussa

and Dawn are not solar sails, they have very large solar panels that could be considered for orbital control [6]. In

Table 2 we see again that, around very small asteroids like Itokawa, Golevka and Apophis, SRP is very important,

even for a spacecraft like Hayabussa and Dawn.
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Fig. 1: Contours for β̄ as a function of (A/m), area-to-mass ratio, and µsb, the gravitational parameter of
the asteroid.

Table 2: Normalized values for β̄ for different mission configurations

Ikaros NanoSail-D2 Hayabussa Dawn
Eros 64.71 256.809 3.287 17.463
Vesta 1.894 7.51647 0.0962 0.511
Itokawa 3862.02 15325.48 196.166 1042.13
Golevka 2052.0 8142.88 104.228 553.716
Apophis 4065.65 16133.548 206.509 1097.081

Equilibrium Points

The description of the equilibrium points in the AH3BP for a solar sail has already been studied by many

authors [7, 8]. Here we give a brief summary of the most important aspects.

It is well known that (x0, y0, z0) is an equilibrium point of the AH3BP for the set of sail parameters (β̄0, α0, δ0, ρ0)
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if it satisfies

0 = −X
r3

+ 3X + ax + β̄ cos2 α cos2 δ(ρ cosα cos δ + 0.5(1− ρ)),

0 = − Y
r3

+ β̄ cos2 α cos2 δ(ρ sinα cos δ),

0 = − Z
r3
− Z + β̄ cos2 α cos2 δ(ρ sin δ).

(5)

If we neglect the effect of the solar sail (β̄ = 0), we have only two equilibrium pointsL1, L2, symmetrically located

around the origin, with coordinates (±3−1/3, 0, 0). When we include SRP and keep the solar sail perpendicular to

the Sun-line (α = δ = 0), the position of L1 and L2 moves towards the Sun as we increase the value of β̄. As it

can be seen in [9], for β̄ > 50, L1 is already at more than 16 unit distances from the small body. On the other hand,

L2 gets close to the small body, but still far away from the gravity regime where the shape and spin-rate of the

asteroid must be considered. For this reason, from now on we will not consider the dynamics around the displaced

L1 point

Notice that, if ρ = 0 (i.e. the only acceleration for the solar sail is given by the absorption), even if we change

the sail orientation the equilibrium points will always lie in the x axis, as the effect of changing the sail orientation

implies a change on SRP magnitude only, moving the position of equilibria back and forth along the x axis. If

ρ 6= 0, changing the sail orientation will displace the equilibrium points away from the Sun–asteroid line. For

instance, if we tilt the sail vertically w.r.t. the Sun–line (i.e. α = 0, δ 6= 0), we displace the equilibria outside

the orbital plane, while if we tilt the sail horizontally w.r.t. the Sun–line (i.e. α 6= 0, δ = 0), we displace the

equilibria away from the x axis inside the orbital plane. On the right-hand side of Fig. 2, we have the equilibria

on the orbital plane (Z = 0) for ρ = 0.85, β̄ = 10, 20, 30, 50, 75, 100, α ∈ [−π/2, π/2] and δ = 0, where the

dashed lines represent values of α between ±π/4. We note that: for each β̄, the equilibrium point closer to the

origin corresponds to α = 0, and the furthest equilibrium point corresponds to α = ±π/2; and the position of the

equilibrium points is symmetric with respect to Y = 0, hence, if (x0, y0, z0) is a equilibrium point for α0, then

(x0,−y0, z0) is also an equilibrium point for −α0.

Finally, changes on the reflectivity parameter ρ will change the maximal displacement of the “artificial” equi-

libria with respect to the x-axis. The larger the reflectivity coefficient the more we will be able to displace the

equilibrium point from the x axis. This phenomenon can be seen on the left-hand side of Fig. 2, where we have the

equilibria on the orbital plane (Z = 0) for β̄ = 75, α ∈ [−π/2, π/2], δ = 0 and ρ = 0, 0.15, 0.3, 0.5, 0.75, 0.85

and 1. Although we just plot the behavior of the equilibrium points for δ = 0, the same effects, for a slightly

different scale, are observed when α = 0 and δ 6= 0 where the equilibria lie on the Y = 0 plane [8].

When we study the stability of these equilibrium points we see that they are all unstable, and that their instability

increases as the position of the fixed point comes close to the small body (i.e. as β̄ increases). This can be seen in

Fig. 3, where we plot the maximum absolute value of the eigenvalues |λ| versus the x coordinate of the equilibrium

points. The equilibria represented in this figure are the same as the ones on Fig. 2.

An important remark is that even for large SRP accelerations, the linear dynamics for all the equilibrium points
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Fig. 2: Equilibrium points on the orbital plane Z = 0 (i.e. α ∈ [−π/2, π/2], δ = 0) for β̄ = 75 and
ρ = 0, 015, 0.3, 0.5, 0.75, 0.85, 1 (left), and for ρ = 0.85 and β̄ = 10, 20, 30, 50, 75, 100 (right).

has the same structure: saddle×center×center, so the typical families of periodic orbits present in the AH3BP for

smaller values of SRP are still present. Namely, the planar and vertical Lyapunov families, as well as the two Halo

families, which we will describe in the next section.
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β̄ = 75 and ρ = 0, 015, 0.3, 0.5, 0.75, 0.85, 1 (left) and for ρ = 0.85 and β̄ = 10, 20, 30, 50, 75, 100 (right).

Periodic Orbits

As mentioned in the previous section, the equilibrium points described are of the type saddle×center×center.

Moreover, the system is Hamiltonian for any set of parameters for the sail. Hence, Lyapunov’s Center Theorem [10]

ensures that, under generic non-resonant conditions, two families of periodic orbits emanate from the fixed point.
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Each family is related to one of the two complex pairs of eigenvalues (±iω1,±iω2), and the period of the orbits

tends to 2π/ωi when approaching the equilibrium point.

In Fig. 4 we plot for different values of β, ρ, α and δ the difference between the two complex eigenvalues

(ω1 − ω2). When ω1 and ω2 coincide, we cannot guarantee the existence of periodic orbits and a more detailed

study of this case should be done. Notice in Fig. 4 that this is the case for α 6= 0, δ = 0 (i.e. equilibrium points

on the Z = 0 plane) where for ρ ≥ 0.5 we find at least four values for α where this is true. It is not the case for

α = 0, δ 6= 0 (i.e. equilibrium points on the Y = 0 plane), where |ω1 − ω2| has a minimum for α = δ = 0, whose

value tends to zero as β̄ increases, but is positive always positive. Still in the α = 0 case, the difference between

the two center oscillations increases as we move along the family of equilibria.
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Let us describe the families of periodic orbits for β̄ = 75 and their dependence with respect to the sail ori-

entation α, δ and the reflectivity ρ. Taking β̄ = 75 corresponds to a solar sail with an area-to-mass ratio similar

to Ikaros on a mission to a middle size asteroid like Eros, or a smaller spacecraft with an area-to-mass ratio like

Hayabussa close to smaller asteroids like Golevka (Fig. 1).

To compute the families of periodic orbits for different sail orientations, we will consider appropriate Poicaré

sections to ensure the transversality of the flow. For all the computations we have taken as Poincaré section a plane

perpendicular to {Z = 0} and contains the origin and the equilibrium point for the given sail parameters. Hence, if
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(x0, y0, z0) is an equilibrium point for (α0, δ0, ρ0), then we consider as Poincaré section: Γ = {x0Y − y0X = 0}.

For each family of periodic orbits, we use the linear approximation of the flow around (x0, y0, z0) to compute the

first orbit. Then we use a continuation method to compute the rest of orbits of the family, taking the x coordinate

of the point on the Poincaré section, Γ, as the continuation parameter.

On the left-hand side of Fig. 5 we plot the continuation diagram of the two families of periodic orbits for

α = δ = 0 and ρ = 0.85, i.e. the displaced L2. Each point corresponds to the x and z components of a periodic

orbit on the Poincaré section. We have assigned a color to each orbit depending on the linear dynamics around the

periodic orbit: blue stands for saddle×center, red stands for saddle×saddle, and green stands for center×center. As

we can see, when the planar family crosses a 1:1 resonance, two families of Halo-type orbits are born. As the two

center librations of the displaced L2 point are close a 1:1 resonance (iω1 = i24.1591043, iω2 = i24.1522099)

the two Halo orbits bifurcate from the planar family very close to the equilibrium point. Their bifurcation takes

place at the rightmost point of Fig. 5 left. At the scale of this Figure, it is indistinguishable from the birth of

the planar and vertical Lyapunov families. On the right-hand side of Fig. 5 we plot the variation of the stability

parameters6, s1,2, along the family.

Both the planar and vertical families of periodic orbits are linearly unstable. The planar family is center×saddle

close the equilibrium point, but as it crosses the 1:1 resonance, a bifurcation occurs and the orbits become

saddle×saddle. The Halo orbits that are born inherit the center×saddle dynamics at first, but as we move along

the family they become stable. Nevertheless, notice that, for each family, instability decreases as we reach the

terminating orbits.
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In Fig. 6 we show the X,Y, Z projection for these three type of orbits. Form left to right we have the Planar,

6The stability parameters of a periodic orbit are defined as si = λi+λ
−1
i , for i = 1, 2, where λi belongs to the spectra of the monodromy

matrix associated to a periodic orbit. As the system is autonomous and Hamiltonian with two degrees of freedom, if M is the monodromy
matrix of a periodic orbit, Spec(M) = {1, 1, λ1, λ−1

1 , λ2, λ
−1
2 }.
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Vertical and Halo type orbits. We observe that the orbits on the planar family are on the orbital plane (Z = 0),

and have a boomerang shape, that gets more elongated as we move along the family, and leaves the asteroid in the

middle. The orbits on the vertical family have the familiar eight shape, spending half of their orbital period above

the orbital plane, and as we move along the family the orbits loose vertical displacement, to become almost planar

close to their terminator. Finally, the two families of Halo orbits are almost circular and remain on the shadow side

of the asteroid.
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As it happened with the equilibrium points, changing the sail orientation allows us to displace these families

of periodic orbits. Small changes on the sail orientation will not change the general structure of the families, and

we will still find the three kind of periodic orbits (Planar, Vertical and Halo). If we take α = 0 and δ 6= 0, we

will displace the families of periodic orbits above the orbital plane. As it happened in [11], there is a symmetry

breaking on the equations for δ 6= 0, which changes the way in which these orbits relate. The planar family of

orbits emanating from the fixed point starts almost planar, but as we move along the family, these orbits start to gain

vertical amplitude in such a way that they can be considered Halo orbits. Nevertheless, the planar orbits still exist,

and can be found by continuing planar orbits for δ = 0 with respect to δ. These orbits still have the boomerang

shape and are slightly inclined with respect to the orbital plane. The orbits in the vertical family still have an eight

shape, but the loops are slightly asymmetric. If we take δ = 0 and α 6= 0, we displace the families of periodic

orbits sideways with respect to the Sun–asteroid line. The overall structure is the same as for α = δ = 0, i.e. we

have the planar and vertical families of orbits, and at the 1:1 resonance between the planar and vertical frequencies

the Halo orbits appear. Planar orbits still have the boomerang shape, orbits in the vertical family have an eight

shape and Halo orbits are almost circular and perpendicular to the orbital plane. The main difference is that they

are tilted, but still approach the small body as we move along the family.

We must mention that, for large changes of the sail orientation, the nature of the families periodic orbits that

we have just described can drastically change. For instance, for |α| > 0.5, we have observed that, if we continue

along the planar family of orbits, we do not cross a 1:1 resonance and the Halo-type orbits do not appear. A study

of these phenomena is in progress.

In Fig. 7 we show the X,Y, Z projection of the three type of orbits for α = 0.2rad, δ = 0rad and ρ = 0.85. We

can see how the orbits have the same shape as in Fig. 6 but they are tilted with respect to the asteroid–equilibrium
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point line. In Fig. 8 we show the X,Y, Z projection of the three type of orbits for α = 0rad, δ = 0.02rad and

ρ = 0.85. Observe that here the orbits are tilted above the orbital plane.
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Fig. 7: Family of periodic orbits for β̄ = 75, α = 0.2, δ = 0 and ρ = 0.85. From left to right: Displaced
planar Lyapunov orbits, displaced vertical Lyapunov orbits and displaced Halo-type orbits
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Fig. 8: Family of periodic orbits for β̄ = 75, α0, δ = 0.02 and ρ = 0.85. From left to right: Displaced planar
Lyapunov orbits, displaced vertical Lyapunov orbits and displaced Halo-type orbits

Finally, a change on the reflectivity parameter ρ, will also displace these families of periodic orbits. If we look

at Eq. (3), we notice that if we change ρwe are changing the direction of aSRP . Hence, we can think of a change in

ρ as a change in the sail orientation. In Fig. 9 we plot several planar and vertical orbits from β̄ = 75, α = 0.2, δ = 0

and different values of ρ. As we can see, the effect of varying the reflectivity is similar to the one obtained varying

the sail orientation. The periodic orbits are tilted towards the Sun–asteroid line as ρ tends to 0.
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Fig. 9: Periodic orbits for β̄ = 75, α0.2, δ = 0 and ρ = 0, 0.15, 0.5, 0.75 and 1. Left: displaced planar
Lyapunov orbits and right: displaced vertical Lyapunov orbits
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Some comments on the Terminator Orbits

If we were to plan a mission to an asteroid with a solar sail, there are a several restrictions that must be taken

into account. For instance: orbiting close to the asteroid to allow more detailed scientific observations; keeping the

solar sail almost perpendicular to the SRP to magnify the performance of the sail; and being able to observe the

day side of the asteroid.

As we know, L2 and “artificially” displaced equilibrium points are on the shadow side of the asteroid, which

could compromise an observational mission [8]. On the other hand, some of the periodic orbits that we have just

described spend a part of their orbital period on the day side of the asteroid, and could be used for observational

missions at asteroids. This is the case for the terminator orbits from the planar Lyapunov and vertical Lyapunov

families. In Fig. 10 we show one orbit of each family that spends some time on the day side of the asteroids.
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Fig. 10: A planar Lyapunov (left) and a vertical Lyapunov (right) periodic orbit on the terminator family
that spends more that half of its period in the day side of the asteroid

We have done some preliminary tests on the feasibility of these orbits, checking the maximum and minimum

distance to the center of the asteroid, as well as the amount of time each orbit spends on the day side of the asteroid.

We have seen that, for β̄ = 75, ρ = 0.85 and α = δ = 0, we can find terminator orbits in the planar and vertical

Lyapunov families that have the closest approach with the small body at a distance of 0.01 or less normalized units

(that correspond to 4 radii in the case of Eros), and a maximum distance from the asteroid of ≈ 0.12 normalized

units (≈48 radii for Eros). Finally, the terminator planar Lyapunov orbits spend more than 90% of their orbital

period on the day side, and their average period is of ≈ 0.15 (around 15 days for Eros). The terminator vertical

Lyapunov orbits spend around 70% of their orbital period on the day side, and have an average period of ≈ 0.11

(around 11 days for Eros).

Conclusions and Future Work

In this paper we have considered the Augmented H3BP as a model for the dynamics of a solar sail close to an

asteroid, and we have described some aspects of the natural dynamics of the system for the different parameters

defining the performance of the solar sail and its orientation. We have computed fixed points and families of

periodic orbits. Some of these periodic orbits, such as the terminator planar and vertical Lyapunov orbits, spend

most of their orbital period on the day side of the asteroid and could be interesting for observational missions to
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asteroids. Nevertheless, these orbits are unstable and require control strategies. A study on the controllability of

these orbits is progress.

There are many aspects on the dynamics of the Augmented H3BP that still need to be addressed. In the near

future, we plan to do a complete study on the non-linear dynamics around the equilibrium points. We are currently

performing a reduction to the center manifold, to be able to have a complete description of the periodic and quasi-

periodic motion. Moreover, the stable and unstable manifolds of the equilibrium points and periodic orbits, can be

interesting for low-energy transfers or approximation maneuvers to the surface of the asteroid. Finally, it is known

that some asteroids follow very eccentric orbits around the Sun. The variation of the distance to the Sun also plays

an important role in the dynamics of the system [9], and should be taken into account.
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[9] A. Farrés and À. Jorba. “Orbital dynamics of a solar sail near L1 and L2 in the Elliptic Hill problem”. In

Proceedings of the 63rd International Astronautical Congress. IAF, 2012.

[10] K.R. Meyer and G.R. Hall. Introduction to Hamiltonian Dynamical Systems and the N-Body Problem.

Springer, New York, 1992.
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