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Abstract. Case Based Reasoning systems are often faced with the prob-
lem of deciding which instances should be stored in the case base. An
accurate selection of the best cases could avoid the system being sensitive
to noise, having a large memory storage requirements and, having a slow
execution speed. This paper proposes two reduction techniques based on
Rough Sets theory: Accuracy Rough Sets Case Memory (AccurCM) and
Class Rough Sets Case Memory (ClassCM). Both techniques reduce the
case base by analysing the representativity of each case of the initial case
base and applying a different policy to select the best set of cases. The
first one extracts the degree of completeness of our knowledge. The sec-
ond one obtains the quality of approximation of each case. Experiments
using different domains, most of them from the UCI repository, show
that the reduction techniques maintain accuracy obtained when not us-
ing them. The results obtained are compared with those obtained using
well-known reduction techniques.

1 Introduction and motivation

Case-Based Reasoning (CBR) systems solve problems by reusing the solutions to
similar problems stored as cases in a case memory [19] (also known as case-base).
However, these systems are sensitive to the cases present in the case memory and
often its good accuracy rate depends on the significant cases stored. Therefore,
in CBR systems it is important to reduce the case memory in order to remove
noisy cases. This reduction allows us to achieve a good generalisation accuracy.

In this paper we present an initial approach to two different reduction tech-
niques based on Rough Sets theory. Both reduction techniques was introduced
into our Case-Based Classifier System called BASTIAN. Case-Based Reasoning
and Rough Sets theory have usually been used separately in the literature.

The first one, Case-Based Reasoning [19,10], is used in a wide variety of
fields and applications (e.g. diagnosis, planning, language understanding). We
use Case-Based Reasoning as an automatic classification system.

On the other hand, Rough Sets theory [16] is a Data Mining technique. The
main research trends in Rough Sets theory -which tries to extend the capabilities
of reasoning systems- are: (1) the treatment of incomplete knowledge; (2) the
management of inconsistent pieces of information; and (3) the manipulation of
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various levels of representation, moving from refined universes of discourse to
coarser ones and conversely.

The reduction techniques proposed are: Accuracy Rough Sets Case Memory
(AccurCM) and Class Rough Sets Case Memory (ClassCM). Both Rough Sets
reduction techniques use the reduction of various levels of information. From
those levels of information we extract relevant cases. The first technique, Ac-
curCM, extracts an accuracy measure to capture the degree of completeness of
our knowledge. The second one, ClassCM, obtains the quality of approximation
of each case. It expresses the percentage of possible correct decisions when the
case classifies new cases.

The paper is structured as follows: section 2 introduces related work; next,
section 3 explains the Rough Sets theory; section 4 details the proposed Rough
Sets reduction techniques; section 5 describes the Case-Based Classifier System
used in this study; section 6 exposes the testbed of the experiments and the
results obtained; and finally, section 7 presents the conclusions and further work.

2 Related work

Case-Based Reasoning systems solve problems by reusing a corpus of previous
solving experience stored (set of training instances or cases T') as a case memory
of solved cases t. Reduction techniques are applied in Case-Based Reasoning
systems for two main reasons: (1) to reduce storage requirements by increasing
execution speed, and (2) to avoid sensitivity to noise. Thus, a performance goal
for any CBR system is the maintenance of a case memory 7" maximizing coverage
and minimizing case memory storage requirements. Reduction techniques remove
instances of T' obtaining a new training set S, S C T, that aims to maintain the
generalization performance as well as reduce the storage requirements.

Many researchers have addressed the problem of case memory reduction [26].
Related work on pruning a set of cases comes from the pattern recognition and
machine learning community, most of them through studies of nearest neighbour
algorithm (NNA), and Instance-Based Learning (IBL) methods.

The first kind of approaches to the reduction of the case memory are com-
monly known as nearest neighbours editing rules. Most algorithms look for a sub-
set of cases S of the original case memory T'. The first approach was Condensed
Nearest Neighbour (CNN) [9], which ensures that all cases in T are classified
correctly, though it does not guarantee a minimal set and it is sensitive to noise.
Selective Nearest Neighbour (SNN) [20] extends CNN such that every member
of T must be closer to a member of S of the same class than to any member of
T (instead of S) of a different class. SNN is more complex than other reduction
techniques and its learning time is significantly greater; it is also sensitive to
noise. Reduced Nearest Neighbour (RENN) [6] removes an instance from S if
any other instance in T is misclassified by the instances remaining in S. RENN
is computationally more expensive than CNN, but it is able to remove noisy
instances while retaining border cases (i.e. cases that are placed at the bound-
aries of two classes). Edited Nearest Neighbour rule (ENN)[26], removes noisy



Rough Sets reduction techniques for Case-Based Reasoning

instances, and maintains internal cases and close border ones. Variable Similar-
ity Metric (VSM)[13], removes instances depending on a confidence level and all
the K nearest neighbours. VSM is able to remove noisy instances and internal
instances and retains border ones.

The second kind of approaches are related to Instance Based Learning Algo-
rithms (IBL) [1]. IB1 is a simple implementation of NNA. IB2 is an incremental
algorithm that does not necessarily classify all the instances correctly because
it is sensitive to noise. IB2 is similar to CNN; it retains border points while it
eliminates cases that are surrounded by members of the same class. IB3 improves
IB2 retaining only those cases that have acceptable bounds. IB3 produces higher
reduction than IB2 and higher accuracy. It also reduces sensitivity to noise. IB4
extends IB3, by building a set of attribute weights for each class.

There is another way to approach this problem. There are systems that mod-
ify the instances themselves, instead of simply deciding which ones to keep. RISE
[3] treats each instance as a rule that can be generalised. EACH [23] introduced
the Nested Generalized Exemplars (NGE) theory, in which hyperrectangles are
used to replace one or more instances, thus reducing the original training set.

Another approach to instance pruning systems are those that take into ac-
count the order in which instances are removed [26]. DROP1 is similar to RNN
and RISE, with some differences. DROP1 removes an instance from S (where S
= T originally) if at least as many of its associates in S would be classified cor-
rectly without it. This heuristic has some problems with noisy instances, which
DROP?2 tries to solve by removing an instance from S if at least as many of its
associates in 7" would be classified correctly without it. DROP3 is designed to
filter noise before sorting the instances. DROP4 is a more careful noise filter.
Finally, DROP5 modifies DROP2 trying to smooth the decision boundary.

Finally, researchers have also focused on increasing the overall competence,
the range of target problems that can be successfully solved, of the case memory
through case deletion [24]. Strategies have been developed for controlling case
memory growth through methods such as competence-preserving deletion [24]
and failure-driven deletion [18], as well as for generating compact case memories
through competence-based case addition [25,28]. Leake and Wilson [11] exam-
ine the benefits of using fine-grained performance metrics to directly guide case
addition or deletion. This method is specially important for task domains with
non-uniform problem distributions. Finally, a case-base maintenance method
that avoids building sophisticated structures around a case-base or complex op-
erations is presented by Yang and Wu [27]. Their method partitions cases into
clusters where the cases in the same cluster are more similar than cases in other
clusters. Clusters can be converted to new smaller case-bases.

3 Rough Sets theory

Zdzislaw Pawlak introduced Rough Sets theory in 1982 [16,17]. The idea of
Rough Sets consists of the approximation of a set by a pair of sets, called the
lower and the upper approximation of this set. In fact, these approximations
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are inner and closure operations in a certain topology. These approximations
are generated by the available data about the elements of the set. The nature
of Rough Sets theory makes them useful for reducing knowledge, extracting
dependencies in knowledge, reasoning about knowledge, pattern recognition, etc.

We use Rough Sets theory for reducing and extracting the dependencies in
knowledge. This reduction of knowledge is the basis for computing the relevance
of instances into the Case-Based Classifier System. We use that relevance in two
different ways. The first one is Accuracy Rough Sets Case Memory and the
second one is Class Rough Sets Case Memory.

First of all, we incorporate some concepts and definitions. Then, we explain
how to obtain the dependencies, in order to select the set of instances.

Basic Concepts and Definitions

We have a Universe (U) (finite not null set of objects that describes our prob-
lem, i.e. the case memory). We compute from our universe the concepts (objects
or cases) that form partitions. The union of all the concepts make the entire Uni-
verse. Using all the concepts we can describe all the equivalence relations (R)
over the universe U. Let an equivalence relation be a set of features that describe
a specific concept. U/R is the family of all equivalence classes of R.

The universe and the relations form the knowledge base (K), defined as
K =< U,R >. Where R is the family of equivalence relations over U. Every
relation over the universe is an elementary concept in the knowledge base. All
the concepts are formed by a set of equivalence relations that describe them.
Thus, we search for the minimal set of equivalence relations that defines the
same concept as the initial set.

DEFINITION 1 (INDISCERNIBILITY RELATIONS)

IND(P) = (| R where P C R. The indiscernibility relation is an equivalence relation
over U. Hence, it partitions the concepts (cases) into equivalence classes. These sets
of classes are sets of instances indiscernible with respect to the features in P. Such
a partition is denoted as U/IND(P). In supervised machine learning, the sets of
cases indiscernible with respect to the class attribute contain the cases of each class.

4 Rough Sets as reduction techniques

In this section we explain how to reduce the case memory using the Rough Sets
theory. We obtain a minimal case memory unifying two concepts: (1) approxi-
mation sets of knowledge and (2) reduction of search space. These two concepts
are the basis for the AccurCM and ClassCM reduction techniques.

Both reduction techniques deal with cases containing continuous, nominal
and missing features. Rough Sets reduction techniques perform search approxi-
mating sets by other sets and both proposals are global. Global means that we
select the representative knowledge without taking into account which class the
cases classify. AccurCM computes an accuracy measure. ClassCM computes the
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classification accuracy measure of each case in the representative knowledge. We
want to remark that AccurCM and ClassCM can be used in multiclass tasks.

First of all, this section explains how to approximate and reduce knowledge.
Next, it describes the unification of both concepts to extract the reduced set of
cases using two policies: (1) Accuracy Rough Sets Case Memory (AccurCM),
and Class Rough Sets Case Memory (ClassCM).

4.1 Approximating and Reducing the knowledge

Approximations of Set This is the main idea of Rough Sets, to approximate a
set by other sets. The condition set contains all cases present in the case memory.
The decision set presents all the classes that the condition set has to classify. We
are searching for a subset of the condition set able to classify the same as the
initial set, so it approximates the same decision set. The following definitions
explain this idea.

Let K =< U,R >bea knowledge base. For any subset of cases X C U and an
equivalence relation R C IND(K) we associate two subsets called: Lower RX;
and Upper RX approximations. If RX=RX then X is an ezact set (definable
using subset R), otherwise X is a rough set with respect to R.

DEFINITION 2 (LOWER APPROXIMATION)
The lower approximation, defined as: RX = | J{Y € U/R:Y C X} is the set of all
elements of U which can certainly be classified as elements of X in knowledge R.

DEFINITION 3 (UPPER APPROXIMATION)
The upper approximation, RX = | J{Y € U/R: X Y # 0} is the set of elements
of U which can possibly be classified as elements of X, employing knowledge R.

EXAMPLE 1
If we consider a set of 8 objects in our Universe, U = {z1, x2, T3, T4, T5, Tg, T, T3 },
using R = (A,B,C,D) as a family of equivalence relations over U. Where A =
{z1,24,28}, B = {22, 25,27}, C = {23} and D = {x6}. And we also consider
3 subsets of knowledge X, X2, X3. Where X1 = {xy, 24,25}, Xo = {z3,25},
X3 = {.’153,176,1173}.

The lower and upper approximations are:
RX,=0and RX; = A |J B = {x1,29,74,25, 77,78}
RX>, =C = {133} and EXQ = B U C = {a:2,x3,x5,a?7}
EX3 = CUD = {173,276} and §X3 = A U C U D = {171,.’133,.’)54,176,273}

Reduct and Core of knowledge This part is related to the concept of reduc-
tion of the search space. We are looking for a reduction in the feature search
space that defines the initial knowledge base. Next, reduction techniques apply
this new space to extract the set of cases that represents the new case memory.

Intuitively, a reduct of knowledge is its essential part, which suffices to define
all concepts occurring in the considered knowledge, whereas the core is the most
important part of the knowledge.

Let R be a family of equivalence relations and R € R. We will say that:
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— R is indispensable if IND(R R) # IND(R — {R}); otherwise it is dispensable.
IND(R - {R}) is the family of equivalence R extracting R.

— The family Ris independent if each R € Ris indispensable in R; otherwise
it is dependent.

DEFINITION 4 (REDUCT)
Q € Ris a reduct of R if : Q) is independent and IN D(Q) = IND(R). Obviously,

R may have many reducts. Using Q it is possible to approximate the same as using
R. Each reduct has the property that a feature can not be removed from it without
changing the indiscernibility relation.

DEFINITION 5 (CORE)

The set of all indispensable relations in R will be called the core of R and will be
denoted as:CORE(R R) = (Y RED(R). Where RED(R) is the family of all reducts
of R. The core can be interpreted as the set of the most characteristic part of
knowledge, which can not be eliminated when reducing the knowledge.

EXAMPLE 2
If we consider a set of 8 objects in our Universe, U = {z1, x2, T3, 4, T5, Tg, T, T3 },
using R= {P,Q, S} as a family of equivalence relations over U. Where P can be
colours (green, blue, red, yellow); @ can be sizes (small, large, medium); and S can
be shapes (square, round, triangular, rectangular). For example, we can suppose that
the equivalence classes are:
U/P ={ (z1,24,25), (v2,28), (v3).(76,27) }
U/Q :{ (x17x37x5)1 (1’6), (1’2,1’4,1’7,1’8) }
U/S ={ (z1,25), (26), (22,27, 25), (v3,24) }
As can be seen, every equivalence class divides the Universe in a different way.
Thus the relation /N D(R) has the following equivalence classes:
U/IND(R) = {(w1,5),(@2, 25),(2),(24), (), (w7)}
The relation P is indispensable in R, since: R
U/IND(R —{P}) = { (z1,25), (x2, w7, 28), (3), (74), (26) } # U/IND(R).
The infornjation obtained removing relation @) is equal, so it is dispensable in R.
U/IND(R - {Q}) = { (1'1,1‘5), (1‘2, :L‘g), (1‘3), (1‘4), (xﬁ)a (1‘7) }:U/IND(R)
Hence the relation S is also dispensable in R. R
U/IND(R = {S}) = { (21,5), (22, 7s), (w3),(x1), (xs), (1) }=U/IND(R).
That means that the classification defined by the set of three equivalence re-
lations P, and S is the same as the classification defined by relation P and @
or P and S. Thus, the reducts and the core are: RED(R R) = {(P,Q),(P,S)} and
CORE(R) = {P}.

4.2 Reducing the set of cases

Accuracy Rough Sets Case Memory and Class Rough Sets Case Memory, the
methods which we propose, use the information of reducts and core to select the
cases that are maintained in the case memory.



Rough Sets reduction techniques for Case-Based Reasoning

Accuracy Rough Sets Case Memory This reduction technique computes
the Accuracy reducts coefficient (AccurCM) of each case in the knowledge base
(case memory). The coefficient u(t) is computed as:

For each instance t € T it computes :
card ( P(t)) (1)
card ( P (t))

Where p(t) is the relevance of the instance t; P is the set that contains
the reducts and core obtained from the original data; T is the condition set;
card is the cardinality of one set; and finally P and P are the lower and upper
approximations, respectively.

For each case we apply the following algorithm, where the confidenceLevel is
the u(t) value computed:

1. Algorithm SelectCases

2 con fidenceLevel = 0.0

3 for each case

4. select the case if it accomplishes this confidenceLevel
5 end for

6. end Algorithm

In this algorithm the con fidenceLevel is set at to zero, in order to only select
the set of cases that accomplishes this space region. Inexactness of a set of cases
is due to the existence of a borderline region. The greater a borderline region of a
set, the lower the accuracy of the set. The accuracy measure expresses the degree
of completeness of our knowledge about the set P. This reduction technique
obtains the minimal set of instances present in the original case memory. The
accuracy coefficient explains if an instance is needed or not, so u(t) is a binary
value. When the value u(t)= 0 it means an internal case, and a p(t) =1 means a
borderline case. This technique does not guarantee that all classes will be present
in the set of instances selected. However, it guarantees that all the internal points
that represent a class will be included. The accuracy expresses the percentage of
possible correct decisions when classifying cases employing knowledge P. This
measure approximates the coverage of each case.

Class Rough Sets Case Memory In this reduction technique we use the qual-
ity of classification coefficient (ClassCM), computed using the core and reducts
of information. The classification accuracy coefficient u(t) is computed as:

For each instance t € T it computes :

B card ( P(t)) )
) = Crd (all instances)

Where u(t) is the relevance of the instance t; P is the set that contains the
reducts and core obtained from the original data; T is the condition set; card is
the cardinality of one set; and finally P is the lower approximation.
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The ClassCM coefficient expresses the percentage of cases which can be cor-
rectly classified employing the knowledge ¢. This coefficient (u(t)) has a range
of values between 0 to 1, where 0 means that the instance classifies incorrectly
the range of cases that belong to its class and a value of 1 means an instance
that classifies correctly the range of cases that belong to its class. In this reduc-
tion technique the cases that obtain a higher value of u(t) represent cases that
classify correctly the cases, but these cases are to be found on the search space
boundaries.

This reduction technique guarantees a minimal set of instances of each class
also applying the following algorithm, where the confidenceLevel is the u(t)
computed previously:

1. Algorithm SelectCases
con fidenceLevel = 1.0 and freeLevel = ConstantTuned (set at 0.01)
select all possible cases that accomplish this confidenceLevel
while all classes are not selected
confidenceLevel = confidenceLevel - freeLevel
select all possible cases that accomplish this confidenceLevel
end while
end Algorithm

O N U LN

Due to the range of values, it is possible to select not only the best set of
instances as ClassCM computes. We select a set of instances depending on the
confidence level of u(t) that we compute. The confidence level is reduced until
all the classes have a minimum of one instance present in the new case memory.

The introduction of these techniques into a CBR system is explained in sec-
tion 5.1.

5 Description of the BASTIAN System

The study described in this paper was carried out in the context of BASTIAN, a
case-BA sed SysTem In clAssificatioN [22,21]. This section details two points:
(1) the main capabilities of the BASTTAN platform used in the study carried out
in this paper, in order to understand what kind of CBR cycle has been applied
in the experimental analysis; (2) how to introduce the Rough Sets reduction
techniques into a Case-Based Reasoning System.

The BASTTAN system is an extension of CaB-CS (Case-Based Classifier
System) system [5]. The BASTTAN system allows the user to test several vari-
ants of CBR (e.g. different retrieval or retain phases, different similarity func-
tions and weighting methods). For details related to the BASTIAN platform see
[22]. BASTIAN has been developed in JAVA language and the system is being
improved with new capabilities.

BASTIAN platform capabilities

The system capabilities are developed to work separately and independently in
co-operation with the rest. Each capability described in the general structure
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has a description of the general behaviour that it has to achieve. The main goal
is to obtain a general structure that could change dynamically depending on the
type of Case-Based Reasoner we want to develop. The main capabilities are:

— The CaseMemory defines the behaviour for different case memory organi-
zations. In this study, we use a list of cases. Our main goal in this paper
is to reduce the case memory; for this reason, we have not focus on the
representation used by the system.

— The SimilarityFunctionInterface concentrates on all the characteristics re-
lated to similarity functions. It allows us to change the similarity function
dynamically within the system. In this paper, we use the K-Nearest Neigh-
bour similarity function.

— The WeightingInterface contains the main abilities to compute the feature
relevance in a Case-Based Classifier System [22]. It is related to the Retrieval-
Interface and the SimilarityFunctionInterface. This paper does not use them
in order to test the reliability of our new reduction techniques. Further work
will consist of testing the union of both proposals.

— The {Retrieval, Reuse, Revise, Retain}Interface are the four phases of the
CBR cycle. These interfaces describe the behaviour of each phase.

e Retrieval interface is applied using K=1 and K=3 values in the K-NN
policy.

o {Reuse, Revise, Retain} interface are applied choosing a standard config-
uration for the system, in order to analyse only the reduction techniques.

Our aim, is to improve the generalisation accuracy of our system by reducing
the case memory in order to remove the noisy instances and maintain border
points [26].

5.1 Rough Sets inside the BASTIAN platform

Figure 1 shows the meta-level process when incorporating the Rough Sets into
the CBR system. The Rough Sets process is divided into three steps:

The first one discretises the instances, it is necessary to find the most relevant
information using the Rough Sets theory. In that case, we discretise continuous
features using [4] algorithm. The second step searches for the reducts and the
core of knowledge using the Rough Sets theory, as was described in section 4.
Finally, the third step uses the core and the reducts of knowledge to decide
which cases are maintained in the case memory using AccurCM and ClassCM
techniques, as explained in 4.2.

Rough Sets theory has been introduced as reduction techniques in two phases
of the CBR cycle. The first phase is the start-up phase and the second one is
the retain phase. The system adds a previous phase Startup, which is not in the
Case-Based Reasoning cycle.

This initial phase prepares the initial start-up of the system. It computes the
new initial case memory from the training case memory; this new case memory
is used by the retrieval phase later. The retain phase computes a new case
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memory from the case memory if a new case is stored. In this paper, we focus
our reduction techniques on the retrieval phase. The code of Rough Sets theory
in the Case-Based Reasoning has been implemented using a public Rough Sets
Library [7].

Set of
Instances [ Discretise } o BASTIAN
- >

Searching
[ REDUCTS & CORE } <+—> (_ Rough Sets
Set of @ ﬁ

instances

47[ Instances Extraction J -~ BASTIAN

Fig. 1. High level process of Rough Sets.

6 Empirical study

This section is structured as follows: first, we describe the testbed used in the
empirical study; then we discuss the results obtained from the reduction tech-
niques based on Rough Sets. We compare the results compared to CBR. system
working with the original case memory. And finally, we also compare the results
with some related learning systems.

6.1 Testbed

In order to evaluate the performance rate, we use twelve datasets. Datasets can
be grouped in two ways: public and private. The datasets and their characteristics
are listed in table 1.

Public datasets are obtained from the UCI repository [15]. They are: breast
cancer Wisconsin (breast-w), glass, ionosphere, iris, sonar and vehicle. Private
datasets comes from our own repository. They deal with diagnosis of breast
cancer and synthetic datasets. Datasets related to diagnosis are biopsy and mam-
mogram. Biopsy [5] is the result of digitally processed biopsy images, whereas
mammogram consists of detecting breast cancer using the microcalcifications
present in a mammogram [14,8]. In mammogram each example contains the
description of several puCa present in the image; in other words, the input in-
formation used is a set of real valued matrices. On the other hand, we use two
synthetic datasets to tune up the learning algorithms, because we knew their so-
lutions in advance. MX11 is the eleven input multiplexer. TAO-grid is a dataset
obtained from sampling the TAO figure using a grid [12].

These datasets were chosen in order to provide a wide variety of application
areas, sizes, combinations of feature types, and difficulty as measured by the
accuracy achieved on them by current algorithms. The choice was also made
with the goal of having enough data points to extract conclusions.
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All systems were run using the same parameters for all datasets. The per-
centage of correct classifications has been averaged over stratified ten-fold cross-
validation runs, with their corresponding standard deviations. To study the per-
formance we use paired t-test on these runs.

Table 1. Datasets and their characteristics used in the empirical study.

Dataset Refe Sam- Nume- Simbo- Cla- Incon-
rence ples ric feats. lic feats. sses sistent

1  Biopsy BI 1027 24 - 2 Yes
2 Breast-w BC 699 9 - 2 Yes
3 Glass GL 214 9 - 6 No
4 Tonosphere 10 351 34 - 2 No
5 Iris IR 150 4 - 3 No
6 Mammogram MA 216 23 - 2 Yes
7T MX11 MX 2048 - 11 2 No
8 Sonar SO 208 60 - 2 No
9 TAO-Grid TG 1888 2 - 2 No
10 Vehicle VE 846 18 - 4 No

6.2 Experimental analysis of reduction techniques

Table 2 shows the experimental results for each dataset using CBR system Rough
Sets reduction techniques: AccurCM and ClassCM, IB2, IB3 and IB4 [1]. This ta-
ble contains the mean percentage of correct classifications (%PA)(competenceof
the system) and the mean storage size (%MC). We want to compare the results
obtained using the proposed ClassCM reduction technique with those obtained
by these classifier systems. Time performance is beyond the scope of this paper.

Table 2. Mean percentage of correct classifications and mean storage size. Two-sided
paired t-test (p = 0.1) is performed, where a e and o stand for a significant improvement
or degradation of our ClassCM approach related to the system compared. Bold font
indicates the best prediction accuracy.

Ref. CBR AccurCM ClassCM IB2 IB3 IB4
%PA %CM  %PA %CM  %PA %CM %PA %CM %PA %CM %PA %CM
BI  83.15 100.0 75.15e 2.75 84.41 1.73 75.77e 26.65 78.5le 13.62 76.46e 12.82
BC 96.28 100.0 94.56 58.76 96.42 43.95 91.86e 8.18 94.98 2.86 94.86 2.65
GL 72.42 100.0 58.60e 23.88 71.12 76.11 62.53e 42.99 65.56e 44.34 66.40e 39.40
IO 90.59 100.0 88.60e 38.98 92.59 61.00 86.6le 15.82 90.62 13.89 90.35 15.44
IR 96.0 100.0 94.000 96.50 87.40 8.85 93.980 9.85 91.33 11.26 96.66 12.00
MA 64.81 100.0 66.340 81.56 59.34 37.50 66.19 42.28 60.16 14.30 60.03 21.55
MX 78.61 100.0 68.00e 0.54 78.74 99.90 87.070 18.99 81.59 15.76 81.34 15.84
SO 84.61 100.0 75.48e 33.01 86.05 67.05 80.72 27.30 62.11e 22.70 63.06e 22.92
TG 95.76 100.0 96.340 95.39 86.97 13.14 94.870 7.38 95.040 5.63 93.960 5.79
VE 67.37 100.0 64.18e 34.75 68.42 65.23 65.46e 40.01 63.21e 33.36 63.68e 31.66

Both Rough Sets reduction techniques have the same initial concept: to use
the reduction of knowledge to measure the accuracy (AccurCM) or the quality
of classification (ClassCM).
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Although reduction is important, we decided to use these two different poli-
cies in order to maintain or even improve, if possible, prediction accuracy when
classifying a new case. That fact is detected in the results. For example, the
vehicle dataset obtains good accuracy as well as reduces the case memory, in
both techniques. However, the case memory reduction is not large.

There are some datasets that obtain a higher reduction of the case memory
but decrease the prediction accuracy, although this reduction in not significant.

Comparing AccurCM and ClassCM, the most regular behaviour is achieved
using ClassCM. This behaviour is due to its own nature, because it introduces
all the border cases classifying the class correctly into the reduced case memory,
as well as the internal cases needed to complete all classes. AccurCM calculates
the border points of the case memory. AccurCM calculates the degree of com-
pleteness of our knowledge, which can be seen as the coverage [25]. AccurCM
points out the relevance of classification of each case.

ClassMC reduction technique obtains on average a higher generalisation ac-
curacy than IBL, as can be seen in table 2. There are some datasets where
ClassCM shows a significant increase in the prediction accuracy. The perfor-
mance of IBL algorithms declines when case memory is reduced. CBR obtains
on average higher prediction accuracy than IB2, IB3 and IB4.

On the other hand, the mean storage size obtained for ClassCM is higher
than that obtained when using IBL schemes (see table 2). IBL algorithms obtain
a higher reduction of the case memory. However, IBL performance declines,
in almost all datasets (e.g. Breast-w, Biopsy). This degradation is significant
in some datasets, as happens with the sonar dataset. Our initial purpose for
the reduction techniques was to reduce the case memory as much as possible,
maintaining the generalisation accuracy. We should continue working to obtain
a higher reduction on the case memory.

Table 3. Mean percentage of correct classifications and mean storage size. Two-sided
paired t-test (p = 0.1) is performed, where a e and o stand for a significant improvement
or degradation of our ClassCM approach related to the system compared. Bold font
indicates the best prediction accuracy.

Ref. ClassCM CNN SNN DEL ENN RENN
%PA  %CM  %PA %CM  %PA  %CM  %PA  %CM %PA %CM %PA %CM

BI  84.41 1.73 79.57e 17.82 78.41e 14.51 82.79e 0.35 77.82e 16.52 81.03e 84.51
BC 96.42 43.95 95.57 5.87 95.42 3.72 96.570 0.32 95.28 3.61 97.000 96.34
GL 71.12 76.11 67.64 24.97 67.73 20.51 64.87e 4.47 68.23 19.32 68.66 72.90
IO 92.59 61.00 88.89e 9.94 85.75e 7.00 80.34e 1.01 88.31e 7.79 85.18e¢ 86.39
IR 87.40 8.85 96.000 14.00 94.000 9.93 96.000 2.52 91.33 8.59 96.000 94.44
MA 59.34 37.50 61.04 25.06 63.420 18.05 62.530 1.03 63.850 21.66 65.320 66.92
MX 7874 99.90 89.0lo 37.17 89.0lo 37.15 68.99e 0.55 85.050 32.54 99.800 99.89
SO 86.05 67.05 83.26 23.45 80.38 20.52 77.45e¢ 1.12 85.62 19.34 82.74 86.49
TG 86.97 13.14 94.390 7.15 94.760 6.38 87.66 0.26 96.770 3.75 95.180 96.51
VE 68.42 65.23 69.74 23.30 69.27 19.90 62.29e 2.55 66.91 20.70 68.67 74.56

To finish the empirical study, we also run additional well-known reduction
schemes on the previous data sets. The reduction algorithms are: CNN, SNN,
DEL, ENN, RENN, DROP1, DROP2, DROP3, DROP4 and DROP5 (a complete
explanation of them can be found in [26]). We use the same data sets described
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above but with different ten-fold cross validation sets. We want to compare the
results obtained using the proposed ClassCM reduction technique with those
obtained by these reduction techniques. Tables 3 and 4 show the mean prediction
accuracy and the mean storage size for all systems in all datasets, respectively.

Table 3 shows the behaviour of our ClassCM reduction technique in com-
parison with CNN, SNN, DEL, ENN and RENN techniques. The results are on
average better than those obtained by the reduction techniques studied. RENN
improves the results of ClassCM in some data sets (e.g. Breast-w) but its reduc-
tion on the case memory is lower than ClassCM.

Table 4. Mean percentage of correct classifications and mean storage size. Two-sided
paired t-test (p = 0.1) is performed, where a e and o stand for a significant improvement
or degradation of our ClassCM approach related to the system compared. Bold font
indicates best prediction accuracy.

Ref. ClassCM DROP1 DROP2 DROP3 DROP4 DROP5
%PA  %CM  %PA  %CM %PA %CM  %PA  %CM  %PA  %CM  %PA  %CM

BI 84.41 1.73 76.36e 26.84 76.95e¢  29.38 77.34e 15.16 76.16e 28.11 76.17e 27.03
BC 96.42 43.95 93.28 8.79 92.56 8.35 96.28 2.70 95.00 4.37 93.28 8.79
GL 71.12 76.11 66.39 40.86 69.57 42.94 67.27 33.28 69.18 43.30 65.02e 40.65
IO  92.59 61.00 81.20e 23.04 87.73e 19.21 88.89 14.24 88.02e 15.83 81.20e 23.04
IR 87.40 8.85 91.33 12.44 90.00 14.07 92.66 12.07 88.67 7.93 91.33 12.44
MA 59.34 37.50 61.60 42.69 58.33 51.34 58.51 12.60 58.29 50.77 61.60 42.64
MX 7874 99.90 87.940 19.02 100.000 98.37 82.37 17.10 86.52 25.47 86.52 18.89
SO 86.05 67.05 84.64 25.05 87.07 28.26 76.57e 16.93 84.64 26.82 84.64 25.11
TG 86.97 13.14 94.760 8.03 95.230 8.95 94.490 6.76 89.410 2.18 94.760 8.03
VE 68.42 65.23 64.66e 38.69 67.16 43.21 66.21 29.42 68.21 43.85 64.66e 38.69

In table 4 the results obtained using ClassCM and DROP algorithms are
compared. ClassCM shows better competence for some data sets (e.g. biopsy,
breast-w, glass), although its results are also worse in others (e.g. multiplezer).
The behaviour of these reduction techniques are similar to the previously stud-
ied. ClassCM obtains a balance behaviour between competence and size. There
are some reduction techniques that obtain best competence for some data sets
reducing less the case memory size.

All the experiments (tables 2, 3 and 4) point to some interesting observa-
tions. First, it is worth noting that the individual AccurCM and ClassCM works
well in all data sets, obtaining better results on ClassCM because the reduction
is smaller. Second, the mean storage obtained using AccurCM and ClassCM
suggest complementary behaviour. This effect can be seen on the tao-grid data
set, where AccurCM obtains a 95.39% mean storage and ClassCM 13.14%. We
want to remember that ClassCM complete the case memory in order to obtain
at least one case of each class. This complementary behaviour suggests that they
can be used together in order to improve the competence and maximise the re-
duction of the case memory. Finally, the results on all tables suggest that all
the reduction techniques work well in some, but not all, domains. This has been
termed the selective superiority problem [2]. Consequently, future work consists
of combining both approaches in order to exploit the strength of each one.
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7 Conclusions and further work

This paper introduces two new reduction techniques based on the Rough Sets
theory. Both reduction techniques have a different nature: AccurCM reduces the
case memory maintaining the internal cases; and ClassCM obtains a reduced
set of border cases, increasing that set of cases with the most relevant classifier
cases. Empirical studies show that these reduction techniques produce a higher
or equal generalisation accuracy on classification tasks. We conclude that Rough
Sets reduction techniques should be improved in some ways. That fact focus our
further work. First, the algorithm selectC'ases should be changed in order to
select a most reduced set of cases. In this way, we want to modifiy the algorithm
selecting only the most representative K-nearest neighbour cases that accom-
plishing the con fidenceLevel. Second, we should search for new discretisation
methods in order to improve the pre-processing of the data. Finally, we want to
analyse the influence of the weighting methods in these reduction techniques.
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