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t. Case Based Reasoning systems are often fa
ed with the prob-lem of de
iding whi
h instan
es should be stored in the 
ase base. Ana

urate sele
tion of the best 
ases 
ould avoid the system being sensitiveto noise, having a large memory storage requirements and, having a slowexe
ution speed. This paper proposes two redu
tion te
hniques based onRough Sets theory: A

ura
y Rough Sets Case Memory (A

urCM) andClass Rough Sets Case Memory (ClassCM). Both te
hniques redu
e the
ase base by analysing the representativity of ea
h 
ase of the initial 
asebase and applying a di�erent poli
y to sele
t the best set of 
ases. The�rst one extra
ts the degree of 
ompleteness of our knowledge. The se
-ond one obtains the quality of approximation of ea
h 
ase. Experimentsusing di�erent domains, most of them from the UCI repository, showthat the redu
tion te
hniques maintain a

ura
y obtained when not us-ing them. The results obtained are 
ompared with those obtained usingwell-known redu
tion te
hniques.1 Introdu
tion and motivationCase-Based Reasoning (CBR) systems solve problems by reusing the solutions tosimilar problems stored as 
ases in a 
ase memory [19℄ (also known as 
ase-base).However, these systems are sensitive to the 
ases present in the 
ase memory andoften its good a

ura
y rate depends on the signi�
ant 
ases stored. Therefore,in CBR systems it is important to redu
e the 
ase memory in order to removenoisy 
ases. This redu
tion allows us to a
hieve a good generalisation a

ura
y.In this paper we present an initial approa
h to two di�erent redu
tion te
h-niques based on Rough Sets theory. Both redu
tion te
hniques was introdu
edinto our Case-Based Classi�er System 
alled BASTIAN. Case-Based Reasoningand Rough Sets theory have usually been used separately in the literature.The �rst one, Case-Based Reasoning [19, 10℄, is used in a wide variety of�elds and appli
ations (e.g. diagnosis, planning, language understanding). Weuse Case-Based Reasoning as an automati
 
lassi�
ation system.On the other hand, Rough Sets theory [16℄ is a Data Mining te
hnique. Themain resear
h trends in Rough Sets theory -whi
h tries to extend the 
apabilitiesof reasoning systems- are: (1) the treatment of in
omplete knowledge; (2) themanagement of in
onsistent pie
es of information; and (3) the manipulation of



Maria Salam�o and Elisabet Golobardesvarious levels of representation, moving from re�ned universes of dis
ourse to
oarser ones and 
onversely.The redu
tion te
hniques proposed are: A

ura
y Rough Sets Case Memory(A

urCM) and Class Rough Sets Case Memory (ClassCM). Both Rough Setsredu
tion te
hniques use the redu
tion of various levels of information. Fromthose levels of information we extra
t relevant 
ases. The �rst te
hnique, A
-
urCM, extra
ts an a

ura
y measure to 
apture the degree of 
ompleteness ofour knowledge. The se
ond one, ClassCM, obtains the quality of approximationof ea
h 
ase. It expresses the per
entage of possible 
orre
t de
isions when the
ase 
lassi�es new 
ases.The paper is stru
tured as follows: se
tion 2 introdu
es related work; next,se
tion 3 explains the Rough Sets theory; se
tion 4 details the proposed RoughSets redu
tion te
hniques; se
tion 5 des
ribes the Case-Based Classi�er Systemused in this study; se
tion 6 exposes the testbed of the experiments and theresults obtained; and �nally, se
tion 7 presents the 
on
lusions and further work.2 Related workCase-Based Reasoning systems solve problems by reusing a 
orpus of previoussolving experien
e stored (set of training instan
es or 
ases T ) as a 
ase memoryof solved 
ases t. Redu
tion te
hniques are applied in Case-Based Reasoningsystems for two main reasons: (1) to redu
e storage requirements by in
reasingexe
ution speed, and (2) to avoid sensitivity to noise. Thus, a performan
e goalfor any CBR system is the maintenan
e of a 
ase memory T maximizing 
overageand minimizing 
ase memory storage requirements. Redu
tion te
hniques removeinstan
es of T obtaining a new training set S, S � T , that aims to maintain thegeneralization performan
e as well as redu
e the storage requirements.Many resear
hers have addressed the problem of 
ase memory redu
tion [26℄.Related work on pruning a set of 
ases 
omes from the pattern re
ognition andma
hine learning 
ommunity, most of them through studies of nearest neighbouralgorithm (NNA), and Instan
e-Based Learning (IBL) methods.The �rst kind of approa
hes to the redu
tion of the 
ase memory are 
om-monly known as nearest neighbours editing rules. Most algorithms look for a sub-set of 
ases S of the original 
ase memory T . The �rst approa
h was CondensedNearest Neighbour (CNN) [9℄, whi
h ensures that all 
ases in T are 
lassi�ed
orre
tly, though it does not guarantee a minimal set and it is sensitive to noise.Sele
tive Nearest Neighbour (SNN) [20℄ extends CNN su
h that every memberof T must be 
loser to a member of S of the same 
lass than to any member ofT (instead of S) of a di�erent 
lass. SNN is more 
omplex than other redu
tionte
hniques and its learning time is signi�
antly greater; it is also sensitive tonoise. Redu
ed Nearest Neighbour (RENN) [6℄ removes an instan
e from S ifany other instan
e in T is mis
lassi�ed by the instan
es remaining in S. RENNis 
omputationally more expensive than CNN, but it is able to remove noisyinstan
es while retaining border 
ases (i.e. 
ases that are pla
ed at the bound-aries of two 
lasses). Edited Nearest Neighbour rule (ENN)[26℄, removes noisy
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es, and maintains internal 
ases and 
lose border ones. Variable Similar-ity Metri
 (VSM)[13℄, removes instan
es depending on a 
on�den
e level and allthe K nearest neighbours. VSM is able to remove noisy instan
es and internalinstan
es and retains border ones.The se
ond kind of approa
hes are related to Instan
e Based Learning Algo-rithms (IBL) [1℄. IB1 is a simple implementation of NNA. IB2 is an in
rementalalgorithm that does not ne
essarily 
lassify all the instan
es 
orre
tly be
auseit is sensitive to noise. IB2 is similar to CNN; it retains border points while iteliminates 
ases that are surrounded by members of the same 
lass. IB3 improvesIB2 retaining only those 
ases that have a

eptable bounds. IB3 produ
es higherredu
tion than IB2 and higher a

ura
y. It also redu
es sensitivity to noise. IB4extends IB3, by building a set of attribute weights for ea
h 
lass.There is another way to approa
h this problem. There are systems that mod-ify the instan
es themselves, instead of simply de
iding whi
h ones to keep. RISE[3℄ treats ea
h instan
e as a rule that 
an be generalised. EACH [23℄ introdu
edthe Nested Generalized Exemplars (NGE) theory, in whi
h hyperre
tangles areused to repla
e one or more instan
es, thus redu
ing the original training set.Another approa
h to instan
e pruning systems are those that take into a
-
ount the order in whi
h instan
es are removed [26℄. DROP1 is similar to RNNand RISE, with some di�eren
es. DROP1 removes an instan
e from S (where S= T originally) if at least as many of its asso
iates in S would be 
lassi�ed 
or-re
tly without it. This heuristi
 has some problems with noisy instan
es, whi
hDROP2 tries to solve by removing an instan
e from S if at least as many of itsasso
iates in T would be 
lassi�ed 
orre
tly without it. DROP3 is designed to�lter noise before sorting the instan
es. DROP4 is a more 
areful noise �lter.Finally, DROP5 modi�es DROP2 trying to smooth the de
ision boundary.Finally, resear
hers have also fo
used on in
reasing the overall 
ompeten
e,the range of target problems that 
an be su

essfully solved, of the 
ase memorythrough 
ase deletion [24℄. Strategies have been developed for 
ontrolling 
asememory growth through methods su
h as 
ompeten
e-preserving deletion [24℄and failure-driven deletion [18℄, as well as for generating 
ompa
t 
ase memoriesthrough 
ompeten
e-based 
ase addition [25, 28℄. Leake and Wilson [11℄ exam-ine the bene�ts of using �ne-grained performan
e metri
s to dire
tly guide 
aseaddition or deletion. This method is spe
ially important for task domains withnon-uniform problem distributions. Finally, a 
ase-base maintenan
e methodthat avoids building sophisti
ated stru
tures around a 
ase-base or 
omplex op-erations is presented by Yang and Wu [27℄. Their method partitions 
ases into
lusters where the 
ases in the same 
luster are more similar than 
ases in other
lusters. Clusters 
an be 
onverted to new smaller 
ase-bases.3 Rough Sets theoryZdzislaw Pawlak introdu
ed Rough Sets theory in 1982 [16, 17℄. The idea ofRough Sets 
onsists of the approximation of a set by a pair of sets, 
alled thelower and the upper approximation of this set. In fa
t, these approximations



Maria Salam�o and Elisabet Golobardesare inner and 
losure operations in a 
ertain topology. These approximationsare generated by the available data about the elements of the set. The natureof Rough Sets theory makes them useful for redu
ing knowledge, extra
tingdependen
ies in knowledge, reasoning about knowledge, pattern re
ognition, et
.We use Rough Sets theory for redu
ing and extra
ting the dependen
ies inknowledge. This redu
tion of knowledge is the basis for 
omputing the relevan
eof instan
es into the Case-Based Classi�er System. We use that relevan
e in twodi�erent ways. The �rst one is A

ura
y Rough Sets Case Memory and these
ond one is Class Rough Sets Case Memory.First of all, we in
orporate some 
on
epts and de�nitions. Then, we explainhow to obtain the dependen
ies, in order to sele
t the set of instan
es.Basi
 Con
epts and De�nitionsWe have a Universe (U) (�nite not null set of obje
ts that des
ribes our prob-lem, i.e. the 
ase memory). We 
ompute from our universe the 
on
epts (obje
tsor 
ases) that form partitions. The union of all the 
on
epts make the entire Uni-verse. Using all the 
on
epts we 
an des
ribe all the equivalen
e relations (R)over the universe U . Let an equivalen
e relation be a set of features that des
ribea spe
i�
 
on
ept. U=R is the family of all equivalen
e 
lasses of R.The universe and the relations form the knowledge base (K), de�ned asK =< U; R̂ >. Where R̂ is the family of equivalen
e relations over U . Everyrelation over the universe is an elementary 
on
ept in the knowledge base. Allthe 
on
epts are formed by a set of equivalen
e relations that des
ribe them.Thus, we sear
h for the minimal set of equivalen
e relations that de�nes thesame 
on
ept as the initial set.Definition 1 (Indis
ernibility Relations)IND(P̂ ) = T R̂ where P̂ � R̂. The indis
ernibility relation is an equivalen
e relationover U . Hen
e, it partitions the 
on
epts (
ases) into equivalen
e 
lasses. These setsof 
lasses are sets of instan
es indis
ernible with respe
t to the features in P . Su
ha partition is denoted as U=IND(P ). In supervised ma
hine learning, the sets of
ases indis
ernible with respe
t to the 
lass attribute 
ontain the 
ases of ea
h 
lass.4 Rough Sets as redu
tion te
hniquesIn this se
tion we explain how to redu
e the 
ase memory using the Rough Setstheory. We obtain a minimal 
ase memory unifying two 
on
epts: (1) approxi-mation sets of knowledge and (2) redu
tion of sear
h spa
e. These two 
on
eptsare the basis for the A

urCM and ClassCM redu
tion te
hniques.Both redu
tion te
hniques deal with 
ases 
ontaining 
ontinuous, nominaland missing features. Rough Sets redu
tion te
hniques perform sear
h approxi-mating sets by other sets and both proposals are global. Global means that wesele
t the representative knowledge without taking into a

ount whi
h 
lass the
ases 
lassify. A

urCM 
omputes an a

ura
y measure. ClassCM 
omputes the
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lassi�
ation a

ura
y measure of ea
h 
ase in the representative knowledge. Wewant to remark that A

urCM and ClassCM 
an be used in multi
lass tasks.First of all, this se
tion explains how to approximate and redu
e knowledge.Next, it des
ribes the uni�
ation of both 
on
epts to extra
t the redu
ed set of
ases using two poli
ies: (1) A

ura
y Rough Sets Case Memory (A

urCM),and Class Rough Sets Case Memory (ClassCM).4.1 Approximating and Redu
ing the knowledgeApproximations of Set This is the main idea of Rough Sets, to approximate aset by other sets. The 
ondition set 
ontains all 
ases present in the 
ase memory.The de
ision set presents all the 
lasses that the 
ondition set has to 
lassify. Weare sear
hing for a subset of the 
ondition set able to 
lassify the same as theinitial set, so it approximates the same de
ision set. The following de�nitionsexplain this idea.LetK =< U; R̂ > be a knowledge base. For any subset of 
asesX � U and anequivalen
e relation R � IND(K) we asso
iate two subsets 
alled: Lower RX ;and Upper RX approximations. If RX=RX then X is an exa
t set (de�nableusing subset R), otherwise X is a rough set with respe
t to R.Definition 2 (Lower approximation)The lower approximation, de�ned as: RX = SfY 2 U=R : Y � Xg is the set of allelements of U whi
h 
an 
ertainly be 
lassi�ed as elements of X in knowledge R.Definition 3 (Upper approximation)The upper approximation, RX = SfY 2 U=R : X TY 6= ;g is the set of elementsof U whi
h 
an possibly be 
lassi�ed as elements of X , employing knowledge R.Example 1If we 
onsider a set of 8 obje
ts in our Universe, U = fx1; x2; x3; x4; x5; x6; x7; x8g,using R̂ = (A;B;C;D) as a family of equivalen
e relations over U . Where A =fx1; x4; x8g, B = fx2; x5; x7g, C = fx3g and D = fx6g. And we also 
onsider3 subsets of knowledge X1; X2; X3. Where X1 = fx1; x4; x5g, X2 = fx3; x5g,X3 = fx3; x6; x8g.The lower and upper approximations are:RX1 = ; and RX1 = A S B = fx1; x2; x4; x5; x7; x8gRX2 = C = fx3g and RX2 = B S C = fx2; x3; x5; x7gRX3 = C SD = fx3; x6g and RX3 = A S C S D = fx1; x3; x4; x6; x8gRedu
t and Core of knowledge This part is related to the 
on
ept of redu
-tion of the sear
h spa
e. We are looking for a redu
tion in the feature sear
hspa
e that de�nes the initial knowledge base. Next, redu
tion te
hniques applythis new spa
e to extra
t the set of 
ases that represents the new 
ase memory.Intuitively, a redu
t of knowledge is its essential part, whi
h suÆ
es to de�neall 
on
epts o

urring in the 
onsidered knowledge, whereas the 
ore is the mostimportant part of the knowledge.Let R̂ be a family of equivalen
e relations and R 2 R̂. We will say that:



Maria Salam�o and Elisabet Golobardes{ R is indispensable if IND(R̂) 6= IND(R̂�fRg); otherwise it is dispensable.IND(R̂� fRg) is the family of equivalen
e R̂ extra
ting R.{ The family R̂ is independent if ea
h R 2 R̂ is indispensable in R; otherwiseit is dependent.Definition 4 (Redu
t)Q̂ 2 R̂ is a redu
t of R̂ if : Q̂ is independent and IND(Q̂) = IND(R̂). Obviously,R̂ may have many redu
ts. Using Q̂ it is possible to approximate the same as usingR̂. Ea
h redu
t has the property that a feature 
an not be removed from it without
hanging the indis
ernibility relation.Definition 5 (Core)The set of all indispensable relations in R̂ will be 
alled the 
ore of R̂, and will bedenoted as:CORE(R̂) = TRED(R̂). Where RED(R̂) is the family of all redu
tsof R̂. The 
ore 
an be interpreted as the set of the most 
hara
teristi
 part ofknowledge, whi
h 
an not be eliminated when redu
ing the knowledge.Example 2If we 
onsider a set of 8 obje
ts in our Universe, U = fx1; x2; x3; x4; x5; x6; x7; x8g,using R̂ = fP;Q; Sg as a family of equivalen
e relations over U . Where P 
an be
olours (green, blue, red, yellow); Q 
an be sizes (small, large, medium); and S 
anbe shapes (square, round, triangular, re
tangular). For example, we 
an suppose thatthe equivalen
e 
lasses are:U=P = f (x1; x4; x5), (x2; x8), (x3),(x6; x7) gU=Q =f (x1; x3; x5), (x6), (x2; x4; x7; x8) gU=S = f (x1; x5), (x6), (x2; x7; x8), (x3; x4) gAs 
an be seen, every equivalen
e 
lass divides the Universe in a di�erent way.Thus the relation IND(R) has the following equivalen
e 
lasses:U=IND(R̂) = f(x1; x5);(x2; x8);(x3);(x4);(x6);(x7)gThe relation P is indispensable in R̂, sin
e:U=IND(R̂� fPg) = f (x1; x5); (x2; x7; x8); (x3); (x4); (x6) g 6= U=IND(R̂).The information obtained removing relation Q is equal, so it is dispensable in R̂.U=IND(R̂� fQg) = f (x1; x5); (x2; x8); (x3); (x4); (x6); (x7) g=U=IND(R̂).Hen
e the relation S is also dispensable in R.U=IND(R̂� fSg) = f (x1; x5); (x2; x8); (x3);(x4); (x6); (x7) g=U=IND(R̂).That means that the 
lassi�
ation de�ned by the set of three equivalen
e re-lations P;Q and S is the same as the 
lassi�
ation de�ned by relation P and Qor P and S. Thus, the redu
ts and the 
ore are: RED(R̂) = f(P;Q); (P; S)g andCORE(R̂) = fPg.4.2 Redu
ing the set of 
asesA

ura
y Rough Sets Case Memory and Class Rough Sets Case Memory, themethods whi
h we propose, use the information of redu
ts and 
ore to sele
t the
ases that are maintained in the 
ase memory.
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tion te
hniques for Case-Based ReasoningA

ura
y Rough Sets Case Memory This redu
tion te
hnique 
omputesthe A

ura
y redu
ts 
oeÆ
ient (A

urCM) of ea
h 
ase in the knowledge base(
ase memory). The 
oeÆ
ient �(t) is 
omputed as:For ea
h instan
e t 2 T it 
omputes :�(t) = 
ard ( P (t))
ard ( P (t)) (1)Where �(t) is the relevan
e of the instan
e t; P is the set that 
ontainsthe redu
ts and 
ore obtained from the original data; T is the 
ondition set;
ard is the 
ardinality of one set; and �nally P and P are the lower and upperapproximations, respe
tively.For ea
h 
ase we apply the following algorithm, where the 
on�den
eLevel isthe �(t) value 
omputed:1. Algorithm Sele
tCases2. 
onfiden
eLevel = 0:03. for ea
h 
ase4. sele
t the 
ase if it a

omplishes this 
on�den
eLevel5. end for6. end AlgorithmIn this algorithm the 
onfiden
eLevel is set at to zero, in order to only sele
tthe set of 
ases that a

omplishes this spa
e region. Inexa
tness of a set of 
asesis due to the existen
e of a borderline region. The greater a borderline region of aset, the lower the a

ura
y of the set. The a

ura
y measure expresses the degreeof 
ompleteness of our knowledge about the set P . This redu
tion te
hniqueobtains the minimal set of instan
es present in the original 
ase memory. Thea

ura
y 
oeÆ
ient explains if an instan
e is needed or not, so �(t) is a binaryvalue. When the value �(t)= 0 it means an internal 
ase, and a �(t) =1 means aborderline 
ase. This te
hnique does not guarantee that all 
lasses will be presentin the set of instan
es sele
ted. However, it guarantees that all the internal pointsthat represent a 
lass will be in
luded. The a

ura
y expresses the per
entage ofpossible 
orre
t de
isions when 
lassifying 
ases employing knowledge P . Thismeasure approximates the 
overage of ea
h 
ase.Class Rough Sets Case Memory In this redu
tion te
hnique we use the qual-ity of 
lassi�
ation 
oeÆ
ient (ClassCM), 
omputed using the 
ore and redu
tsof information. The 
lassi�
ation a

ura
y 
oeÆ
ient �(t) is 
omputed as:For ea
h instan
e t 2 T it 
omputes :�(t) = 
ard ( P (t))
ard ( all instan
es) (2)Where �(t) is the relevan
e of the instan
e t; P is the set that 
ontains theredu
ts and 
ore obtained from the original data; T is the 
ondition set; 
ard isthe 
ardinality of one set; and �nally P is the lower approximation.
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oeÆ
ient expresses the per
entage of 
ases whi
h 
an be 
or-re
tly 
lassi�ed employing the knowledge t. This 
oeÆ
ient (�(t)) has a rangeof values between 0 to 1, where 0 means that the instan
e 
lassi�es in
orre
tlythe range of 
ases that belong to its 
lass and a value of 1 means an instan
ethat 
lassi�es 
orre
tly the range of 
ases that belong to its 
lass. In this redu
-tion te
hnique the 
ases that obtain a higher value of �(t) represent 
ases that
lassify 
orre
tly the 
ases, but these 
ases are to be found on the sear
h spa
eboundaries.This redu
tion te
hnique guarantees a minimal set of instan
es of ea
h 
lassalso applying the following algorithm, where the 
on�den
eLevel is the �(t)
omputed previously:1. Algorithm Sele
tCases2. 
onfiden
eLevel = 1:0 and freeLevel = ConstantTuned (set at 0.01)3. sele
t all possible 
ases that a

omplish this 
on�den
eLevel4. while all 
lasses are not sele
ted5. 
on�den
eLevel = 
on�den
eLevel - freeLevel6. sele
t all possible 
ases that a

omplish this 
on�den
eLevel7. end while8. end AlgorithmDue to the range of values, it is possible to sele
t not only the best set ofinstan
es as ClassCM 
omputes. We sele
t a set of instan
es depending on the
on�den
e level of �(t) that we 
ompute. The 
on�den
e level is redu
ed untilall the 
lasses have a minimum of one instan
e present in the new 
ase memory.The introdu
tion of these te
hniques into a CBR system is explained in se
-tion 5.1.5 Des
ription of the BASTIAN SystemThe study des
ribed in this paper was 
arried out in the 
ontext of BASTIAN, a
ase-BAsed SysTem In 
lAssi�
atioN [22, 21℄. This se
tion details two points:(1) the main 
apabilities of the BASTIAN platform used in the study 
arried outin this paper, in order to understand what kind of CBR 
y
le has been appliedin the experimental analysis; (2) how to introdu
e the Rough Sets redu
tionte
hniques into a Case-Based Reasoning System.The BASTIAN system is an extension of CaB-CS (Case-Based Classi�erSystem) system [5℄. The BASTIAN system allows the user to test several vari-ants of CBR (e.g. di�erent retrieval or retain phases, di�erent similarity fun
-tions and weighting methods). For details related to the BASTIAN platform see[22℄. BASTIAN has been developed in JAVA language and the system is beingimproved with new 
apabilities.BASTIAN platform 
apabilitiesThe system 
apabilities are developed to work separately and independently in
o-operation with the rest. Ea
h 
apability des
ribed in the general stru
ture



Rough Sets redu
tion te
hniques for Case-Based Reasoninghas a des
ription of the general behaviour that it has to a
hieve. The main goalis to obtain a general stru
ture that 
ould 
hange dynami
ally depending on thetype of Case-Based Reasoner we want to develop. The main 
apabilities are:{ The CaseMemory de�nes the behaviour for di�erent 
ase memory organi-zations. In this study, we use a list of 
ases. Our main goal in this paperis to redu
e the 
ase memory; for this reason, we have not fo
us on therepresentation used by the system.{ The SimilarityFun
tionInterfa
e 
on
entrates on all the 
hara
teristi
s re-lated to similarity fun
tions. It allows us to 
hange the similarity fun
tiondynami
ally within the system. In this paper, we use the K-Nearest Neigh-bour similarity fun
tion.{ The WeightingInterfa
e 
ontains the main abilities to 
ompute the featurerelevan
e in a Case-Based Classi�er System [22℄. It is related to the Retrieval-Interfa
e and the SimilarityFun
tionInterfa
e. This paper does not use themin order to test the reliability of our new redu
tion te
hniques. Further workwill 
onsist of testing the union of both proposals.{ The fRetrieval, Reuse, Revise, RetaingInterfa
e are the four phases of theCBR 
y
le. These interfa
es des
ribe the behaviour of ea
h phase.� Retrieval interfa
e is applied using K=1 and K=3 values in the K-NNpoli
y.� fReuse, Revise, Retaing interfa
e are applied 
hoosing a standard 
on�g-uration for the system, in order to analyse only the redu
tion te
hniques.Our aim, is to improve the generalisation a

ura
y of our system by redu
ingthe 
ase memory in order to remove the noisy instan
es and maintain borderpoints [26℄.5.1 Rough Sets inside the BASTIAN platformFigure 1 shows the meta-level pro
ess when in
orporating the Rough Sets intothe CBR system. The Rough Sets pro
ess is divided into three steps:The �rst one dis
retises the instan
es, it is ne
essary to �nd the most relevantinformation using the Rough Sets theory. In that 
ase, we dis
retise 
ontinuousfeatures using [4℄ algorithm. The se
ond step sear
hes for the redu
ts and the
ore of knowledge using the Rough Sets theory, as was des
ribed in se
tion 4.Finally, the third step uses the 
ore and the redu
ts of knowledge to de
idewhi
h 
ases are maintained in the 
ase memory using A

urCM and ClassCMte
hniques, as explained in 4.2.Rough Sets theory has been introdu
ed as redu
tion te
hniques in two phasesof the CBR 
y
le. The �rst phase is the start-up phase and the se
ond one isthe retain phase. The system adds a previous phase Startup, whi
h is not in theCase-Based Reasoning 
y
le.This initial phase prepares the initial start-up of the system. It 
omputes thenew initial 
ase memory from the training 
ase memory; this new 
ase memoryis used by the retrieval phase later. The retain phase 
omputes a new 
ase



Maria Salam�o and Elisabet Golobardesmemory from the 
ase memory if a new 
ase is stored. In this paper, we fo
usour redu
tion te
hniques on the retrieval phase. The 
ode of Rough Sets theoryin the Case-Based Reasoning has been implemented using a publi
 Rough SetsLibrary [7℄.
Set of 

Instances
Discretise BASTIAN

Rough SetsSearching  
REDUCTS & CORE

Instances  Extraction BASTIAN

Set  of 
instancesFig. 1. High level pro
ess of Rough Sets.6 Empiri
al studyThis se
tion is stru
tured as follows: �rst, we des
ribe the testbed used in theempiri
al study; then we dis
uss the results obtained from the redu
tion te
h-niques based on Rough Sets. We 
ompare the results 
ompared to CBR systemworking with the original 
ase memory. And �nally, we also 
ompare the resultswith some related learning systems.6.1 TestbedIn order to evaluate the performan
e rate, we use twelve datasets. Datasets 
anbe grouped in two ways: publi
 and private. The datasets and their 
hara
teristi
sare listed in table 1.Publi
 datasets are obtained from the UCI repository [15℄. They are: breast
an
er Wis
onsin (breast-w), glass, ionosphere, iris, sonar and vehi
le. Privatedatasets 
omes from our own repository. They deal with diagnosis of breast
an
er and syntheti
 datasets. Datasets related to diagnosis are biopsy and mam-mogram. Biopsy [5℄ is the result of digitally pro
essed biopsy images, whereasmammogram 
onsists of dete
ting breast 
an
er using the mi
ro
al
i�
ationspresent in a mammogram [14, 8℄. In mammogram ea
h example 
ontains thedes
ription of several �Ca present in the image; in other words, the input in-formation used is a set of real valued matri
es. On the other hand, we use twosyntheti
 datasets to tune up the learning algorithms, be
ause we knew their so-lutions in advan
e. MX11 is the eleven input multiplexer. TAO-grid is a datasetobtained from sampling the TAO �gure using a grid [12℄.These datasets were 
hosen in order to provide a wide variety of appli
ationareas, sizes, 
ombinations of feature types, and diÆ
ulty as measured by thea

ura
y a
hieved on them by 
urrent algorithms. The 
hoi
e was also madewith the goal of having enough data points to extra
t 
on
lusions.



Rough Sets redu
tion te
hniques for Case-Based ReasoningAll systems were run using the same parameters for all datasets. The per-
entage of 
orre
t 
lassi�
ations has been averaged over strati�ed ten-fold 
ross-validation runs, with their 
orresponding standard deviations. To study the per-forman
e we use paired t-test on these runs.Table 1. Datasets and their 
hara
teristi
s used in the empiri
al study.Dataset Refe Sam- Nume- Simbo- Cla- In
on-ren
e ples ri
 feats. li
 feats. sses sistent1 Biopsy BI 1027 24 - 2 Yes2 Breast-w BC 699 9 - 2 Yes3 Glass GL 214 9 - 6 No4 Ionosphere IO 351 34 - 2 No5 Iris IR 150 4 - 3 No6 Mammogram MA 216 23 - 2 Yes7 MX11 MX 2048 - 11 2 No8 Sonar SO 208 60 - 2 No9 TAO-Grid TG 1888 2 - 2 No10 Vehi
le VE 846 18 - 4 No6.2 Experimental analysis of redu
tion te
hniquesTable 2 shows the experimental results for ea
h dataset using CBR system RoughSets redu
tion te
hniques: A

urCM and ClassCM, IB2, IB3 and IB4 [1℄. This ta-ble 
ontains the mean per
entage of 
orre
t 
lassi�
ations (%PA)(
ompeten
eofthe system) and the mean storage size (%MC). We want to 
ompare the resultsobtained using the proposed ClassCM redu
tion te
hnique with those obtainedby these 
lassi�er systems. Time performan
e is beyond the s
ope of this paper.Table 2. Mean per
entage of 
orre
t 
lassi�
ations and mean storage size. Two-sidedpaired t-test (p = 0.1) is performed, where a � and Æ stand for a signi�
ant improvementor degradation of our ClassCM approa
h related to the system 
ompared. Bold fontindi
ates the best predi
tion a

ura
y.Ref. CBR A

urCM ClassCM IB2 IB3 IB4BIBCGLIOIRMAMXSOTGVE
%PA %CM83.15 100.096.28 100.072.42 100.090.59 100.096.0 100.064.81 100.078.61 100.084.61 100.095.76 100.067.37 100.0

%PA %CM75.15� 2.7594.56 58.7658.60� 23.8888.60� 38.9894.00Æ 96.5066.34Æ 81.5668.00� 0.5475.48� 33.0196.34Æ 95.3964.18� 34.75
%PA %CM84.41 1.7396.42 43.9571.12 76.1192.59 61.0087.40 8.8559.34 37.5078.74 99.9086.05 67.0586.97 13.1468.42 65.23

%PA %CM75.77� 26.6591.86� 8.1862.53� 42.9986.61� 15.8293.98Æ 9.8566.19 42.2887.07Æ 18.9980.72 27.3094.87Æ 7.3865.46� 40.01
%PA %CM78.51� 13.6294.98 2.8665.56� 44.3490.62 13.8991.33 11.2660.16 14.3081.59 15.7662.11� 22.7095.04Æ 5.6363.21� 33.36

%PA %CM76.46� 12.8294.86 2.6566.40� 39.4090.35 15.4496.66 12.0060.03 21.5581.34 15.8463.06� 22.9293.96Æ 5.7963.68� 31.66Both Rough Sets redu
tion te
hniques have the same initial 
on
ept: to usethe redu
tion of knowledge to measure the a

ura
y (A

urCM) or the qualityof 
lassi�
ation (ClassCM).



Maria Salam�o and Elisabet GolobardesAlthough redu
tion is important, we de
ided to use these two di�erent poli-
ies in order to maintain or even improve, if possible, predi
tion a

ura
y when
lassifying a new 
ase. That fa
t is dete
ted in the results. For example, thevehi
le dataset obtains good a

ura
y as well as redu
es the 
ase memory, inboth te
hniques. However, the 
ase memory redu
tion is not large.There are some datasets that obtain a higher redu
tion of the 
ase memorybut de
rease the predi
tion a

ura
y, although this redu
tion in not signi�
ant.Comparing A

urCM and ClassCM, the most regular behaviour is a
hievedusing ClassCM. This behaviour is due to its own nature, be
ause it introdu
esall the border 
ases 
lassifying the 
lass 
orre
tly into the redu
ed 
ase memory,as well as the internal 
ases needed to 
omplete all 
lasses. A

urCM 
al
ulatesthe border points of the 
ase memory. A

urCM 
al
ulates the degree of 
om-pleteness of our knowledge, whi
h 
an be seen as the 
overage [25℄. A

urCMpoints out the relevan
e of 
lassi�
ation of ea
h 
ase.ClassMC redu
tion te
hnique obtains on average a higher generalisation a
-
ura
y than IBL, as 
an be seen in table 2. There are some datasets whereClassCM shows a signi�
ant in
rease in the predi
tion a

ura
y. The perfor-man
e of IBL algorithms de
lines when 
ase memory is redu
ed. CBR obtainson average higher predi
tion a

ura
y than IB2, IB3 and IB4.On the other hand, the mean storage size obtained for ClassCM is higherthan that obtained when using IBL s
hemes (see table 2). IBL algorithms obtaina higher redu
tion of the 
ase memory. However, IBL performan
e de
lines,in almost all datasets (e.g. Breast-w, Biopsy). This degradation is signi�
antin some datasets, as happens with the sonar dataset. Our initial purpose forthe redu
tion te
hniques was to redu
e the 
ase memory as mu
h as possible,maintaining the generalisation a

ura
y. We should 
ontinue working to obtaina higher redu
tion on the 
ase memory.Table 3. Mean per
entage of 
orre
t 
lassi�
ations and mean storage size. Two-sidedpaired t-test (p = 0.1) is performed, where a � and Æ stand for a signi�
ant improvementor degradation of our ClassCM approa
h related to the system 
ompared. Bold fontindi
ates the best predi
tion a

ura
y.Ref. ClassCM CNN SNN DEL ENN RENNBIBCGLIOIRMAMXSOTGVE
%PA %CM84.41 1.7396.42 43.9571.12 76.1192.59 61.0087.40 8.8559.34 37.5078.74 99.9086.05 67.0586.97 13.1468.42 65.23

%PA %CM79.57� 17.8295.57 5.8767.64 24.9788.89� 9.9496.00Æ 14.0061.04 25.0689.01Æ 37.1783.26 23.4594.39Æ 7.1569.74 23.30
%PA %CM78.41� 14.5195.42 3.7267.73 20.5185.75� 7.0094.00Æ 9.9363.42Æ 18.0589.01Æ 37.1580.38 20.5294.76Æ 6.3869.27 19.90

%PA %CM82.79� 0.3596.57Æ 0.3264.87� 4.4780.34� 1.0196.00Æ 2.5262.53Æ 1.0368.99� 0.5577.45� 1.1287.66 0.2662.29� 2.55
%PA %CM77.82� 16.5295.28 3.6168.23 19.3288.31� 7.7991.33 8.5963.85Æ 21.6685.05Æ 32.5485.62 19.3496.77Æ 3.7566.91 20.70

%PA %CM81.03� 84.5197.00Æ 96.3468.66 72.9085.18� 86.3996.00Æ 94.4465.32Æ 66.9299.80Æ 99.8982.74 86.4995.18Æ 96.5168.67 74.56To �nish the empiri
al study, we also run additional well-known redu
tions
hemes on the previous data sets. The redu
tion algorithms are: CNN, SNN,DEL, ENN, RENN, DROP1, DROP2, DROP3, DROP4 and DROP5 (a 
ompleteexplanation of them 
an be found in [26℄). We use the same data sets des
ribed



Rough Sets redu
tion te
hniques for Case-Based Reasoningabove but with di�erent ten-fold 
ross validation sets. We want to 
ompare theresults obtained using the proposed ClassCM redu
tion te
hnique with thoseobtained by these redu
tion te
hniques. Tables 3 and 4 show the mean predi
tiona

ura
y and the mean storage size for all systems in all datasets, respe
tively.Table 3 shows the behaviour of our ClassCM redu
tion te
hnique in 
om-parison with CNN, SNN, DEL, ENN and RENN te
hniques. The results are onaverage better than those obtained by the redu
tion te
hniques studied. RENNimproves the results of ClassCM in some data sets (e.g. Breast-w) but its redu
-tion on the 
ase memory is lower than ClassCM.Table 4. Mean per
entage of 
orre
t 
lassi�
ations and mean storage size. Two-sidedpaired t-test (p = 0.1) is performed, where a � and Æ stand for a signi�
ant improvementor degradation of our ClassCM approa
h related to the system 
ompared. Bold fontindi
ates best predi
tion a

ura
y.Ref. ClassCM DROP1 DROP2 DROP3 DROP4 DROP5BIBCGLIOIRMAMXSOTGVE
%PA %CM84.41 1.7396.42 43.9571.12 76.1192.59 61.0087.40 8.8559.34 37.5078.74 99.9086.05 67.0586.97 13.1468.42 65.23

%PA %CM76.36� 26.8493.28 8.7966.39 40.8681.20� 23.0491.33 12.4461.60 42.6987.94Æ 19.0284.64 25.0594.76Æ 8.0364.66� 38.69
%PA %CM76.95� 29.3892.56 8.3569.57 42.9487.73� 19.2190.00 14.0758.33 51.34100.00Æ 98.3787.07 28.2695.23Æ 8.9567.16 43.21

%PA %CM77.34� 15.1696.28 2.7067.27 33.2888.89 14.2492.66 12.0758.51 12.6082.37 17.1076.57� 16.9394.49Æ 6.7666.21 29.42
%PA %CM76.16� 28.1195.00 4.3769.18 43.3088.02� 15.8388.67 7.9358.29 50.7786.52 25.4784.64 26.8289.41Æ 2.1868.21 43.85

%PA %CM76.17� 27.0393.28 8.7965.02� 40.6581.20� 23.0491.33 12.4461.60 42.6486.52 18.8984.64 25.1194.76Æ 8.0364.66� 38.69In table 4 the results obtained using ClassCM and DROP algorithms are
ompared. ClassCM shows better 
ompeten
e for some data sets (e.g. biopsy,breast-w, glass), although its results are also worse in others (e.g. multiplexer).The behaviour of these redu
tion te
hniques are similar to the previously stud-ied. ClassCM obtains a balan
e behaviour between 
ompeten
e and size. Thereare some redu
tion te
hniques that obtain best 
ompeten
e for some data setsredu
ing less the 
ase memory size.All the experiments (tables 2, 3 and 4) point to some interesting observa-tions. First, it is worth noting that the individual A

urCM and ClassCM workswell in all data sets, obtaining better results on ClassCM be
ause the redu
tionis smaller. Se
ond, the mean storage obtained using A

urCM and ClassCMsuggest 
omplementary behaviour. This e�e
t 
an be seen on the tao-grid dataset, where A

urCM obtains a 95.39% mean storage and ClassCM 13.14%. Wewant to remember that ClassCM 
omplete the 
ase memory in order to obtainat least one 
ase of ea
h 
lass. This 
omplementary behaviour suggests that they
an be used together in order to improve the 
ompeten
e and maximise the re-du
tion of the 
ase memory. Finally, the results on all tables suggest that allthe redu
tion te
hniques work well in some, but not all, domains. This has beentermed the sele
tive superiority problem [2℄. Consequently, future work 
onsistsof 
ombining both approa
hes in order to exploit the strength of ea
h one.
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lusions and further workThis paper introdu
es two new redu
tion te
hniques based on the Rough Setstheory. Both redu
tion te
hniques have a di�erent nature: A

urCM redu
es the
ase memory maintaining the internal 
ases; and ClassCM obtains a redu
edset of border 
ases, in
reasing that set of 
ases with the most relevant 
lassi�er
ases. Empiri
al studies show that these redu
tion te
hniques produ
e a higheror equal generalisation a

ura
y on 
lassi�
ation tasks. We 
on
lude that RoughSets redu
tion te
hniques should be improved in some ways. That fa
t fo
us ourfurther work. First, the algorithm sele
tCases should be 
hanged in order tosele
t a most redu
ed set of 
ases. In this way, we want to modi�y the algorithmsele
ting only the most representative K-nearest neighbour 
ases that a

om-plishing the 
onfiden
eLevel. Se
ond, we should sear
h for new dis
retisationmethods in order to improve the pre-pro
essing of the data. Finally, we want toanalyse the in
uen
e of the weighting methods in these redu
tion te
hniques.A
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