
JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 1

Image Segmentation with Cage Active Contours
Lluı́s Garrido, Marité Guerrieri, Laura Igual

Abstract—In this paper, we present a framework for im-
age segmentation based on parametrized active contours. The
evolving contour is parametrized according to a reduced set
of control points that form a closed polygon and which have
a clear visual interpretation. The parametrization, called mean
value coordinates, stems from the techniques used in computer
graphics to animate virtual models. Our framework allows to
easily formulate region-based energies to segment an image. In
particular, we present three different local region-based energy
terms: the mean model, the Gaussian model and the histogram
model. We show the behavior of our method on synthetic and
real images and compare the performance with state of the art
level set methods.

Index Terms—Parametrized active contours, Level sets, Mean
value coordinates

I. INTRODUCTION

Since their invention in [1], active contours have proven to
be a powerful tool for segmentation in image processing. In
active contours an evolving interface is propagated in order
to recover the shape of the object of interest. The evolution
of the interface is driven by minimizing an energy defined
by a variational formulation which mathematically expresses
the properties of the object to be segmented. Classically, the
terms associated to image features are either edge-based, such
as the image gradient on the contour as in [2], or region-
based terms, as introduced by Chan and Vese in [3]. Region-
based terms are known to be more robust to noise than edge-
based contours and they do not need the initialization to
be near the solution. The work of Chan and Vese is based
on evolving the interface according to the variance of the
gray-level values of both interior and exterior regions. This
approach has been extended, since then, to other features such
as the Bayesian model [4] and histogram model [5]. The
latter approaches do define the inner and outer regions as
the whole inner and outer space, respectively, of the evolving
contour. Thus, they may fail if these features are not spatially
invariant. This problem is tackled in [6] that proposes to
compute the features in a band around the evolving contour.
In [7] the inner and outer regions are defined at each point of
the evolving region as the intersection between a ball and the
inside and outside space. In [8] authors use a kernel function
at each point to define a region-scalable fitting term. Finally,
two fast algorithms are presented in [9]) and [10], where a
B-Spline parametrization and a discrete approximation-based
representation are presented, respectively.
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According to the representation of the evolving interface,
active contours may be classified into parametric and geomet-
ric approaches. Geometric approaches represent the evolving
interface as the zero level set of a higher dimensional function,
which is usually called level set function. Level set approaches
are able to cope with the curve topology and thus can segment
multiple unconnected regions. This property has made level
sets to constitute a very popular approach. In parametric
approaches the curve may be described by means of a set
of discrete points [1] or using basis functions such as B-
splines [11], [12]. Using basis functions requires less param-
eters than direct discretization and have inherent regularity.

Parametric contours are able to deal easily with edge-based
energies. However, dealing with region-based energies is more
difficult, see [11] for instance. In addition, in parametric con-
tour approaches one needs to define the number of parameters
or control points that will be used to evolve the contour. Level
set approaches are usually computationally more complex and
difficult to deal with since, in a two dimensional problem, they
evolve a surface rather than a curve. This makes level sets a
difficult approach in 3D applications and thus some authors
are currently using a parametric formulation of the curve for
these type of problems [13].

In this paper, we contribute with a framework for seg-
menting connected objects using a new class of parametric
active contours. In particular, the evolving interface is driven
by a parametrization based on a class of deformable models
well known in computer graphics. In this area, an important
problem is the animation of models for video games or movies.
Such models are usually made up of millions of triangles,
whereas the motion of the character is controlled by a reduced
number of control points. When these control points are moved
the associated mesh deforms accordingly. A similar idea is
applied in our approach: the evolving interface is represented
by a set of points. These points are then parametrized by
a set of reduced control points that evolve according to an
energy to be minimized. When these control points move the
evolving interface evolves correspondingly to the object to be
segmented.

Our work stems from the ideas of free-form deformation
technique [14], [15]. Free-form deformation has been actively
used for medical image registration [16]. However, to the best
of our knowledge, free-form deformation has not been used for
parametric active contours. In our work, we use the mean value
coordinates as the parametrization to deform the evolving
contour [17]. Mean value coordinates have several advantages
over free-form deformation, namely that control points only
need to form a closed polygon that may have any shape. Any
point of the space be inside or outside of this polygon may be
parametrized with respect to the control points. For free-form
deformation the control points need to form a regular shape
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and only interior points may be parametrized with them.
In our approach, we can easily deal with region-based

approaches. This is an advantage with respect to most previous
parametrized approaches, which are only able to deal with
edge-based energies. According to our knowledge, there is
almost no work in the field of parametric-based approaches,
except for [13] in 3D, able to deal in a unified manner with
the mean, Bayesian and histogram model, which is the case in
this paper. As with other similar parametric-based approaches,
in our approach the evolving contour is locally deformed
as the polygon vertices are moved. The deformation applied
to the evolving contour is implicitly regularized, as will be
seen, according to the distance of the polygon to the evolving
interface. The versatility of our approach opens the door to
new applications such as medical image segmentation, where
most of the times the structure to be segmented has only one
regular connected component.

A preliminary version of this work has already been pre-
sented in [18]. The latter paper focuses only on the mean
model for the energy term, see section III, for both 2D and 3D
problems, and uses a non-uniform sampling, see section IV-A.
We focus here only on 2D models, extend the latter work to
Gaussian and histogram based models, see section III, and
improve the method by using a uniform sampling and a more
robust gradient descent method, see section IV-B.

The rest of the paper is organized as follows: section II
reviews the related state-of-the-art work, section III introduces
the proposed segmentation method, section IV details the im-
plementation, section V shows and explains the experimental
results, and section VI concludes the paper.

II. RELATED WORK

A. Level Sets

Let C(p) : [0, 1] → R2 be an Euclidean parametrization of
the curve and let I : R2 → R be a gray level image. Level
set methods are based on embedding the curve C in a higher
dimensional function φ which is defined over all the image.
Instead of evolving the curve C, the function φ is evolved.

The level set method was introduced in [19]. Pioneering
works in this field are the geometric active contour introduced
in [20] and [21], and the geodesic active contour model
proposed in [2].

Chan and Vese presented a method to evolve a curve by
minimizing the variance in the interior, Ω1, and exterior region,
Ω2, defined by C [3]. The energy the authors minimize is

E(C) =
1

2

∫∫
Ω1

(I−µ1)2 dx dy+
1

2

∫∫
Ω2

(I−µ2)2 dx dy, (1)

where the terms based on the contour length and area enclosed
by Ω1 have been dropped for simplicity. In (1), the image I
corresponds to the observed data. The µ1 and µ2 refer to mean
intensity values in the interior and exterior region, respectively.

In [4], an approach that assumes a Gaussian model for Ω1

and Ω2 was presented. For that issue the pixel intensities
inside and outside the contour C are assumed to follow a
Gaussian probability distribution. The energy to be minimized

(considering only the region based terms) is given by

E(C) =

∫∫
Ω1

e1 dx dy +

∫∫
Ω2

e2 dx dy. (2)

Here e1 and e2 correspond to the log-likelyhood function

eh = log σh +
(I(p)− µh)2

2σ2
h

(3)

where h = {1, 2}, µh is the internal (h = 1) or external
(h = 2) mean and σh is the internal or external variance.

In [5], a level set method to segment images using his-
tograms is presented. In this case, the objective is to seg-
ment an image by maximizing the distance between the two
probability distributions. The authors propose to use the Bhat-
tacharyya distance to maximize the distance between prob-
ability distributions pi. Particularly, the distance is − log B
with B defined as

B = E(C) =

∫
R

√
p1(z)p2(z)dz, (4)

and z ∈ R. The functions p1(z) and p2(z) correspond
to the gray-level histogram of regions Ω1 and Ω2 and are
computed by means of Parzen windowing. By minimizing the
energy function B, we maximize the distance between the two
probability distributions.

B. Mean Value Coordinates

An important problem in computer graphics is to define an
appropriate function to linearly interpolate using data given at
a set of vertices of a closed contour. Such interpolants can
be used in applications such as parametrization, shading or
deformation. The latter application is our main interest in this
work and thus we will discuss it next.

Goraud [22] presented a method to linearly interpolate the
color intensity at the interior of a triangle given the color
at the triangle vertices. Indeed, if the triangle has vertices
{v1,v2,v3} and corresponding color values {f1, f2, f3}, the
color value of an interior point p = (x, y) of this triangle can
be computed as f̂ [p] =

∑
j wjfj/

∑
j wj , where wj is the

area of the triangle given by vertices {p,vj−1,vj+1}.
Many researchers have used these types of interpolants for

mesh parametrization methods [23], [24], [17] as well as
free-form deformation methods [25], [15] among others. Both
applications require that a point p be represented as an affine
combination of the vertices of an enclosing closed contour
given by vertices vi. That is,

p =

N∑
i=1

ϕi(p)vi (5)

where ϕi(p) is the corresponding affine coordinate of the point
p with respect to the vertex vi and N is the number of vertices.

A wealth of approaches have been presented for the com-
putation ϕi(p). We may mention those that have interest for
deformation applications, namely mean value coordinates [17],
harmonic coordinates [26] or Green coordinates [27]. Among
them, we have used the mean value coordinates, since they
are easy to compute and allow to parametrize any point of the
space, be inside or outside the polygon.
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Fig. 1. Example of the deformation of a region by means of a polygon.
From right to left: the polygon vertex vi is moved producing the consequent
deformation of the region after applying the interpolation function.

Mean value coordinates were initially proposed for mesh
parametrization problems [17]. The author demonstrated that
the interpolant generated smooth coordinates for star-shaped
polygons for any point p inside the polygon. Later on, in [28],
it was demostrated that mean value coordinates extended to
any planar polygon and to any point p on the plane.

The mean value coordinates of a point p, ϕi(p), given a
set of vertices vi of a polygon of N points, j = 1 . . . N , are
computed as

ϕi(p) =
wi∑N
j=1 wj

i = 1 . . . N, (6)

and wi is computed as

wi =
tan(αi−1/2) + tan(αi/2)

||vi − p||
,

where ‖vi−p‖ is the distance between the vertex vi and the
considered point p and αi is the signed angle of [vi,p,vi+1].

Given the affine coordinates ϕi(p) of a point p, the point
p can be recovered with (5). If the vertices vi of the poly-
gon move to positions v′j , the ”deformed” point p′ can be
recovered as

p′ =

N∑
i=1

ϕi(p)v′i, (7)

where note that the point p′ is recovered from the affine
coordinates ϕi(p), see Fig. 1.

Given a set of points {p}, the affine coordinates for each
point are computed in an independent way using (6). If a point
vi of the polygon is stretched in a particular direction, all
the points {p} follow the same direction with an associated
weight given by ϕi(p), see Fig. 1. The points p that are near
the moved vertex have higher weight, see denominator of (6),
and thus suffer a larger ”deformation” than the points which
are farther where the weight is smaller and hence, they are
barely affected by the deformation.

Fig. 2 depicts the influence of the polygon distance to the
curve. The polygon is shown with a solid line whereas the
evolution curve with a dashed line. The first and third column
shows the initial configuration. The second and fourth column
shows how the curve is deformed when a control point of
the polygon is moved. As can be seen, the movement of the
polygon produces a smooth deformation of the curve. The
closer the polygon to the curve the higher the deformation
that is applied to the curve.

Fig. 2. The curve deformation for two polygon configurations. The polygon
is shown as solid line and the evolving curve as dashed line.

III. CAGE ACTIVE CONTOURS

In this work we use the term cage to refer to the polygon
that allows to deform the evolving contour. Therefore we call
our method Cage Active Contours (CAC). The image segmen-
tation problem is formulated as the minimization of a region-
based energy. Edge-based energies (such as the length of the
contour) can also be included within the energy formulation,
but this is out of the scope of this work.

We propose three different region-based energy models
based on the energies reviewed in section II-A. The proposed
energy models are based on a discretization of the energy
functionals rather than the corresponding evolution equations.
Let us denote v = {v1, . . . ,vN} the set of cage vertices
(or control points) associated to our parametrization, and let
Ω1 and Ω2 be the set of pixels of the interior and exterior,
respectively, of the evolving interface C. Ω1 and Ω2 are
automatically computed given an initial mask (see section IV
for a discussion on the way Ω1 and Ω2 are defined). The cage
vertices v can be manually placed or automatically set from
the evolving contour C, as is done in this work.

1) Mean model: The first model assumes that the gray-level
of pixels inside Ω1 and Ω2 can be modelled with a single
value which corresponds to the mean. This method follows
the formulation presented in (1).

The measure of the region energy can be defined as follows

Emean =

2∑
h=1

∑
p∈Ωh

1

2
(I(p)− µh)2

where the mean gray-level value of Ωh is defined as

µh =
1

|Ωh|
∑
p∈Ωh

I(p), (8)

and | · | denotes the cardinal of the set.
Since the objective is the minimization of the previous

energy, we need to compute its derivatives with respect to
the cage vertices v. Let vj = (vj,x, vj,y)T be the coordinates
of a cage vertex. The gradient of Emean with respect to vj is

∇vj
Emean =

2∑
h=1

∑
p∈Ωh

(I(p)− µh)(ϕj(p)∇I(p)−∇vj
µh),

where
∇vj

µh =
1

|Ωh|
∑
p∈Ωh

∇I(p)ϕj(p). (9)

The previous formulation assumes a dependency of µh with
respect to the region Ωh. In classical level set approaches, such
as [3], authors do not take into account this dependency and
use a coordinate descent approach to minimize the functional:
the mean µh and the evolution equation are updated iteratively
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to evolve the equation. In this work we also have tested this
approach by assuming ∇vjµh = 0. Our experiments have
shown no appreciable difference between using a gradient that
uses ∇vj

µh as expressed in (9) or a gradient ∇vj
µh = 0. We

therefore use the latter approach for the Gaussian model since
it simplifies the expressions for the gradient.

2) Gaussian model: The second model assumes a Gaussian
distribution of pixel gray-level values inside Ω1 and Ω2,
similar as in [4], and follows the formulation in (2).

We assume that interior and exterior pixels follows a
Gaussian distribution: we use the discretized probabilistic
formulation presented in [4], [11] and take the logarithm of
the Gaussian probabilistic function. The energy function to be
minimized is

Egauss = −
2∑

h=1

∑
p∈Ωh

eh (10)

where eh is given by (3). Here µh is the internal or external
mean value as defined in (8) and σ2

h is the associated variance.
The gradient is given by

∇vjEgauss =

2∑
h=1

1

σ2
h

∑
p∈Ωh

(I(p)− µh)ϕj(p)∇I(p).

To compute the latter expression we have assumed that
∇vj

µh = 0 and ∇vj
σ2
h = 0, as commented in the previous

subsection.
3) Histogram model: The third model follows the his-

togram formulation presented in section II-A. In particular, it
uses the Bhattacharyya distance, defined as − log(B), where
B is defined as in (4). Our objective is to maximize the
distance between two probability distributions, so B should
be minimized.

We assume that the image has K gray-level values:
I(x, y) ∈ [0,K − 1]. Therefore, the histogram has K bins.

The discretized energy can be expressed as

Ehistogram =

K−1∑
k=0

√
p1(k)p2(k),

where p1(k) and p2(k) are, respectively, the discretized gray-
level histogram associated to Ω1 and Ω2. The histogram bin
ph(k), h ∈ {1, 2}, is computed by means of the Parzen
window [5]

ph(k) =
1

|Ωh|
∑
p∈Ωh

gσh
(k − I(p)),

where gσh
is the Gaussian function of zero mean and variance

σh. The gradient is

∇vj
Ehistogram =

K−1∑
k=0

(
1

2

√
p2(k)

p1(k)
∇vj

p1(k) +
1

2

√
p1(k)

p2(k)
∇vj

p2(k)

)
,

∇vj
ph(k) = − 1

|Ωh|
∑
p∈Ωh

g′σh
(k − I(p))∇I(p)ϕj(p),

where g′σh
(.) is the derivative of the Gaussian function. The

value of σh is automatically computed as proposed in [5].

IV. IMPLEMENTATION

Assume gray-level input image I and a given input mask
Mare available. The input mask M is a binary mask that is
used as initialization for the algorithm and its outer boundary is
an approximation to the object boundary we want to segment.
In the case of medical images, for instance, this input mask
can be obtained by means of a registration of the image to be
segmented with an image representing an atlas or mean case.
In other cases, the input mask can be manually defined by
the user or automatically placed using a predefined shape and
position. Several choices are available to compute the inner
Ω1 and outer pixels Ω2. For instance, Ω1 may be composed
of the pixels of M , Ω1 = M , and Ω2 may be taken as the set
Ω2 = Ω\M , where Ω is the whole image support. This is the
way in which Ω1 and Ω2 are defined for the level sets reviewed
in section II-A and also is the approach taken in this paper.
We assume here that Ω1 is a connected component. However,
the method presented here is not restricted to this case. That
is, Ω1 may be composed of multiple connected components.
Nevertheless, note that our method is not able to deal with
topological changes of Ω1. In addition, Ω1 and Ω2 may contain
pixels that are too far away from the evolving contour and
thus should not be taken into account for computations. We
may only use a band of pixels around the evolving contour
for minimization of the energy such as is done in [7]. This is
however out of the scope of this paper and is left for future
work.

Minimization of the energy is performed by means of
a gradient descent process that iteratively updates the cage
vertex positions. At each step of the gradient descent, Ω1 and
Ω2 are recomputed. The details associated to this process of
minimization are described in the following sections.

A. Pixel Sampling

An important aspect to define is the way the pixels are sam-
pled during the evolution of the cage vertices. Two approaches
are proposed in this paper, namely the non-uniform and the
uniform sampling, showing different properties.

1) Non-uniform sampling: The first approach, described
in [18], is based on computing Ω1 and Ω2 using the initial
mask, before starting the gradient descent. The affine coordi-
nates ϕi(p) of the pixels p of Ω1 and Ω2 are then computed
using the cage points v, see (6). These coordinates only are
computed once, before the optimization algorithm is initiated.
The cage vertices are then evolved using the gradient descent.
For a given v, the corresponding ”deformed” pixel positions
p are recovered using (7). The energy E(v) and gradient
∇E(v) is then computed using the recovered pixel positions p
which may be non-integer positions. Hence, we apply bilinear
interpolation to estimate I(p) and ∇I(p) at such points. Our
experience has shown that the method is computationally fast
but the image is sampled in a non-uniform way leading to a
non-robust method.

2) Uniform sampling: The second approach is based on
extracting at the initialization stage the contour C associated
to the mask M . The contour is represented as a list of
neighboring pixels that form the contour and can be ordered
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either in clockwise or counter-clockwise manner. Let ci be
the points of the discretized contour. The affine coordinates
of ci are computed before the gradient descent is started. For
each iteration of the gradient descent approach, the ”deformed”
contour C′ is recovered. The sets Ω1 and Ω2 can be easily
extracted by describing them using integer pixel positions, and
its associated affine coordinates are computed. Then E(v) and
∇E(v) can be evaluated and the cage vertices are updated.
This approach implies computing Ω1, Ω2 and its associated
affine coordinates at each iteration of the gradient descent.
Thus, it is a computationally intensive method. However, the
computation of the affine coordinates can be easily parallelized
using, e.g. OpenCL. The advantage of this approach is that, at
each iteration, the image is sampled at integer pixel positions,
and thus, in a uniform way.

For the exposed properties, all the experiments in Section V
are done with the uniform sampling technique.

B. Gradient descent

For a given energy E a gradient descent is used to
minimize it. The gradient method iteratively updates vk+1,
v = {v1, . . . ,vN}, of iteration k + 1 from vk of iteration
k using vk+1 = vk + αk sk, where sk is the so called
search direction and αk the step. Usually the steepest descent
direction sk = −∇vkE is taken as the search direction. In this
work we take the negative of the normalized gradient vector
obtained as follows:

sk = −

(
∇vk

1
E

||∇vk
j
E||max

,
∇vk

2
E

||∇vk
j
E||max

, . . . ,
∇vk

N
E

||∇vk
j
E||max

)
where

||∇vk
j
E||max = max

{
||∇vk

j
E|| : j = 1 . . . N

}
.

We assume that the distance between 4-based neighboring
pixels is one. Normalization of the gradient vector implies
that for α = 1 vertices move at most one pixel from its
current position. This allows to intuitively interpret the search
direction and to improve the robustness of the method. The
computation of α is a critical issue for the good performance of
the algorithm. For that issue we use the line search algorithm
described in [29]. This algorithm updates vk by performing
an inexact line search such that αk ≤ αmax. The computation
of αmax is described in Section IV-C. The gradient descent
algorithm stops if the line search algorithm selects an αk < β,
that is, when the displacements of the vertices vkj is below β
pixels. In this work a value of β = 0.05 has been used.

In this work, the gradient descent is performed by means
of a two stage process.

1) First stage: The objective in this stage is to obtain a
segmentation as close as possible to the solution by restricting
the direction in which the cage vertices may evolve. For that
we use balloon forces similar as the ones described in [30].
Let pc represent the initial (at k = 0) center of the contour.
At each iteration of the gradient descent each cage vertex vkj
is only allowed to move along the line that passes through
pc and vkj . That is, the gradient vector ∇vk

j
E is projected on

the line joining pc and vj before normalizing it. Thus, for

Fig. 3. A band of side d is setup around cage edges, to avoid that they cross
with themselves during minimization. The value of αmax is computed so as
to ensure that vertices do not enter this band, see section IV-C.

each point vkj the problem is reduced to a one-dimensional
problem. The descent method is thus iteratively applied until
the line search method converges, that is, until a value αk < β
is selected.

2) Second stage: The second stage is devoted to adjust the
segmentation by evolving the cage vertices without restrictions
on the directions. At each iteration k the search direction sk is
computed. The line search method then updates sk to obtain
sk+1. The gradient desent converges when a value αk < β is
selected.

C. Cage edge constraints

In this section we deal with the problem of avoiding that
cage edges cross with each other during iterations. We impose
this restriction in order to avoid that the corresponding contour
points C cross with each other.

In the context of active contours, the problem of handling
the crossings of the active contour C has already been tackled
in the literature [31]. Here we propose a method that avoids
that cage vertices do not get too close to the cage edges, thus
avoiding edge crossings. Since the number of cage vertices
is, in our experiments, very low compared to the number of
points in the contour C, the computational effort involved in
our proposal is rather low.

The main idea is depicted in Fig. 3. In order to avoid
edge crossings we have to avoid that vertex vi enters into
the gray band linking vertices vj and vj+1. The gray band
is parametrized by d which can be interpreted as a distance
in pixels measured from the edge between vj and vj+1.
This constraint has been implemented by defining two cost
functions. The first cost function allows to detect if a vertex
vi gets at a distance less than d to a vertex vj , with j 6= i, as
follows

Φvertex(vi) =

N∑
j 6=i

Ψvertex(vi,vj),

where Ψvertex(vi,vj) = 0 if ‖vi − vj‖ > d and
Ψvertex(vi,vj) = (‖vi − vj‖ − d)2 otherwise. Note that
Φvertex is 0 if all vertex are at a distance greater than
d between themselves, otherwise there will be some term
Ψvertex(vi,vj) ≥ 0.

The second cost function detects if a vertex vi gets at a
distance less than d to an edge linking two vertices vj and
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vj+1, where j 6= i and j + 1 6= i. As shown in Fig. 3, q‖ =
vj+1 − vj , q⊥ is the orthogonal vector to q‖, and the vector
r is r = vi−vj . The distance between vi and the line joining
vj and vj+1 is given by d⊥(vi,vj) = |q⊥ · r|/|q⊥|, where
(.) · (.) represents the dot product between two vectors. The
projection of vector r on the line joining vj and vj+1 is given
by r‖(vi,vj) = q‖ · r/|q‖|. Note that if 0 ≤ r‖ ≤ 1, the
projection of vi on the line linking vj and vj+1 is on the edge
joining the two previous nodes. Thus, we define the second
cost function as follows.

Φedge(vi) =
∑

j 6=i,i−1

Ψedge(vi,vj),

where Ψedge(vi,vj) = 0 if r‖(vi,vj) < 0 or r‖(vi,vj) > 1
or d⊥(vi,vj) > d. Otherwise, Ψedge(vi,vj) = (d⊥ − d)2.

The two previous cost functions are combined as follows

Φconstraint(v) =
∑
i

(Φvertex(vi) + Φedge(vi)) . (11)

The value of αmax, introduced in Section IV-B, is computed
for each iteration k using (11). Let vk be the current vertices
positions and sk the normalized search direction. We then
compute

min
j

{
j ∈ {1 . . .W} : Φconstraint(v

k + j sk) > 0
}
. (12)

Given vertices vk, we search along direction sk in discrete
steps (with precision of one pixel) for the minimum value of
j such the new vertices positions approach too much other
vertices or edges. The previous restriction can be computed
indeed in a fast manner. Once computed, we set αmax = j−1,
the maximum step the line search algorithm can use. If, for a
given k the result of (12) is null, we set αmax = W . In the
experiments we set W = 30 and d = 5. That is, the vertices
may move at most 30 pixels from one iteration to the next and
the band is set to a width of 5 pixels.

V. EXPERIMENTAL RESULTS

In this section, we present the experimental results for the
three models of CAC method on synthetic and real images.
We compare the performance with six different level set
based methods implemented in the software Creaseg [32]. The
interested reader can evaluate the CAC algorithm, together
with the algorithms in Creaseg, for new images, using the
code available in the authors website1.

In all the experiments shown below, we use uniform sam-
pling and we constrain edges to not cross between each other
as described in section IV. Cage vertices are automatically
placed in an uniform way around the initial evolving contour.

A. Synthetic Images

In this section, we perform an experiment to show the
influence of the number of cage vertices and the distance
between the cage and the evolving interface. We consider two
synthetic images consisting of a uniform square and star in a
uniform background, see Fig. 4. We give as input the set Ω1,

1http://www.maia.ub.es/∼lgarrido/ieeeipcac2015

Fig. 4. Results on two synthetic images for the mean model. The left column
shows the initialization, whereas the right shows the segmentation result. From
top to bottom, the number of cage vertices is 4, 8, 8, 16 and 16. The distance
of the cage vertices to the evolving interface is, respectively, 10, 10, 5, 5 and
25 pixels.

whose associated contour (i.e. the evolving interface) is drawn
white, whereas the cage is drawn in black. In the left column
of Fig. 4, the initial configuration of the cage and the evolving
interface is shown. For the square (resp. star) image, from top
to bottom, cages with 4 and 8 (resp. 8, 16 and 16) vertices are
shown. Recall that the set Ω1 is made up of all interior pixels,
whereas Ω2 was made up of all external pixels. In the right
column, the segmentation results, using the mean model, are
shown. As can be seen, the number of cage vertices influences
the type of deformation that can be applied to the evolving
interface. Indeed, the cage with only 4 (resp. 8) vertices is not
able to correctly fit the square (resp. star) boundary, whereas
the cage with 8 (resp. 16) vertices is able to properly deform
the evolving interface to get closer to the real boundary of the
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Fig. 5. MRI image with the Caudate Nuclei marked in white. The atlas-based
crop is also marked in white.

square (resp. star).
We show the influence of the distance between the cage

and the evolving interface in last two rows of Fig. 4. In both
cases, the radius of the evolving interface at the initial stage
is set to 70 pixels, but the distance of the cage is 5 and 25
pixels, respectively. As illustrated previously in Fig. 2, we can
observe that the distance of the cage vertices to the evolving
interface plays an important role as a regularization. The nearer
the cage to the evolving interface is the greater the interface
can be deformed. And, the greater the distance is the smaller
the deformation that can be applied to the curve. For the last
row, the algorithm stopped at the iteration at which the vertices
were about to cross with each other.

B. Real Images

In these experiments, we apply CAC method to real images.
We present comparison experiments, preliminary results of a
multiresolution scheme which is part of our future work, and
experiments to illustrate the energy evolution behavior.

We would like to point out that our objective in this work is
not to improve current level set implementations. Rather, we
would like to show that our parametric active contour approach
provides a framework which allows to introduce energies that
have been usually only tackled with level set approaches.

In the first experiment, we use Creaseg software [32]
to quantitatively compare the CAC method with the mean
model and six different level set methods. In particular, as
is described in [32], the methods are classical contour-based
approaches (Caselles [2]) and region-based approaches (Chan
and Vese [3]), as well as more recent methods such as localized
(Lankton [7] and Li [8]), parameterized (Bernard [9]), and
discrete approximation-based techniques (Shi [10]).

We consider five images, four real images and a medical
image. Real images are collected from Grabcut Dataset2:
Castanet, Elephant, Trees and Grave images, see Fig. 7. The
medical image is a Magnetic Resonance Image (MRI), see
Fig. 5, which corresponds to one of the slices of a 3D MRI
brain image from the MICCAI 2012 challenge3. The objective
in this challenge was to segment different subcortical struc-
tures, as the Caudate Nuclei, marked in white in Fig. 5. Atlas
information is commonly used to localize these structures in
MRI. We use this information to define a crop of the image

2http://research.microsoft.com/en-us/um/cambridge/projects/
visionimagevideoediting/segmentation/grabcut.htm

3https://masi.vuse.vanderbilt.edu/workshop2012

Fig. 6. Comparative results with 6 images (Castanet, Elephant, Trees, Grave,
MRI L, MRI R). Top shows the Dice coefficient values and bottom shows
the execution time in seconds.

containing the target structures, marked also in white in the
figure.

The obtained segmentations are compared with the hand-
labeled segmentations using the Dice coefficient [10]. This
overlapping measure is defined as

DC(ΩA,ΩH) = 100 · 2 ·Area(ΩA ∩ ΩH)

Area(ΩA) +Area(ΩH)

where ΩA and ΩH denote the automatic and hand-labeled
segmentations. The DC varies from 0 to 100, where 100
means perfect agreement between segmentations and 0 means
segmentations are completely different.

Fig. 6 summarizes the results of the seven methods on these
five images. Note that, each hemisphere’s Caudate structure is
segmented separately, thus, we show the left and right result
indicated as MRI L and MRI R. Top plot shows the Dice
coefficient results and bottom one shows the execution time,
in seconds. We consider the same initial evolving contour
to initialize all the methods for a particular image (see first
row of Fig. 7). In MRI segmentation, atlas-based strategies
can be used to find contours near to the solution. Thus, to
simulate this situation here, we build the initial curve by means
of a morphological dilation of circular structuring element
of radius 2 of the hand-labeled segmentation. For the six
level set algorithms, we use the parameters setting by default
defined in Creaseg software, except for the maximum number
of iterations. This parameter is originally set to 200, and we
increase it to 1000 to allow the convergence of all the methods.
In particular, Chan and Vese needs more than 200 iterations to
converge, but less than 1000 for all tested images. However,
Li method does not converge before this limit and reaches the
maximum number of iterations for all the real images. For
visualization purposes, in the bottom plot of Fig. 6 we set
the abscise limit to 100 seconds, even if Li method exceeds
this limit. The cropped MRI image is much smaller than the
others, thus, their segmentation requires much less time. We
set the CAC parameters as follows, for the four real images:
the distance of the cage points to the initial contour is 10 pixels
and the number of control points is 16. For MRI image, we
set the CAC parameters as follows: the distance of the control
points to the initial contour is 20 pixels and the number of
control points is 4. In addition, W = 3 since the image is
small. As can be seen, CAC method is among the four best
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Fig. 7. Comparative results. From top to bottom: initialization curve, results of Chan and Vese, Bernard, Shi and CAC methods on Castanet, Elephant, Trees,
Grave and the crop of MRI image.

methods in all cases and is the best for the MRI example.
Fig. 7 qualitatively shows the segmentation results obtained

by Chan and Vese, Bernard, Shi and CAC methods, from
second to fifth row respectively, on Castanet, Elephant, Trees,
Grave and the MRI image. The first row show the initialization
curve used for each image. As can be seen, for the real
images, the obtained segmentation results are similar among
the different methods. CAC result does not present spurious
regions, but it does not properly define the more sharpen
shapes, as it is the case of the Elephant legs. This is due
to the regularization imposed by means of the cage-based
parametrizaion. This property can be useful in medical image
segmentation, as it is the case of the MRI example, where the
structure to be segmented is a convex connected component.
Note that the CAC method obtains the best segmentation
result for the Caudate Nuclei, compared with the hand-labeled
segmentation (Fig. 5).

In the next experiment, Fig. 8, we show an example using

the Gaussian model and different number of cage vertices. In
the top-left corner of the figure, the initialization for the cage
of 8 vertices is shown. In the top-right corner, the result for the
segmentation is shown. As can be seen, the evolving contour
is not able to properly adapt to the contour of the squirrel due
to the low number of cage vertices. In the bottom row, the
result for the segmentation with 16 and 32 vertices is shown.
The initialization is the same as the one with 8, but with a
cage of 16 or 32 vertices. Increasing the number of vertices
allows the evolving interface to better adapt to the contour of
the squirrel. This idea may lead to multiresolution techniques.
The multiresolution is performed in the cage vertices space
rather than in the pixel space.

Fig. 9 presents an example to show the interest of this
technique: we start with the result obtained with a cage
made up of 16 vertices (bottom-left image of Fig. 8). By
using this segmentation we construct a new cage around the
interface. The initial cage now has 64 cage vertices, and can
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Fig. 8. Experiment with the Squirrel image using the Gaussian model
and different number of cage vertices. Top shows initialization (left)
and result (right) using 8 cage vertices. Bottom shows result with 16
(left) and 32 (right) cage vertices. Public domain image taken from
http://en.wikipedia.org/wiki/File:Blacksquirrelrev.jpg.

Fig. 9. Experiment with the Squirrel image using the Gaussian model and
a multiresolution technique. The algorithm starts with a cage made up of
16 vertices (see Fig. 8) and then uses the resulting segmentation to continue
with a larger cage. The left shows the initial second-stage cage made up of
64 vertices. The right shows the resulting image.

be seen in Fig. 9 left. The interface is then evolved (using
only the second step of the gradient descent) to result in the
segmentation shown at the right which is more accurate than
before. The multiresolution technique shown here is just a
preliminary result. Part of our future work will concentrate on
the usefulness of such technique.

Fig. 10 shows the result for the Castanet image using
different initializations. All cages have 16 vertices. On the left
the initialization is shown and on the right the result is shown.
Observe that different initializations lead to similar results. As
can be seen, our proposed method is robust with respect the
cage initialization.

Our last experiment shows the result for the histogram
model, see Fig. 11. For comparison purposes, we refer the
reader to [5]. As can be seen, the algorithm has been able
to properly adapt to the shape of the object using only the
histogram energy model, that is, without using any additional
energy term such as the length of the evolving contour as is
the case for the level sets.

VI. CONCLUSION

In this paper, we have presented a parametrized active contour
approach for two dimensional segmentation problems, the
Cage Active Contour. The evolving interface is evolved by

Fig. 10. Experiment with the Castanet image showing the result for different
initializations using the Gaussian model. All cages have 16 vertices.

Fig. 11. Experiment with the zebra (top) and sheep (bottom) (from Microsoft
Grabcut Dataset) using the histogram model and with a cage made up of 16
and 8 vertices, respectively. Left, original image, right, resulting segmentation.

moving a set of cage points. Mean value coordinates are used
to parametrize the points of the space with respect to the cage
points. Our framework is suitable for the implementation of
discrete energies in a unified framework, both region-based
and edge-based terms, although we have shown here only
the application to region-based energies. Regularization of the
curve is obtained implicitly with the distance of the cage points
to the curve. The versatility of our approach opens the door to
new applications, such as medical ones, where target objects
has only one smooth connected component.

Our future work will focus on the extension of the pro-
posed approach to multicomponent images, on localized active
contours, the improvement of the computational cost and the
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extension to three-dimensional problems. Other issues, such as
the introduction of new energy models, will be also tackled.
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