
Diagnosis of miroali�ations using Case-Based Reasoning andGeneti AlgorithmsXavier Llor�aa Elisabet Golobardesa Maria Salam�oa Joan Mart��baComputer Siene Department, Enginyeria i Arquitetura La Salle, Universitat Ramon LlullPasseig Bonanova 8, 08022 Barelona, Catalonia, Spainfxevil,elisabet,mariasalg�salleURL.edubInstitute of Informatis and Appliations, Universitat de GironaAvda. Llu��s Santal�o s/n, 17071 Girona, Catalonia, Spainjoanm�eia.udg.esAbstratThis paper desribes the appliation ofCase-Based Reasoning and Geneti Algo-rithms to diagnose a mammogram in aner-ous or not. Our work is based on a previousone, whih detets a set of miroali�a-tions that appear in a mammogram. Thispaper is foused on the automati lassi�-ation of the di�erent sets of miroali�-ations using mahine learning tehniques.Our goal is to improve the previous resultsobtained and propose new points of viewinto the Case-Based Reasoning and the Ge-neti Algorithms usage.Keywords: Mahine Learning, Case-BasedReasoning, Geneti Algorithms, Diagnosis,Human-Mediine and Healthare1 Desription of the problemThe inidene of breast aner varies greatly amongountries, but reent statistis show that every year720.000 new ases will be diagnosed world-wide.Breast aner sreening has been proved as a goodpratial tool for deteting and removing breast an-er prematurely and also for inreasing the survivalperentage in women [15℄. However, a low perentageof women that su�ers breast aner an be detetedusing mammographymethods. Therefore, it is nees-sary to develop new strategies to detet breast anerformation in early stages.The main idea is to introdue CAD systems(Computer Aided Diagnosis) in the preliminary di-agnosis. The work presented in this paper is based

on miroali�ations. A miroali�ation (Ca++)usually appears, in the mammographies, as small,bright, arbitrarily shaped regions on the large vari-ety of breast texture bakground. Thus their analysisand haraterisation are performed throughout theextration of features and visibility desriptors bymeans of several image proessing tehniques [12℄,suh as grey-level image analysis, signal proessingalgorithms or morphologial methods.The main guidelines of the CAD system used anbe desribed as: (1) digitising the mammography im-age, (2) proessing the image, (3) doing miroali-�ation identi�ation and feature extration, and �-nally (4) using mahine learning tehniques in orderto diagnose automatially the proessed mammog-raphy. Figure 1 shows an original mammographiimage and the lustered miroali�ations after seg-mentation.This paper fouses its work on the last part of theCAD system. We present here two mahine learningtehniques, Case-Based Reasoning (CBR) and Ge-neti Algorithms (GA), applied to the automati di-agnosis of the proessed mammography images. Theprevious image proessing phases an be found in [9℄.Both systems use as input information, a set of pro-essed images (or samples). Eah sample ontainsthe desription of several Ca++ present in the im-age.For eah of these miroali�ations there are 23real valued features related to the shape of individ-ual miroali�ations (see the table 1). Shape ofindividual miroali�ations as long as shape of theluster and number of miroali�ations have beenpointed out as the three main indiators for malig-nay. In other words, the input information used is



(a) Original (b) SegmentedFigure 1: Digitisation and segmentation proesses transform the original grey-level image into a binary image,where the bakground tissue has been removed and lustered miroali�aions appear.a set of m � 23 real valued matrixes, where m (wewant to remark that the number of Ca++ (m) anbe di�erent for eah mammogram) is the number ofCa++ present on the image. Using this input in-formation, CBR and GA play the bakend role ofdiagnosing a sample into one of the following lasses:malign, benign, do not know.The following two setions desribe the mahinelearning tehniques used, Cased-Based Reasoningand Geneti Algorithms, and the systems that im-plement those tehniques.2 CaB-CS: Case-Based Classi-�er SystemCase-Based Reasoning (CBR) integrates in one sys-tem two di�erent harateristis: mahine learningapabilities and problem solving apabilities. CBRuses a similar philosophy to that whih humanssometimes use: it tries to solve new ases (exam-ples) of a problem by using old previously solvedases [10℄. The proess of solving new ases on-tributes with new information and new knowledgeto the system. This new information an be used forsolving other future ases. The basi method an beeasily desribed in terms of its four phases [1℄. The�rst phase retrieves old solved ases similar to thenew one. In the seond phase, the system tries toreuse the solutions of the previously retrieved asesfor solving the new ase. The third phase revisesthe proposed solution. Finally, the fourth phase re-tains the useful information obtained when solvingthe new ase.

In a Case-Based Classi�er System, it is possibleto simplify the reuse phase. Reuse an be done bylassifying the new ase with the same lass as themost similar retrieved ase.2.1 CaB-CS and extensionsWe use CaB-CS (Case-Based Classi�er System) [2,3, 5℄ and some extensions [11℄. CaB-CS allows theuser to test several variants of CBR. The variantspresented in this paper are foused on the retrievalphase (phase 1).Phase 1 retrieves the most similar ase or asesto the new ase. Obviously, the meaning of mostsimilar will be a key onept in the whole system.Similarity between two ases is omputed using dif-ferent similarity measures.For the problem that we present in this paper,we use the main similarity funtions of the CaB-CS[5℄, and some extensions presented in [11℄. The dif-ferent similarity funtions an be lassi�ed in twogroups: 1) Similarity funtions based on the dis-tane onept: Minkowski's metri (Hamming, Eu-lidean and Cubi distane), Clark's distane, andCosine distane; and 2) Similarity funtions basedon spheres: Sphere of Proximity, MinMax Sphereand Mean Sphere (these funtions were proposed byGolobardes in [5℄).2.2 Similarity funtions based on dis-taneThe most used similarity funtion is the NearestNeighbour (NN) algorithm, whih omputes the sim-ilarity between two ases using a global similarity



Feature DesriptionArea The number of pixels in the miroali�ationPerimeter The total length of boundaries of the miroali�ationCompatness Derived from the perimeter (P ) and area (A) of a miroali�ation, it is equalto P 24�ABox Min. X,Y; Max. X,Y The oordinates of the extreme left, top, right, and bottom pixels, respetively,of the miroali�ationFeret X,Y The dimensions of the minimum bounding box of the miroali�ation in thehorizontal and vertial diretions, respetivelyFeret Minimum Diameter The smallest Feret diameter found after heking a ertain number of angles(maximum 64)Feret Maximum Diameter The largest Feret diameter found after heking a ertain number of anglesFeret Mean Diameter The average Feret diameter at all angles hekedFeret Elongation A measure of the shape of the miroali�ation, it is equal toFeretMax:DiameterFeretMin:DiameterNumber of Holes The number of holes in the miroali�ationConvex Perimeter An approximation of the perimeter of the onvex hull of the miroali�ationRoughness A measure of the roughness, it is equal to PerimeterConvexPerimeterLength A measure of the true length of the miroali�ationBreadth A measure of the true breadthElongation Equal to LengthBreadthCentroid X,Y The (x; y) position of the enter of gravity of the miroali�ationPrinipal Axis The angle at whih a miroali�ation has the least moment of inertia (theaxis of symmetry). For elongated miroali�ations, it is aligned with thelongest axisSeondary Axis The angle perpendiular to the prinipal axisTable 1: Initial feature set used to haraterise the segmented miroali�ations.measure. The pratial implementation (used inCaB-CS) of this funtion is based on theMinkowski'smetri [5℄, and some extensions of CaB-CS [11℄ in-ludes the Clark's distane and the Cosine distane.2.2.1 Minkowski's metriThe Minkowski's metri is de�ned as:Similarity(Case x; Case y) = rvuut FXi=1 wi � jxi � yijr(1)Where Case x and Case y are two ases, whosesimilarity is omputed; F is the number of featuresthat desribes the ase; xi, yi represent the value ofthe ith feature of ases Case x and Case y respe-tively; and wi is the weight of the ith feature.In this study we test the Minkowsky's metri forthree di�erent values of r: Hamming distane forr = 1, Eulidean distane for r = 2, and Cubi dis-tane for r = 3.

2.2.2 Clark's distaneThe Clark's distane is de�ned as:Similarity(Case x; Case y) = 2vuut FXi=1 j (xi � yi) j2j (xi + yi) j2(2)Where Case x and Case y are two ases, whosesimilarity is omputed; F is the number of featuresthat desribes the ase; and xi; yi represent the valueof the ith feature of ases Case x and Case y respe-tively.2.2.3 Cosine distaneThe Cosine distane is based on vetor properties inan Eulidean spae. It measures the Cosine angle inan n-dimensional vetor spae. This metri is de�ned



as:Similarity(Case x; Case y) = PFi=1(xi � yi)2qPFi=1 x2i �PFi=1 y2i(3)Where F represents the number of features thatdesribes the ases; and xi; yi represent the value ofthe ith feature of ases Case x and Case y respe-tively.2.3 Similarity funtions based onspheresCaB-CS proposes other similarity funtions based onthe sphere onepts [5℄. These funtions searh somesphere able to explain the new ase -that we want tosolve-. The �rst and the seond funtion proposed,the Sphere of Proximity and the MinMax Sphere,ompute the similarity between two ases using aloal similarity measure, but the third funtion, theMean Sphere, omputes the similarity using a globalsimilarity measure.2.3.1 Sphere of ProximityThe Sphere of Proximity searhes ases from the asememory that are into a delimited sphere that de-sribes the new ase, feature by feature. So, we saythat two ases are similar if they are also similarfeature by feature. The sphere boundaries are om-puted using the variane -of the lass whih belongsto the retrieval ase- for eah feature. In this sense,we selet the ases from the ase memory if they sat-isfy the following ondition:If 8ai : 42ai � threshold� �variane(ai)iteration � theninlude this ase in the list of seleted ases; (4)Where ai is the ith feature; 42ai is the squared dif-ferene between both values of the ith feature -forthe new ase and the retrieved ase-; the thresholdweighs the relevane of the ith feature; the iterationrepresents the number of tries that the funtion om-putes in order to obtain a orret lassi�ation; thelist of seleted ases is the list where the funtionretains the \similar" ases; and the variane of thefeature ai is omputed as:Variane(ai) = PNj=1(xij � xi)2N � 1 (5)Where N is the ardinality of the ase memory (thenumber of ases); xij is the value of the feature i forthe ase j; and xi is the mean of the ith feature.

If we obtain an empty list of seleted ases thenwe an not lassify the new ase, otherwise we anuse di�erent riteria in order to hoose the most sim-ilar ase to the new ase.2.3.2 MinMax SphereThe MinMax Sphere omputes one sphere for eahlass -in whih we an lassify the new ase-. Eahsphere -of any lass C- ontains information for eahfeature about the minimum and maximum values,based on the ases of the ase memory that belongto this lass:MinMax Sphere- Class C 8>>>><>>>>: feature 1 � MinimumMaximum...feature F � MinimumMaximum (6)In this sense, this similarity funtion lassi�es anew ase in the lass C if, for all features, it satis�esthat:8ai : (value min(C; ai)� threshold min) �value(New ase; ai) �(value max(C; ai)� threshold max) (7)Where F is the number of features that desribesthe ase; ai is the feature i; value min(C; ai) andvalue max(C; ai) are the minimum value and themaximum value of the sphere of the lass C forthe ith feature; value(New ase; ai) represents thevalue of the ith feature of the new ase; and thethreshold min and the threshold max weighs therelevane of the ith feature for the minimum valueand the maximum value respetively.2.3.3 Mean SphereThe Mean Sphere also omputes one sphere for eahlass -in whih we an lassify the new ase-. Eahsphere -of any lass C- ontains information for eahfeature about the mean value based on the ases ofthe ase memory that belongs to this lass:Mean Sphere- Class C 8<: feature 1 � Mean...feature F � Mean (8)Now, the Mean Sphere funtion uses a similarityfuntion based on distane (e.g. Hamming distane)in order to retrieve the \most similar sphere" to thenew ase. In this sense, we say that this funtionuses a global similarity measure.



3 GENIFER: GENeti based las-sIFiER systemGENIFER [8℄ uses a Geneti Algorithm (GA) [7, 4℄in order to obtain a set of rules that solves our las-si�ation problem. The appliation of Geneti Algo-rithms to Mahine Learning problems has been ad-dressed from two di�erent points of view: the Pitts-burgh approah and the Mihigan approah, earlyexempli�ed by LS-1 [13℄ and CS-1 [6℄ respetively.In the Pittsburgh approah, eah individual ofthe population represents a omplete solution to theproblem, whih is a whole set of rules. In ontrast,the Mihigan approah odi�es only one rule in eahindividual. Therefore, the solution onsists on all thepopulation. This di�erene in representation leadsto signi�ant di�erenes between the two systems.Using the �rst approah, the GA an be applied di-retly. But in the Mihigan approah, the GA is lim-ited to the exploration of new points of the searhspae (new rules) and the learning proess is per-formed by other algorithms (e.g. Buket Brigade Al-gorithm [6℄, Q-Learning tehnique [14℄, et.).3.1 GENIFER overviewGENIFER [8℄ is a general purpose lassi�er systembased on GAs. It is designed to be applied to prob-lems with real-valued attributes. The starting pointis the GeB-CS (Geneti-Based Classi�er System) [2,3℄. GENIFER aim is to obtain a set of lassi�ationrules that solves the lassi�ation problem desribedby a set of examples. Like GeB-CS, GENIFER isalso a Pittsburgh based lassi�er system, but it is de-signed to fae problems with real-valued features.The GeB-CS ideas are the base for the GENIFERsystem. The aim is to look for a hange in knowl-edge representation of lassi�ation rules. In GeB-CS a binary odi�ation of PC0 (Prediate Calu-lus of zero order) rules is used as GA individuals.These Condition ! Ation rules are rede�ned inGENIFER. The sought goal is to adapt those rulesto the real-value nature of features. The impliationsof this idea are: (1) looking for a new rule represen-tation (and its geneti odi�ation), (2) hoosing agood mathing funtion, (3) adapting the GA �tnessfuntions, and (4) designing new geneti operatorsapable to deal with the new geneti rule odi�a-tion.From the set of urrent GENIFER [8℄ variants, wehoose two of them in order to solve the mammog-raphy lassi�ation problem presented in this paper.They an be found, in bold font, in table 2. Thesetwo variants were hosen in order to obtain a �rst

GENIFER-MDA Minimal Distane AtivationGENIFER-MDAA Minimal Distane Adapt. AtivationGENIFER-RA Representative AttributesGENIFER-DIA Diploid based Inremental ApproahTable 2: GENIFER used variantsevaluation of the system. GENIFER-MDA obtainslassi�ation rules, so a pure performane evaluationan be obtained from the problem. On the otherhand, GENIFER-RA builds lassi�ation rules and,at the same time, it is able to selet the most relevantfeatures involved in eah rule.Both, GENIFER-MDA and GENIFER-RA vari-ants, are based on a two-phase approah to the las-si�ation problem. They are divided in the trainingphase, where rules are obtained using a training setof orretly lassi�ed samples, and the test phase,where rules are exploited. An inremental approah,where train and test have been merged, an be foundin [8℄.3.2 GENIFER-MDA3.2.1 System overviewIn a lassi�ation problem where all features belongto R, an n-dimensional spae an be de�ned, so allthe examples belong to it. The question is: Can anyaÆnity be de�ned in this spae? In other words, isit possible to identify spae regions that share thesame lassi�ation onept?GENIFER-MDA (Minimal Distane Ativation)searhes a way of splitting the n-dimensional spae,desribed by the problem features, into spae regionsthat share the same lassi�ation onept. In orderto reah this aim, we use what we all signi�antpoints. These points are linked to a lassi�ationonept, in this paper: a lass. If we want to lassifyan example mi, the proess of obtaining its assoi-ated lass an be seen as the proess of identifying theonept/lass region where it belongs. This proessan be de�ned easily as �nding whih is the nearestsigni�ant point to the mi sample. One it is ob-tained, the lass where mi belongs is the lass linkedto the nearest signi�ant point reovered. This pro-ess an be seen as an analogy of some similarityfuntions used in Case Based Reasoning Systems [5℄.Under this new point of view, a rede�nition ofrule representation used by the GA is needed. As itan be seen, GENIFER-MDA does not look for PC0rules. Instead, it looks for signi�ant points of then-dimensional spae de�ned by the set of features.This revision modi�es: (1) rule representationand its assoiated mathing funtion (the key of the



lassi�ation proess) and (2) the GA struture andthe odi�ation of individuals.RepresentationIn GENIFER-MDA a lassi�ation rule has the form:Condition! Conept. The ondition part is an or-dered set of real values (as many as the number ofproblem features). This ondition expresses a signi�-ant point of the features in the n-dimensional spae.The onept identi�es the lass linked to the signi�-ant point desribed in the ondition part of the rule.MathingThe rule mathing proess an be desribed as:1. Let mi be the sample to lassify.2. Let R be the rule set that solves the problem,and x a rule that x 2 R.3. Let Dist1 be the similarity funtion between asample and a signi�ant point. In GENIFER-MDA, Dist is the Eulidean distane:Dist(mi; x) =vuut FXj=1 (mij � xj)2 (9)4. Find the rule r that satis�es:Dist(mi; r) � min8x2R(Dist(mi; x)) (10)5. Classifymi as a member of the assoiated lassto rule r.3.2.2 GA modi�ationsDue to the new proposal in rule representation, somemodi�ation must be introdued in the GA. Theyan be summarised as:1. The introdution of a new operator that prunesthe rules not used in the training set lassi�a-tion. Useless rules an easily appear due to theproximity between signi�ant points.2. The �tness funtion used is:fitness(indi) = (%CorretClassified)2(11)3. The rossover and mutation operators were sli-ghtly modi�ed to enable them to manipulatereal oded individuals.1The Dist funtion used in the GA approah is equivalentas the Similarity funtion used in the CBR approah.

3.3 GENIFER-RA3.3.1 System overviewThe aim of GENIFER-RA (Representative Attributes)is to exploit the adaptive behaviour of GAs. GA ismodi�ed in order to obtain: (1) a rule set that solvesthe lassi�ation problem and (2) a representative setof features for eah rule. GENIFER-RA proposes aGA that is in harge of hoosing whih features areused in the nearest neighbour metri funtion. Inother words, the hoie to be done for eah featureinvolved in a rule is a binary deision: use it or donot use it.In order to inlude the previous onsiderations,the Dist funtion must be slightly modi�ed. It isde�ned as follows:Dist(mi; x; w) =qPFj=1 val (wj ;mij ; xj)val(wj ;mij ; xj) = � 0 if wj = 0;(mij � xj)2 if wj = 1: (12)In the Dist funtion, mi is the example to be lassi-�ed and x the signi�ant point. A w vetor is addedto disard whih features are not representative. Theontribution of eah feature is omputed using theval funtion. As it an be observed in equation 12,w is de�ned by setting 8wi 2 f0; 1g. So w beomesbinary valued.3.3.2 GA modi�ationsThe main modi�ation a�ets the individuals odi�-ation. In order to use the adaptive behaviour of theGA to adjust the w vetor 2, it must be odi�ed inthe genotype of an individual.4 ResultsThis setion desribes the results obtained from theappliation of CaB-CS and GENIFER to the mam-mography lassi�ation problem. First we presentthe testbed and, seond, the results obtained usingthe CBR and the GA approahes respetively.4.1 TestbedThe information used to feed the mahine learningsystems, an be summarised as follows. After theimage proessing phases, for eah mammography, anm � 23 real valued matrix is obtained. This ma-trix ontains as many rows, m, as the number of2In other words, to hoose whih are the representativefeatures.



Sim. Funtion %Corret %InorretHamming 72.857 27.143Eulidian 72.857 27.143Cubi 74.286 25.714Clark 74.286 25.714Cosine3 64.286 25.714Proximity 72.857 27.143MinMax 72.857 27.143Mean 72.857 27.143Table 3: Results using the CBR approah.miroali�ations presents in the image. In orderto feed this information to the mahine learning sys-tems (CaB-CS and GENIFER), the matrix is at-tened into a vetor. This proess is ahieved om-puting the mean value of eah feature of the miro-ali�ations present in the image. So an image anbe redued to a real-valued vetor with 23 features.The human experts also deided whih trainingand test sets must be used. The training set ontains146 samples, while the test set has 70 samples.4.2 Previous resultsIn [9℄ a statistial predition model was developed.This statistial model was based on regression, and alogit funtion was used in order to obtain whih fea-tures are relevant to the lassi�ation proess. Theresults obtained never outperformed the 51% of su-ess that human experts were able to reah.4.3 Results using CaB-CSIn this subsetion we present the results using a CBRapproah. In fat, we present the results using theCaB-CS system and their extensions.The table 3 shows the results using the di�erentsimilarity funtions: Hamming distane, Eulideandistane, Cubi distane, Clark's distane, Cosinedistane, Sphere of Proximity, MinMax Sphere andMean Sphere.We want to remark that the di�erent similarityfuntions retrieve the most similar ase to the newase from the ase memory, using very di�erent poli-ies. On one hand, we use the more lassial view:the similarity funtions based on the distane. Onthe other hand, we present the similarity funtionsbased on spheres, whih retrieve the most similarase using -again- di�erent riteria. For example,the funtion Mean Sphere, use the ases of the ase3The Cosine distane diagnose 64.286% orretly, 25.714%inorretly, and for a 10% is not lear their diagnosti. So itdiagnoses a 71.42% orretly among all the lassi�ed ases.

Variant %CA %PAMDA 69.178 72.857RA 69.178 74.286Table 4: GENIFER results using MDA and RAmemory in order to onstrut the spheres that rep-resent the di�erent lasses, so these spheres do notrepresent a real ase. Although we use very di�erentpoints of view, we obtain -as table 3 shows - the sameresults: 72.857% of Predition Auray (PA). Andpuntually, Cubi and Clark's distanes reah the74.286% of PA. These results show that these di�er-ent riteria have similar behaviour on this problem.Also, we want to remark that these results are thebest results after trying about 500 di�erent options ofthe CaB-CS and extensions. But, almost all resultsare very very lose. The di�erent options onsist,for instane, on using di�erent riteria in order toweigh the features; or training previously the initialase memory or not; or using di�erent poliies in theretain phase; et. [5℄.4.4 Results using GENIFERGENIFER is divided in two di�erent working phases.The �rst one, the training phase, is in harge of ob-taining the lassi�ation rule that solve the lassi�-ation problem. When the rules are obtained, theseond phase, test phase, heks them using the testset.In table 4, the results obtained with GENIFERMDA and RA are presented. For eah GENIFERvariant, two results are presented. The Classi�ationAuray (CA) is the perentage of samples orretlylassi�ed in the training phase. On the other hand,the Predition Auray (PA) is the perentage oforretly lassi�ed samples in the test phase. As itan be seen, the maximum system performane isobtained using the RA variant, where the PA raisesup to a 74%. These results learly outperform theones presented in setion 4.2.5 Conlusions and further workIf we analyse the results reahed for both approahes(Case-Based Reasoning and Geneti Algorithms) someonlusions and further work an be dedued.We must point out that our tehniques outper-form the predition auray (51%) obtained in [9℄.Both approahes (Case-Based Reasoning andGenetiAlgorithms), implemented by CaB-CS and GENIFER
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