
BASTIAN: inorporating the Rough Sets theory intoa Case-Based Classi�er SystemMaria Salam�o i Llorente Elisabet Golobardes i Rib�emariasal�salleURL.edu elisabet�salleURL.eduGrup de Reera en Sistemes Intel�ligentsDepartament d'Inform�atiaEnginyeria i Arquitetura La SalleUniversitat Ramon Llull (URL)Passeig Bonanova 8 08022-BarelonaAbstratThis paper proposes how to inorporate theRough Sets theory as a weighting method intoa Case-Based Classi�er System. This hybridsystem has been implemented into the plat-form alled BASTIAN (ase-BAsed SysTem InlAssi�atioN), whih inorporate both tehniques.Thus, the main goals of the paper are: present-ing the BASTIAN system, desribing the hybridmethod; and analysing this proposal for di�erentdomains, extrated from the UCI repository.Keywords: Case-Based Reasoning, MahineLearning, Diagnose, Knowledge Disovery1 IntrodutionOur main goal is to develop, evaluate and improvethe lassi�er systems. In this paper we present ahybrid lassi�er system based on Case-Based Rea-soning and Rough Sets. The BASTIAN platform isa Case-Based Reasoning system that inorporatesRough Sets apabilities in order to improve the pre-dition auray rate. Rough Sets theory is used inour system as a weighting method to selet the bestfeature relevane of the domain.Case-Based Reasoning (CBR)[1℄ have been usedin a wide variety of �elds and appliations. We useCBR as an automati lassi�ation system [4, 21℄.Rough Sets theory is a Data Mining tehnique.The nature of Rough Sets theory has made them

useful for reduing the knowledge, extrating de-pendenies in knowledge, reasoning about knowl-edge, pattern reognition, et.The main researh trends in Rough Sets theory-whih tries to extend the apabilities of reasoningsystems- are:1. The treatment of inomplete knowledge.2. The management of inonsistent piees of in-formation.3. The manipulation of various levels of represen-tation, moving from re�ned universes of dis-ourse to oarser ones and onversely.The paper is strutured as desribed. First, anoverview about the BASTIAN platform in setion2. Next setion proposes the Rough Sets theory asa weighting method for a Case-Based lassi�er sys-tem. Setions 4 and 5 expose the testbed used andthe results obtained respetively. Finally, the lastsetion presents the onlusions and further work.2 BASTIAN System desrip-tionBASTIAN platform is a Case-Based Reasoning sys-tem used in lassi�ation. Case-Based Reasoningintegrates in one system two di�erent harater-istis: mahine learning apabilities and problemsolving apabilities. CBR uses a similar philoso-phy to that whih humans sometimes use: it tries



to solve new ases (examples) of a problem by us-ing old previously solved ases [16℄. The proess ofsolving new ases ontributes with new informationand new knowledge to the system. This new infor-mation an be used for solving other future ases.The basi method, see Figure 1, an be easily de-sribed in terms of its four phases [1, 11℄:
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SolutionFigure 1: CBR Cyle.The �rst phase retrieves old solved ases sim-ilar to the new one. In the seond phase, thesystem tries to reuse the solutions of the previ-ously retrieved ases for solving the new ase. Thethird phase revises the proposed solution. Finally,the fourth phase retains the useful information ob-tained when solving the new ase. In a Case-BasedClassi�er System, it is possible to simplify the reusephase lassifying the new ase with the same lassas the most similar retrieved ase.BASTIAN system is an extension of CaB-CS(Case-Based Classi�er System) system [9, 7, 6℄. Itallows the user to test several variants of CBR. Tobe exat, the variant presented in this paper is fo-used on two di�erent phases: the retrieval and theretain phase, and also on the ase memory organ-isation. BASTIAN has been developed in JAVAlanguage and the system is being improved withnew apabilities.2.1 General StrutureThe BASTIAN general struture, see �gure 2,maintains the four phases desribed in [1℄. The sys-tem adds a previous phase StartupInterfae, not in-orporate on the Case-Based Reasoning yle, thatprepares the initial start-up of the system.
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Figure 2: General Struture in BASTIAN.The system funtionalities are developed to workseparately and independent in o-operation amongthe rest. Eah funtionality desribed in the generalstruture has a desription of the general behaviourthat has to ahieve. The main goal is to obtaina general struture that ould hange dynamiallydepending on the type of Case-Based Reasoner wewant to develop. The main funtionalities are:� The CBRParamCon�guration allows us tohange and get the on�guration. The on�g-uration ould be hanged independent of thesystem, this means that is not neessary to ex-eute the system in order to hange the on�g-uration and it an be hanged during the CBRyle too.� The CBRErrors is the error ontrol funtion-ality whih detets all the possible problemsduring one exeution.� The CBRStatistis aims to develop all the pos-sible statistis during exeution of the system.It omputes the statistis in EXCEL, LATEXand EPS format.� The CaseMemory goal is to develop di�erentase memory organisations.� The SimilarityFuntionInterfae onentratesall the harateristis related to similarityfuntions. It let us hange the similarity fun-tion dynamially into the system during oneexeution.� The WeightingInterfae, ontains the mainabilities to ompute the feature relevane in aCase-Based Classi�er System. It is related to



the RetrievalInterfae and the SimilarityFun-tionInterfae.� The fRetrieval, Reuse, Revise, Re-taingInterfae are the four phases of theCBR yle. These interfaes desribe thebehaviour of eah phase.The kernel in a Case-Based Reasoning system isthe retrieval phase (phase 1). Phase 1 retrieves themost similar ase or ases to the new ase. Obvi-ously, the meaning of most similar will be a key on-ept in the whole system. Similarity between twoases is omputed using di�erent similarity fun-tions. Our aim is to improve this similarity fun-tions auray using a weighting method that om-putes automatially the feature relevane [2, 5, 10℄.2.2 Similarity FuntionsFor our purpose in this paper, we use the similarityfuntions based on the distane onept introduedin BASTIAN. The most used similarity funtion isthe Nearest Neighbour algorithm, whih omputesthe similarity between two ases using a global simi-larity measure [2, 3℄. The pratial implementation(used in our system) of this funtion is based ontheMinkowsky's metri [6, 12℄ and we also use theClark's distane and the Cosine distane [17℄.2.2.1 Minkowsky's metriThe Minkowsky's metri is de�ned as:Sim(Case x; Case y) = rvuut FXi=1 wi � jxi � yijr (1)Where Case x and Case y are two ases, whosesimilarity is omputed; F is the number of featuresthat desribes the ase; xi, yi represent the value ofthe ith feature of ases Case x and Case y respe-tively; and wi is the weight of the ith feature.In this study we test the Minkowsky's metri forthree di�erent values of r: Hamming distane forr = 1, Eulidean distane for r = 2, and Cubidistane for r = 3.2.2.2 Clark's distaneThe Clark's distane is de�ned as:

Sim(Case x; Case y) = 2vuut FXi=1 wi � j (xi � yi) j2j (xi + yi) j2(2)Where Case x and Case y are two ases, whosesimilarity is omputed; F is the number of fea-tures that desribes the ase; and xi; yi representthe value of the ith feature of ases Case x andCase y respetively; and wi is the weight of the ithfeature.2.2.3 Cosine distaneThe Cosine distane is based on vetor properties inan Eulidean spae. It measures the Cosine angle ina n-dimensional vetor spae. This metri is de�nedas:Sim(Case x; Case y) = wi� PFi=1(xi � yi)2q(PFi=1 x2i ) � (PFi=1 y2i )(3)Where F represents the number of features thatdesribe the ases; and xi; yi represent the value ofthe ith feature of ases Case x and Case y respe-tively; and wi is the weight of the ith feature.2.3 Memory RepresentationThe ase memory struture is spei�ed in �gure 3.As it an be seen, there are three strutures thatan be used in BASTIAN: the �rst one is a list,the seond one is a SingleList (a vetor) and thelast one is a tree. The memory representation usedin the experiments has been the �rst one, a list ofases. The seond part of the �gure 3 shows theproblems that we have used in this work.The representation used in eah sample is basedon an attribute-value representation, see equation4. Case = fa0; a1; a2; � � �; an; CLASSg (4)Where ai are the value for the attribute i; andCLASS is the lass that the ase belongs to.2.4 Retain PoliiesIn order to deide whether a ase is representativeenough to be stored in the ase memory, we usethree di�erent poliies, see �gure 4:



object

Interface

Class

= object flow

= object or class  used

= inheritance

LEGEND

List SingleList Tree

WisconsinCaseMicroCaCase

CASE MEMORYClass

Case

CaseMemory

IrisCaseEchocardiogram

CaseFigure 3: Case Memory Struture in BASTIAN.� Test mode, in this mode system does notstore any new ase in the ase memory. Thisriterion has been used for two reasons. On onehand, the results obtained using this mode anbe ompared, in equal onditions, to those ob-tained using other mahine learning methodsthat do not inlude learning while solving newproblems. On the other hand, it allows us toevaluate the initial orpus of the ase memory.� DifSim mode, under this poliy the systemstores the new ase if its similarity with theretrieved ase is not zero. In other words, thenew ase will be stored if there is not any iden-tial ase in the ase memory.� DifClass mode, this is an intermediate solu-tion between the previous ones. The systemwill store the new ase if it has been impossi-ble to lassify it orretly. Otherwise, it willnot be stored.
RetainInterface

RetainDifSim RetainDifClass RetainTest Object

Interface

Class = object flow

= object or class  used

= inheritance

LEGEND

Figure 4: Retain Struture in BASTIAN.The system let us also to train the initial asememory to store only the most representative ases.

3 Feature RelevaneBASTIAN inludes 3 variants to weight the featurerelevane. The �rst one is the Sample Correlation[9℄; the seond one is the Shannon Entropy [13℄; andthe third is the Rough Sets theory [18℄. The aim ofthis paper is to explain the integration of the thirdone into the BASTIAN system. The Rough Setsinto the BASTIAN system an be applied using twopoliies:� Stati: we ompute the weight of the featuresonly using the initial ase memory. Our paperwill be foused on that variant.� Dynami: the relevane is omputed in theinitial ase memory, and every time that a newase is learned by the system. It is an inre-mental weighting method.The setion is divided in an introdution to theRough Sets theory, the basis onepts of Rough Setstheory and the inorporation of Rough Sets into theCase-Based Reasoning System.3.1 Rough Sets TheoryZdzislaw Pawlak introdued Rough Sets theory in1982 [14, 15, 20℄. The idea of the Rough Sets on-sists of the approximation of a set by a pair of sets,alled the lower and the upper approximation ofthis set. In fat, these approximations are innerand losure operations in a ertain topology gen-erated by the available data about elements of theset.The nature of Rough Sets theory made them use-ful for reduing the knowledge, extrating depen-denies in knowledge, reasoning about knowledge,pattern reognition, et.We use Rough Sets theory for reduing and ex-trating the dependenies in the knowledge. Thesedependenies are the basis for omputing the rele-vane of eah feature into the Case-Based Classi�erSystem.3.2 Rough Sets inside Case BasedReasoning SystemHow Rough Sets theory is inorporated into ourCase-Based Classi�er System?First of all, we inorporate some onepts in thispaper to explain how the dependenies we are look-ing forward from the domain are obtained to seletthe best weighting.



3.2.1 Basi Conepts and De�nitionsWe ompute from ourUniverse (U) (�nite set andnot null set of objets that desribes our problem,the ase memory) the onepts (objets or ases)that form partitions of that Universe. The union ofall the onepts make the entire Universe. Using allthe onepts we an desribe all the equivalenerelations (R) over the universe (U). Let an equiv-alene relation be a set of features that desribe aspei� onept. U=R are the family of all equiva-lene lasses of (R).The universe and the relations form the knowl-edge base (KB), de�ned as KB = < U, R̂ >.Where R̂ is the family of equivalene relations overU. Every relation over the universe is an elementaryonept in the knowledge base.All the onepts are formed by a set of equiva-lene relations that desribe them. Thus, we searhfor the minimum set of equivalene relations thatde�ne the same onept as the initial set.Definition 1 (Indisernibility Relations)It an be de�ned as IND(P̂ )= T R̂ where P̂ � R̂.The indisernibility relation is the intersetion ofproperties over P . The indisernibility shows there�ned information over a onept and gives all theinformation about the equivalene relation thatexists in P̂ .Example 3.1If we onsider a set of 8 objets in our Universe,U = (x1; x2; x3; x4; x5; x6; x7; x8), using as a familyof equivalene relations over U:R̂ = (P, Q, S).Where P are olours (green, blue, red, yellow); Qare sizes (small, large, medium); and S are shapes(square, round, triangular, retangular).U=P = ( (x1; x4; x5), (x2; x8), (x3),(x6; x7) )U=Q =( (x1; x3; x5), (x6), (x3; x4; x7; x8) )U=S = ( (x1; x5), (x6), (x2; x7; x8), (x3; x4) )As it an be seen, every indisernibility relationdivides the Universe in a di�erent way.Definition 2 (Basi Knowledge)The basi knowledge is the family of all equiva-lene lasses of the equivalene relation IND(P̂ ).The basi knowledge shows all the knowledgeassoiated with the family of equivalene relationP .

Definition 3 (P-basi ategories)P-basi ategories are those basi properties of theuniverse, whih an be expressed using knowledgefrom P . They are the building bloks of theexisting knowledge.Let K = (U; R̂) be a knowledge base.IND(K) = (IND(P̂ ): 0 6= P̂ � R̂) is the family ofall equivalene relations de�ned in K.Definition 4 (Equivalene, generalisation)(and speialisation of knowledge)Let K i K' be two knowledge bases:� if IND(K) = IND(K'), it means that K and K'are equivalent.� if IND(K) � IND(K') then the knowledge baseK is �ner than K', so K' is a generalisation ofK.3.2.2 Rough SetsLet X � U and R be an equivalene relation. Wewill say that:� X is R-de�nable if X is the union of some R-basi ategories; otherwiseX is R-unde�nable.� The R-de�nable sets are those subsets of theuniverse whih an be exatly de�ned in theknowledge base K, whereas the R-unde�nablesets annot be de�ned in this knowledge base.� The R-unde�nable set will be also alled R-rough.� The set X � U will be alled exat in K ifthere exists R 2 IND(K) suh that X is R-exat, and X is alled to be rough in K, if X isR-rough for any R 2 IND(K).Approximations of Set This is the main ideaof rough sets, approximate a set by other sets. Thenext de�nitions will explain this idea.Suppose a given knowledge base K =< U; R̂ >.With eah subset X � U and an equivalene rela-tion R � IND(K) we assoiate two subsets alled:� Lower approximation� Upper approximation



Definition 5 (Lower approximation)The lower approximation, de�ned as: RX = S fY 2 U/R : Y � Xg. The lower approximation isthe set of all elements of U whih an be ertaintylassi�ed as elements of X in the knowledge R.Definition 6 (Upper approximation)The upper approximation, RX = S f Y 2 U/R :X T Y 6= ; g. The upper approximation is the setof elements of U whih an be possibly lassi�ed aselements of X , employing knowledge R.Definition 7 (Boundary)RX�RX is the boundary BNR(X). The boundaryis the set of elements, whih annot be lassi�edeither to X or to :X having knowledge R.Redut and Core of knowledge Intuitively, aredut of knowledge is its essential part, whih suf-�es to de�ne all onepts ourring in the onsid-ered knowledge, whereas the ore is the most im-portant part of the knowledge.Let R̂ be a family of equivalene relations and letR 2 R̂. We will say that:� R is indispensable if IND(R̂) 6= IND(R̂ - R);otherwise it is dispensable.� The family R̂ is independent if eah R 2 R̂ isindispensable in R; otherwise it is dependent.Definition 8 (Redut)Q̂ 2 R̂ is a redut of R̂ if :1. Q̂ is independent.2. IND(Q̂) = IND(R̂). Using Q it is possibleapproximate the same as using R.Definition 9 (Core)The set of all indispensable relations in R will bealled the ore of R, and will be denoted CORE(R).CORE(R̂) =\RED(R̂) (5)where RED(R̂) is the family of all reduts of R.Example 3.2We ontinue using the example 3.1 to �nd thereduts and the ore of the knowledge. Our equiv-alene lasses are:U=P = ( (x1; x4; x5), (x2; x8), (x3),(x6; x7) )U=Q =( (x1; x3; x5), (x6), (x3; x4; x7; x8) )

U=S = ( (x1; x5), (x6), (x2; x7; x8), (x3; x4) )Thus the relation IND(R) has the equivalenelasses:U=IND(R̂) = ( (x1; x5); (x2; x8); (x3); (x4); (x6);(x7))The relation P is indispensable in R, sine:U=IND(R̂ � P ) = ( (x1; x5); (x2; x7; x8); (x3);(x4); (x6) ) 6= U/IND(R̂).U=IND(R̂ � Q) = ( (x1; x5); (x2; x8); (x3); (x4);(x6); (x7) ) = U/IND(R̂).The information obtained is equal, so the rela-tion Q is dispensable in R.U=IND(R̂ � S) = ( (x1; x5); (x2; x8); (x3); (x4);(x6); (x7) ) = U/IND(R̂).Hene the relation S is also dispensable in R.That means that the lassi�ation de�ned by theset of three equivalene relations P;Q and S is thesame as the lassi�ation de�ned by relation P andQ or P and S.So the reduts and the ore are:RED(R̂) = ((P,Q), (P,S))CORE(R̂) = (P)3.2.3 How introdue the RS in our CBRsystem?We an use the information of reduts and the oreto weigh the relevane of eah feature in the system.An attribute that does not appear in the redutshas a feature weight value of 0.0, whereas a featurethat appears in the ore has a feature weight valueof 1.0. The rest of attributes has a feature weightvalue depending on the proportional appearane inthe reduts. This is the weight feature informationused in the Case-Based Classi�er System.Figure 5 shows the meta-level proess when theRough Sets are inorporated into the CBR system.Rough Sets are divided in three steps: the �rstone disretises the examples, it is neessary to �ndthe most relevant information using the Rough Setstheory; the seond step searhes the reduts and theore of knowledge using the Rough Sets theory; and



�nally, the third step uses the ore and the redutsof knowledge to deide the feature relevane value.
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attributeFigure 5: High level proess of Rough Sets.The RS theory has been introdued as weight-ing method in two phases modi�ed of the CBR y-le. The �rst phase modi�ed with Rough Sets isthe start-up phase and the seond one is the retainphase. The start-up phase ompute the weightsfrom the initial ase memory, these weights willbe used by the retrieval phase later. The retainphase omputes the weights from the ase mem-ory whether the new ase is stored and the systemworks dynamially. The ode of Rough Sets the-ory into the Case-Based Reasoning has been imple-mented using a publi Rough Sets Library [8℄.4 TestbedThe experiment has based on 3 data sets from theUCI repository ( ehoardiogram, iris, breast anerWisonsin), and one data set from our own repos-itory (mammogram problem). See table 1 and ta-ble 2 whih show their harateristis. The mam-mogram problem onsists of deteting breast an-er using the information found in a mammogra-phy [12, 13, 17℄. A miroali�ation (�Ca) usuallyappears, in the mammographies, as small, bright,arbitrarily shaped regions on the large variety ofbreast texture bakground. Thus their analysisand haraterisation are performed throughout theextration of features and visibility desriptors bymeans of several image proessing tehniques [19℄.Eah example ontains the desription of several�Ca present in the image. For eah of these mi-roali�ations there are 23 real valued features.In other words, the input information used is a setof m � 23 real valued matrixes, where m is thenumber of �Ca present on the image. The data setontains 216 examples.The examples of eah data set have been groupedin two sets: the training set and the test set. Weuse the �rst one to train the system, and the se-ond to test the system. The training set and thetest set are generated using di�erent proportions ofthe examples: 10% of the examples for the training

Table 1: Data set used for these experiments.Domain RefereneEhoardiogram EIris IBreast aner (Wisonsin) BCMammogram problem MTable 2: Charateristis of the data set used inthese experiments.Ref Sam- Fea- Cla- Missing Inon-ples tures sses Values sistentE 132 9 2 132 YesI 150 4 3 0 NoBC 699 9 2 9 YesM 216 23 2 0 Yesset and the rest (90%) for the test set, 20% of theexamples for the training set and the rest (80%) forthe test set, ..., until 90% for the training set and10% for the test set.We have test eah data set using the followingpoliies:� Similarity Funtions: Minkowski's metri(Hamming, Eulidean and Cubi distane),Clark's distane and Cosine distane.� Retain Poliies: DifSim, DifClass and Test.� Training initial data set: training the initialase memory and maintaining the initial asememory.� Samples: we have 9 proportions of eah sam-ple and 10 versions for eah proportion.For eah data set is tested a total of 2700 runs.5 ResultsWe present in this setion the main results obtainedfor eah data set tested. Table 3 presents the resultsobtained during the exeution of the proportion90% training set and 10% test set. The �rst ol-umn is the results obtained using BASTIAN with-out weighting the attributes, the seond olumn



shows the results for the BASTIAN system usingthe Rough Sets theory as a weighting method. Thisproportion has been hosen for the aurate rate ob-tained, we want to notie that the results presentedare the maximum value obtained during one run.Table 3: Maximum results obtained for eah dataset. Ref :W RS-WE 78.57% 78.57%I 100% 100%BC 98.71% 98.71%M 77.27% 81.81%The results presented obtain a good aurayrate. We want to outline that the maximum au-ray perentage obtained, using the Rough Sets asa weighting method, appears more frequently thanthe results obtained without weighting the features.Figure 6 shows the results obtained for all thetraining sets proportions in the mammogram prob-lem. As it an be seen, the weighting feature meth-ods needs a huge amount of ases to develop a goodweighting for the retrieval phase. However, the sys-tem auray rate inreases when there are enoughinformation in the system to develop a good weight-ing riterion. Also, the system dereases the stan-dard deviation value if it uses the Rough Sets theoryas a weighting method.We an also notie that it is very important toselet a good training of the initial ase memory toahieve better results. Thus, most of the best re-sults obtained have been ahieved using an initialtraining. The training set has been dereased fol-lowing this method. So, the ases hosen were themore representatives to explain the problem.Table 4 shows the results obtained in di�erenttraining sets proportions for the Iris problem. Theresults presented are the maximum and the meanvalues. As it an be seen there are few di�erenesbetween the Rough Sets hybrid system and the orig-inal Case-Based Classi�er System. The results de-note also that it is very important the number ofases inluded into the ase memory to ahieve agood auray in the weighting method.It is important to remark that the predition a-uray depends on the ase memory size. This fatan be seen in all the problems.Figure 7 shows the mean results obtained for theehoardiogram problem in all the training set pro-

50

55

60

65

70

75

80

85

90

95

100

10 20 30 40 50 60 70 80 90

A
cc

ur
ac

y 
R

at
e

Percentage training set

maxnotweighted
maxroughsets

Figure 6: Maximum results obtained in the Mam-mogram problem.Table 4: Results for the Iris problem.Prop. Max Max Mean Meantrain :W RS-W :W RS-W40% 98,88 97,77 96,22 96,0060% 97,77 97,77 95,33 95,5070% 100,00 100,00 95,11 95,3380% 100,00 100,00 97,00 97,0090% 100,00 100,00 96,66 96,66portions. It also 7 denotes how important is thenumber of ases into the ase memory, and we analso observe that the results depend on the numberof missing values.The results obtained for the Breast Caner Wis-onsin problem an be found in the �gure 8. Theresults are very similar, it is due to the great num-ber of examples in this data set and to the datamissing.Finally, it is important to denote that all the dis-retisation has been done using the same parame-ter. This parameter must be hanged depending onthe upper and lower bounds of eah feature. Thisdisretisation inuenes the results.6 Conlusions and furtherworkThis paper has proposed how to introdue theRough Sets theory into a Case-Based Classi�er Sys-
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Figure 7: Mean results obtained for the ehoardio-gram problem.tem as a weighting method. The work related heredeals with two main ideas: proposing a platformthat inorporate Case-Based Reasoning System andthe Rough Sets into BASTIAN, and improving thefeature relevane mehanism.We have tested our feature relevane mehanismwith di�erent data set from the UCI repository. Wehave notie that the Rough Sets weighting methodimproves the auray rate if there are enough in-formation into the system to extrat the featurerelevane. However, the system only derease theauray rate if there are less than a 10% of theases in memory. The Rough Sets methods help thesystem to balane the results in the system, thereare not many di�erenes between all the versionstested.Our further work in this area will be to ahievebetter performane using di�erent riteria onweighting methods and improve the platform in-troduing new funtionalities.AknowledgementsThis work is supported by the Ministerio deSanidad y Consumo, Instituto de salud Carlos III,Fondo de Investigai�on Sanitaria of Spain, GrantNo. 00/0033-02. The results of this work have beenobtained using the equipment o-funded by the Di-rei�o de Reera de la Generalitat de Catalunya(D.O.G.C 30/12/1997).We would thank Enginyeria i Arquitetura LaSalle (Ramon Llull University) for their support to
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