
Deleting and Building Sort Out Techniques for

Case Base Maintenance

Maria Salamó and Elisabet Golobardes

Enginyeria i Arquitectura La Salle, Universitat Ramon Llull,
Psg. Bonanova 8, 08022 Barcelona, Spain
{mariasal,elisabet}@salleurl.edu

Abstract. Early work on case based reasoning reported in the literature
shows the importance of case base maintenance for successful practical
systems. Different criteria to the maintenance task have been used for
more than half a century. In this paper we present different sort out
techniques for case base maintenance. All the sort out techniques pro-
posed are based on the same principle: a Rough Sets competence model.
First of all, we present sort out reduction techniques based on deletion
of cases. Next, we present sort out techniques that build new reduced
competent case memories based on the original ones. The main purpose
of these methods is to maintain the competence and reduce, as much
as possible, its size. Experiments using different domains, most of them
from the UCI repository, show that the reduction techniques maintain
the competence obtained by the original case memory. The results are
analysed with those obtained using well-known reduction techniques.

1 Introduction

Case-Based Reasoning (CBR) systems solve problems by reusing the solutions to
similar problems stored as cases in a case memory [12] (also known as case-base).
However, these systems are sensitive to the cases present in the case memory and
often its accuracy rate depends on the significance of the stored cases. Therefore,
in CBR systems it is important to reduce the case memory in order to remove
noisy cases and also to achieve a good generalisation accuracy.

This paper presents two approaches, based on a Rough Sets competence
model, to reduce the case memory while maintaining the competence. The two
approaches are: (1) reduction techniques based on deletion of cases; (2) re-
duction techniques based on the construction of new competent cases. Both
approaches have been introduced into our Case-Based Classifier System called
BASTIAN[15]. This paper continues the initial Rough Sets approaches presented
in our previous work [14], defining a competence model based on Rough Sets and
explaining new approximations to improve weak points.

The reduction techniques proposed for the deletion approach are: Sort out
Case Memory (SortOutCM) and Sort Out Internal Case Memory (SortOutInter-
nalCM). The sort out reduction techniques obtain the quality of approximation
to each case and separate it in the space of classes. Both techniques contain

the same foundations, but the SortOutCM has a more restrictive behaviour on
deletion than SortOutInternalCM.

The reduction techniques proposed for the building approach are: SortOut-
MeanCM and SortOutMeanInternalCM. These techniques follow the initial ap-
proach of sort out techniques but their goal is different: the construction of new
competent case memories using the information provided by the original ones.

The paper is organised as follows. Section 2 introduces some relevant related
work. Next, section 3 describes the foundations of the Rough Sets Theory used
in our reduction techniques. Then, section 4 details the proposed Rough Sets
reduction techniques based on the deletion of cases and on the construction of
new case memories. Section 5 describes the testbed of the experiments and the
results obtained. Finally, section 6 presents some conclusions and further work.

2 Related Work

Case-Based Reasoning systems solve problems by reusing a corpus of previous
solving experience stored as a case memory T of solved cases t. A performance
goal for any practical CBR system is the maintenance of a case memory T
maximizing coverage and minimizing case memory storage requirements.

Many researchers have addressed the problem of case memory reduction [21,
20] and different approaches have been proposed. The first kind of approaches
are based on nearest neighbours editing rule (CNN,SNN,DEL,ENN,RENN)[21].
The second kind of approaches are related to Instance Based Learning algorithms
(IBL) [1]. Another approach to instance pruning systems are those that take into
account the order in which instances are removed (DROP1 to DROP5)[21].

Another way to approach this problem is to modify the instances themselves,
instead of simply deciding which ones to keep. RISE [3] treats each instance
as a rule that can be generalised. EACH [16] based on the Nested Generalized
Exemplars (NGE) theory, uses hyperrectangles to replace one or more instances,
introducing a generalization mechanism over the original training set. Another
approach is the one proposed by GALE [7]. The goal is to induce a set of compact
instances using evolutionary computation.

Finally, researchers have also focused on increasing the overall competence,
the range of target problems that can be successfully solved [17], of the case mem-
ory through case deletion. Strategies have been developed for controlling case
memory growth. Several methods such as competence-preserving deletion [17]
and failure-driven deletion [10], as well as for generating compact case memories
through competence-based case addition [18, 23, 19]. Leake and Wilson [6] exam-
ine the benefits of using fine-grained performance metrics to directly guide case
addition or deletion. These methods are specially important for task domains
with non-uniform problem distributions. The maintenance integrated with the
overall case-based reasoning process was presented in [11]. Finally, a case-base
maintenance method that avoids building sophisticated structures around a case-
base or complex operations is presented by Yang and Wu [22]. Their method
partitions cases into clusters that can be converted to new smaller case-bases.

3 Rough Sets theory

Zdzislaw Pawlak introduced Rough Sets theory in 1982 [9]. The idea of Rough
Sets relies on the approximation of a set by a pair of sets. These sets are known
as the lower and the upper approximation. These approximations are generated
by the available data about the elements of the set.

We use Rough Sets theory for extracting the dependencies of knowledge.
These dependencies are the basis for computing the relevance of instances into
the Case-Based Classifier System. We use two measures of case relevance to
decide which cases have to be deleted from the case memory applying different
policies. The first measure (Accuracy Rough Sets) captures the degree of
completeness of our knowledge. The second one (Class Rough Sets) computes
the quality of approximation of each case. The following sections introduce some
concepts and definitions required to define how to extract these two measures.

3.1 Introduction to the Rough Sets Theory

We have a Universe (U) (finite not null set of cases that describes our problem,
i.e. the case memory). We compute from our universe the concepts (cases) that
form partitions. The union of all the concepts make the entire Universe. Using
all the concepts we can describe all the equivalence relations (R) over the
universe U . Let an equivalence relation be a set of features that describe a specific
concept. U/R is the family of all equivalence classes of R. The universe and
the relations form the knowledge base (K), defined as K =< U, R̂ >, where R̂
is the family of equivalence relations over U . Every relation over the universe is
an elementary concept in K. All the concepts are formed by a set of equivalence
relations that describe them. Thus, the goal is to search for the minimal set of
R that defines the same concept as the initial set.

Definition 1 (Indiscernibility Relations)
IND(P̂) =

⋂

R̂ where P̂ ⊆ R̂. The indiscernibility relation is an equivalence relation
over U . Hence, it partitions the concepts (cases) into equivalence classes. These sets
of classes are sets of instances indiscernible with respect to the features in P . Such a
partition is denoted as U/IND(P). In supervised machine learning the sets of cases
indiscernible, with respect to the class attribute, contain the cases of each class.

Approximations of Set. Given a condition set that contains all cases present
in the case memory and a decision set that presents all the classes that the
condition set has to classify. We are searching for a subset of the condition set
able to classify the decision set. The following definitions explain this idea.

Let K =< U, R̂ > be a knowledge base. For any subset of cases X ⊆ U and
an equivalence relation R ∈ R̂, R ⊆ IND(K) we associate two subsets called:
Lower RX; and Upper RX approximations. If RX=RX then X is an exact set
(definable using subset R), otherwise X is a rough set with respect to R.

Definition 2 (Lower approximation)
The lower approximation, defined as: RX =

⋃

{Y ∈ U/R : Y ⊆ X} is the set of all
elements of U which can certainly be classified as elements of X in knowledge R.

Definition 3 (Upper approximation)
The upper approximation, RX =

⋃

{Y ∈ U/R : X
⋂

Y 6= ∅} is the set of elements
of U which can possibly be classified as elements of X, employing knowledge R.

Reduct and Core of knowledge This part is related to the concept of reduc-
tion of the feature search space that defines the initial knowledge base. Next,
this reduced space is used to extract the relevance of each case. Intuitively, a
reduct of knowledge is its essential part which suffices to define all concepts
occurring in the knowledge, whereas the core is the most important part.

Let R̂ be a family of equivalence relations and R ∈ R̂. We will say that:
– R is indispensable if IND(R̂) 6= IND(R̂−{R}); otherwise it is dispensable.

IND(R̂ − {R}) is the family of equivalence R̂ extracting R.
– The family R̂ is independent if each R ∈ R̂ is indispensable in R; otherwise

it is dependent.

Definition 4 (Reduct)
Q̂ ∈ R̂ is a reduct of R̂ if : Q̂ is independent and IND(Q̂) = IND(R̂). Obviously,

R̂ may have many reducts. Using Q̂ it is possible to approximate the same concept
as using R̂. Each reduct has the property that a feature can not be removed from
it without changing the indiscernibility relation.

Definition 5 (Core)
The set of all indispensable relations in R̂ will be called the core of R̂, and will be

denoted as: CORE(R̂) =
⋂

RED(R̂). Where RED(R̂) is the family of all reducts
of R̂. It is the most characteristic part of knowledge and can not be eliminated.

3.2 Measures of relevance based on Rough Sets

Accuracy Rough Sets and Class Rough Sets measures use the information
of reducts and the core to compute the relevance of each case.

Accuracy Rough Sets This measure computes the Accuracy coefficient (Accur-
Coef) of each case t in the knowledge base (case memory T) as:

For each instance t ∈ T it computes : AccurCoef(t) =
card (P (t))

card (P (t))
(1)

Where AccurCoef(t) is the relevance of the instance t; T is the training set;
card is the cardinality of one set; P is the set that contains the reducts and core
obtained from the original data; and finally P (t) and P (t) are the presence of t
in the lower and upper approximations, respectively.

The accuracy measure expresses the degree of completeness of our knowledge
about the set P . The accuracy coefficient explains if an instance is on an internal
region or on a border line region, thus AccurCoef(t) is a binary value. When
the value is 0 it means an internal case, and a value of 1 means an outlier
case. Inexactness of a set of cases is due to the existence of a borderline region.
The greater a borderline region of a set, the lower the accuracy of the set.
The accuracy expresses the percentage of possible correct decisions made when
classifying cases employing knowledge P .

Class Rough Sets In this measure we use the quality of classification coeffi-
cient (ClassCoef). It is computed as:

For each instance t ∈ T it computes : ClassCoef(t) =
card (P (t))

card (T)
(2)

Where ClassCoef(t) is the relevance of the instance t; T is the training set;
card is the cardinality of a set; P is a set that contains the reducts and core;
and finally P (t) is the presence of t in the lower approximation.

The ClassCoef coefficient expresses the percentage of cases which can be
correctly classified employing the knowledge t. This coefficient has a range of
values between 0 to 1, where 0 and 1 mean that the instance classifies incorrectly
and correctly, respectively, the range of cases that belong to its class. The higher
the quality, the nearer to the outlier region.

4 Reduction Techniques

In this section, we present the competence model and the two approximations
techniques to reduce the case memory proposed in this paper: (1) Deletion tech-
niques; (2) Building techniques. All these reduction techniques are based on the
Rough Sets measures described in section 3.2. Each measure is a different point
of view of the coverage of each case in the case memory. Once we have the cover-
age measures, we decide to combine both approaches in order to achieve a better
competence and compact case memory using them.

The first part of this section describes the competence model in terms of our
environment and our coverage measures. The second part assumes a competence
model and defines two deletion techniques and two building techniques using this
model. The aim is to verify if the model is feasible in its foundations. Therefore,
we define the most simple building case memory technique, because we know in
advance that if the model does not assure a minimal competence, the building
technique will considerably degrade the competence.

4.1 Sort Out Case Memory techniques: Defining the model

First of all, we present the key concepts in categorising the cases in the sort
out case memory (see figure 1(a)). The coverage and reachability concepts are
modified, for our coverage coefficients and to our problem task, with regard
to B. Smyth and M. Keane [17]. However, we maintain as far as possible the
essence of the original ones. The coverage is computed using the Rough Sets
coefficients explained in section 3.2. On the other hand, the reachability in this
case is adapted to classification tasks.

Definition 6 (Coverage)
Let T = {t1, t2, ..., tn} be a training set of instances, ∀ ti ∈ T :
Coverage(ti)= AccurCoef(ti) ∨ ClassCoef(ti)

The coverage of a case is the accuracy and quality when it is used to solve
a target problem. The coverage is computed using the AccurCoef if it is 1 else
the ClassCoef .

Definition 7 (Reachability)
Let T = {t1, t2, ..., tn} be a training set of instances, ∀ ti ∈ T :

Reachability(ti) =

{

class (ti) if it is a classification task
adaptable(ti, T) if it is not a classification task

(3)

The original definition is maintained and extended to classification tasks. The
reachability of a target problem is the set of cases that can be used to provide
its solution.

Definition 8 (Coverage group)
Let T = {t1, t2, ..., tn} be a training set of instances and let S be a subset of
instances where S ∈ T . For all instances i and j in S:
CoverageGroup(S) = Coverage(i) = Coverage(j)

A coverage group (see figure 1(a)) is a set of cases from the case memory
where all the cases have the same coverage without taking into account the
class of each case. The coverage group shows space regions of our knowledge.
The bigger a coverage group, the higher outlier the set of cases. The lower the
coverage group, the higher an internal set of cases.

Definition 9 (Reachability group)
Let T = {t1, t2, ..., tn} be a training set of instances and let S be a subset of
instances where S ∈ T . For all instances i and j in S:
ReachabilityGroup(S) = Reachability(i) = Reachability(j)

A reachability group (see figure 1(a)) is the set of instances that can be
used to provide a solution for the target. The reachability group produce the
sort out of the case memory. However, a reachability group can contain different
coverage groups. Every coverage group shows the levels of information (border
line regions) in the reachability group.

Definition 10 (Master case)
Let S = {s1, s2, ..., sn} and T = {t1, t2, ..., tn} be two sets of instances, where S ∈
T . For each CoverageGroup(s) ∈ ReachabilityGroup(S) we have a:
MasterCase(t) = A selected case t from ReachabilityGroup(S) ∧ CoverageGroup(s)

Each coverage group contains a master case. Thus each reachability group
contains as many master cases as coverage groups. The master cases will de-
pend on the selection policies we use in our reduction techniques. These will be
explained in the following sections.

4.2 Sort Out Deletion Policies

The reader will notice that algorithm 1 SortOutCM treats all cases using the
same policy. The aim is to reduce as much as possible the number of cases in
the case memory, and to treat not selected cases as MasterCase as if they were
redundant or irrelevant cases. There is no difference between the outlier cases and

the internal ones. However, it is known that the outlier cases contribute greatly
to the competence of a system. The deletion of outliers reduces the competence
of a system.

CASE MEMORY

REACHABILITY
GROUP 1

REACHABILITY
GROUP 2

REACHABILITY
GROUP 3

REACHABILITY
GROUP 4

COVERAGE
GROUPS Sort Out Model

(a) Sort Out Case Memory

Sort Out
Model

SO

SO
I

SOM

SO
M

I

(b) Sort Out Techniques

Fig. 1. Figure (a) describes the distribution of a case base for a four classes example
using the sort out model and figure (b) describes the behaviour of each Sort Out tech-
nique for the previous example, where a ◦ represents a deleted case, • a MasterCase,
and � a mean MasterCase.

This idea promotes a modification of the previous policy. We prefer to main-
tain or even improve the competence, selecting a fewer number of cases to be
deleted from the case memory. The aim is twofold: first, to maintain the com-
petence; second to improve utility of our case memory maintaining its diversity.
Thus, an extension of the previous algorithm is algorithm 2 SortOutInternalCM.

Algorithm 1 SortOutCM

SortOutCM (CaseMemory T)
1. Sort out each instance t ∈ T in its corresponding ReachabilityGroup(S)
2. Order decremented each ReachabilityGroup(S) by CoverageGroup(s) ∈

ReachabilityGroup(S)
3. for each ReachabilityGroup(S)
4. for each CoverageGroup(s) ∈ ReachabilityGroup(S)
5. Select the first instance as a MasterCase(t) to maintain in T

6. Delete the rest of instances from CaseMemory T in the CoverageGroup(s)
7. end for

8. end for

9. return CaseMemory T

This algorithm 2 modifies only the internal CoverageGroups and maintains
all the cases present in an outlier CoverageGroup. Therefore, the selection pro-
cess in this algorithm uses a less restrictive policy. The outlier cases are iso-
lated cases that no other case but itself can solve. Thus, it is important to
maintain them because a MasterCase can not be a good representative of the
CoverageGroup. In this case, each case in a outlier CoverageGroup is an iso-
lated space region of each class. It could be possible to find an outlier coverage
group whose MasterCase could be a good representative MasterCase, but this
part involves further work.

Algorithm 2 SortOutInternalCM

SortOutInternalCM (CaseMemory T)
1. Sort out each instance t ∈ T in its corresponding ReachabilityGroup(S)
2. Order decremented each ReachabilityGroup(S) by CoverageGroup(s) ∈

ReachabilityGroup(S)
3. for each ReachabilityGroup(S)
4. for each CoverageGroup(s) ∈ ReachabilityGroup(S)
5. Select the first instance as a MasterCase(t)
6. if Coverage(t) 6= 1.0, Delete the rest of instances from T in the CoverageGroup(s)
7. elseif Coverage(t) = 1.0

Select the rest of instances as a MasterCase(t) to maintain in T

8. endif

9. end for

10. end for

11. return CaseMemory T

4.3 Sort Out Building policies

Deletion techniques prompt a question: What is the reason for selecting the first
case as a MasterCase? Actually, there is no specific reason but the implemen-
tation. The sort out case memory has all the cases ordered by their coverage
and reachability, but when two cases have the same coverage, then the order of
the initial case memory is maintained. However, this answer suggests new ques-
tions: Could it be possible to build a new case memory based on the original
one? Could the sort out case memory be a model that guarantees a minimal
competence?

The last question focuses on the assumption that the sort out case memory
taken as a model itself enables the CBR system to maintain the competence.
Therefore if we apply a building policy, which used without the model will surely
decrease the competence, the model has to maintain it.

This section explains the modificacions in the previous algorithms in order to
build new case memories using the coverage, the reachability and on the initial
case memory. In order to test the reliability of this option, we use a simple policy.
Algorithm 3 called SortOutMeanCM shows the modifications.

The SortOutMeanCM creates a new case for each ReachabilityGroup using
all the cases that belong to the same CoverageGroup, computing the mean
value for each attribute of these cases. This policy is based on gravity pointers.

Algorithm 3 SortOutMeanCM

SortOutMeanCM (CaseMemory T)
1. Sort out each instance t ∈ T in its corresponding ReachabilityGroup(S)
2. Order decremented each ReachabilityGroup(S) by CoverageGroup(s) ∈

ReachabilityGroup(S)
3. for each ReachabilityGroup(S)
4. for each CoverageGroup(s) ∈ ReachabilityGroup(S)
5. for each instance present in the CoverageGroup(s) computes the mean value of each

attribute a as:

∑

F

i=1
ai

card (cases in CoverageGroup(s))
6. end for

7. Delete all the instances from CaseMemory T present in CoverageGroup(s)
8. Add computed Mean instance t in T with the same Coverage(s) and Reachability(S)
9. end for

10. end for

11. return CaseMemory T

Initially the selection of gravity pointers is not a good policy. However, if the
model produces a good distribution of cases, the competence will be maintained.

This algorithm inherits the same problem as the initial deletion algorithm:
it treats the outlier cases the same as the internal cases. The case memory
generated is a consequence of the previous data and the coefficients extracted
using Rough Sets, which also uses the original case memory. Therefore, we mod-
ify the previous algorithm to select the set of cases that belong to an internal
CoverageGroup. The algorithm 4 SortOutMeanInternalCM maintains the out-
lier cases without changing their content.

Algorithm 4 SortOutMeanInternalCM

SortOutMeanInternalCM (casememory T)
1. Sort out each instance t ∈ T in its corresponding

ReachabilityGroup(S)
2. Order decremented each ReachabilityGroup(S) by CoverageGroup(s) ∈

ReachabilityGroup(S)
3. for each ReachabilityGroup(S)
4. for each CoverageGroup(s) ∈ ReachabilityGroup(S)
5. Select the first instance as a MasterCase(t)
6. if Coverage(t) 6= 1.0
7. for each instance present in the CoverageGroup(s) computes the mean value of each

attribute a as:

∑

F

i=1
ai

card (cases in CoverageGroup(s))
8. Delete MasterCase(t)
9. Delete all the instances from CaseMemory T present in CoverageGroup(s)

10. Add computed Mean instance t in T with the same Coverage(s) and Reachability(S)
11. elseif Coverage(t) = 1.0 Select the rest of instances of the CoverageGroup(s) as a

MasterCase(t)
12. endif

13. end for

14. end for

15. return CaseMemory T

Both methods (algorithms 3 and 4) contain the same number of cases as
the deletion techniques (algorithms 1 and 2). The only difference between them
are the sources of their instances. Deletion policies use the original case memory.
However, building policies modify the original case memory to construct or build
a new compact competence case memory generating new MasterCases. Figure
1(b) shows the behaviour of each algorithm when applied to a case base.

5 Experimental study

This section is structured as follows. First, we describe the testbed used in the
empirical study. Then, we discuss the results obtained using the reduction tech-
niques based on Rough Sets. We compare the results obtained to CBR system
working with the original case memory. Finally, we also compare the results with
some related learning systems.

5.1 Testbed

In order to evaluate the performance rate, we use ten datasets. These datasets
can be grouped in two ways: public and private. The datasets and their character-
istics are listed in table 1. Public datasets are obtained from the UCI repository
[8]. They are: breast cancer Wisconsin (Breast-Wisconsin), Glass, Ionosphere,
Iris, Sonar and Vehicle. Private datasets come from our own repository. They
deal with diagnosis of breast cancer and synthetic datasets. Datasets related to
diagnosis are Biopsy and Mammogram. Biopsy [4] is the result of digitally pro-
cessed biopsy images, whereas Mammogram consists in detecting breast cancer
using the microcalcifications (µCa) present in a mammogram [5]. In Mammo-
gram each example contains the description of several µCa present in the image;
in other words, the input information used is a set of real valued matrices. We
also use two synthetic datasets to tune up the learning algorithms, because we
knew their solutions in advance. MX11 is the eleven input multiplexer. TAO-grid
is a dataset obtained from sampling the TAO figure using a grid [7].

These datasets were chosen in order to provide a wide variety of application
areas, sizes, combinations of feature types, and difficulty as measured by the
accuracy achieved on them by current algorithms. The choice was also made
with the goal of having enough data points to extract conclusions.

Table 1. Datasets and their characteristics used in the empirical study.

Dataset Ref. Samples Numeric feat. Symbolic feat. Classes Inconsistent

1 Biopsy BI 1027 24 - 2 Yes
2 Breast-Wisconsin BC 699 9 - 2 Yes
3 Glass GL 214 9 - 6 No
4 Ionosphere IO 351 34 - 2 No
5 Iris IR 150 4 - 3 No
6 Mammogram MA 216 23 - 2 Yes
7 MX11 MX 2048 - 11 2 No
8 Sonar SO 208 60 - 2 No
9 TAO-Grid TG 1888 2 - 2 No
10 Vehicle VE 846 18 - 4 No

The study described in this paper was carried out in the context of BAS-
TIAN, a case-BAsed SysTem In clAssificatioN. BASTIAN has been developed
in JAVA, for details see [13]. All techniques were run using the same set of pa-
rameters for all datasets. The configuration of BASTIAN platform for this paper
is set as follows. It uses a 1-Nearest Neighbour Algorithm. The case memory is
represented as a list of cases. Each case contains the set of attributes, its class

and the AccurCoef and ClassCoef coefficients. Our goal is to test the reliability
and feasibility of the reduction techniques. Therefore, we have not focused on
the case representation used by the system. The retain phase does not store any
new case in the case memory, so the CBR system only contains the initial case
memory. Finally, no weighting method is used in this paper in order to test the
reliability of our reduction techniques. Further work will consist of testing the
influence of these methods in conjunction with weighting methods.

The percentage of correct classifications has been averaged over stratified
ten-fold cross-validation runs. We analyse the significance of the performance
using paired t-test on these runs.

5.2 Experimental analysis of the reduction techniques

The experimental results for each dataset using CBR system and Rough Sets
reduction techniques (SortOutCM (SO), SortOutInternalCM (SOI), SortOut-
MeanCM (SOM) and SortOutMeanInternalCM (SOMI)) are shown in table 2.

Table 2. Mean percentage of correct classifications (%PA) and mean storage size
(%CM). Two-sided paired t-test (p = 0.1) is performed, where a • and ◦ stand for a
significant improvement or degradation of our CBR related to the reduction technique
compared. Bold font indicates the best prediction accuracy.

Ref. CBR SO SOI SOM SOMI

BI
BC
GL
IO
IR
MA
MX
SO
TG
VE

%PA %CM
83.15 100.0
96.28 100.0
72.42 100.0
90.59 100.0
96.0 100.0
64.81 100.0
78.61 100.0
84.61 100.0
95.76 100.0
67.37 100.0

%PA %CM
75.17◦ 0.94
95.59 3.17
63.64 18.11
83.48◦ 4.71
91.33◦ 12.44
59.75 7.98
66.74◦ 0.1
68.90◦ 4.45
89.60◦ 1.37
56.79◦ 3.68

%PA %CM
83.75 88.74
95.85 29.42
64.48 37.89
91.16 50.68
91.33◦ 13.18
58.04 25.36
78.61 99.9
86.42• 65.15
89.66◦ 1.37
69.70 68.33

%PA %CM
79.96◦ 0.94
95.41 3.17
65.89 18.11
88.02 4.71
94.0 12.44
59.74 7.98
66.35◦ 0.1
73.38◦ 4.45
91.31◦ 1.37
58.46◦ 3.68

%PA %CM
83.75 88.74
95.99 29.42
64.37 37.89
90.03 50.68
93.33 13.18
57.19 25.36
78.61 99.9
87.50• 65.15
91.31◦ 1.37
69.95 68.33

The aim of our reduction techniques is to reduce the case memory while main-
taining the competence of the system. This priority guides our sort out reduction
techniques based on Rough Sets competence model. Following this criterion, the
results related to SortOutCM and SortOutMeanCM are not good because, as
predicted in their description, the deletion or building of outlier cases produce a
competence loss. However, the sort out internal techniques have a different be-
haviour. For example, the Sonar dataset obtains a good competence as well as
it reduces the case memory, in both approximations: SortOutInternalCM (SOI)
and SortOutMeanInternalCM (SOMI). Thus, we denote that the sort out case
memories need to maintain the outlier cases present in the original case memory.

Comparing deletion versus building reduction techniques, we conclude that
both techniques obtain similar competence on all datasets. However, building
methods obtain on average the best competence. These results influence our
further work because the gravity points policy chosen was the most simple in
order to test the reliability of these techniques and the feasibility of the sort out
case memories.

To sum up, the results obtained using the sort out reduction techniques,
deleting or building policies, on average maintain the competence of the system
while reducing as much as possible the case memory. There are some datasets
that present competence loss whereas the reduction increases. This occurs be-
cause some of the existing CoverageGroups must be deleted and not selected to
build or maintain a MasterCase, because the coverage of the group is so near
the outlier space regions that its maintenance prevents the case base reasoning
system from separating correctly between different classes. This fact can be ob-
served in some datasets, for example Mammogram and Glass, where the results
obtained using whatever method are similar. The solution of this weak point is
part of our further work.

Table 3. Mean percentage of correct classifications (%PA) and mean storage size
(%CM). Two-sided paired t-test (p = 0.1) is performed, where a • and ◦ stand for a
significant improvement or degradation of our SOMI approach related to the system
compared. Bold font indicates the best prediction accuracy.

Ref. SOMI SOI CBR IB2 IB3 IB4

BI
BC
GL
IO
IR
MA
MX
SO
TG
VE

%PA %CM
83.75 88.74
95.99 29.42
64.37 37.89
90.03 50.68
93.33 13.18
57.19 25.36
78.61 99.9
87.50 65.15
91.31 1.37
69.95 68.33

%PA %CM
83.75 88.74
95.85 29.42
64.48 37.89
91.16 50.68
91.33 13.18
58.04 25.36
78.61 99.9
86.42 65.15
89.66• 1.37
69.70 68.33

%PA %CM
83.15 100.0
96.28 100.0
72.42 100.0
90.59 100.0
96.0 100.0
64.81 100.0
78.61 100.0
84.61 100.0
95.76◦ 100.0
67.37 100.0

%PA %CM
75.77• 26.65
91.86• 8.18
62.53 42.99
86.61 15.82
93.98 9.85
66.19 42.28
87.07◦ 18.99
80.72 27.30
94.87◦ 7.38
65.46• 40.01

%PA %CM
78.51• 13.62
94.98 2.86
65.56 44.34
90.62 13.89
91.33 11.26
60.16 14.30
81.59 15.76
62.11• 22.70
95.04◦ 5.63
63.21• 33.36

%PA %CM
76.46• 12.82
94.86 2.65
66.40 39.40
90.35 15.44
96.66 12.00
60.03 21.55
81.34 15.84
63.06• 22.92
93.96◦ 5.79
63.68• 31.66

Sort out internal techniques (SOI and SOMI) obtain on average a higher
generalisation on accuracy than IBL, as shown in table 3. The performance of
IBL algorithms decline, in almost all datasets (e.g. Breast-Wisconsin, Biopsy),
when case memory is reduced. SOMI and SOI obtains on average higher pre-
diction accuracy than IB2, IB3 and IB4. On the other hand, the mean storage
size obtained is higher in our reduction techniques than those obtained in IBL
schemes.

Finishing the experimental study, we also run several well-known reduction
schemes on the previous data sets. The reduction algorithms are: CNN, SNN,
DEL, ENN, RENN, DROP1, DROP2, DROP3, DROP4 and DROP5 (a complete
explanation of them can be found in [21]). We use the same datasets described
above but with different ten-fold cross validation sets. We want to analyse the re-
sults obtained using the proposed SortOutMeanInternalCM reduction technique
with those obtained by these reduction techniques. Tables 4 and 5 illustrate
the mean prediction accuracy and the mean storage size for all systems in all
datasets, respectively.

Table 4 shows the behaviour of our SortOutMeanInternalCM reduction tech-
nique in comparison with CNN, SNN, DEL, ENN and RENN techniques. SOMI
results are on average better than those obtained by the reduction techniques
studied. RENN improves the results of SortOutMeanInternalCM (SOMI) in

Table 4. Mean percentage of correct classifications (%PA) and mean storage size
(%CM). Two-sided paired t-test (p = 0.1) is performed, where a • and ◦ stand for a
significant improvement or degradation of our SOMI approach related to the system
compared. Bold font indicates the best prediction accuracy.

Ref. SOMI CNN SNN DEL ENN RENN

BI
BC
GL
IO
IR
MA
MX
SO
TG
VE

%PA %CM
83.75 88.74
95.99 29.42
64.37 37.89
90.03 50.68
93.33 13.18
57.19 25.36
78.61 99.9
87.50 65.15
91.31 1.37
69.95 68.33

%PA %CM
79.57• 17.82
95.57 5.87
67.64◦ 24.97
88.89 9.94
96.00 14.00
61.04 25.06
89.01◦ 37.17
83.26 23.45
94.39◦ 7.15
69.74 23.30

%PA %CM
78.41• 14.51
95.42 3.72
67.73 20.51
85.75• 7.00
94.00 9.93
63.42 18.05
89.01◦ 37.15
80.38 20.52
94.76◦ 6.38
69.27 19.90

%PA %CM
82.79• 0.35
96.57 0.32
64.87 4.47
80.34• 1.01
96.00 2.52
62.53 1.03
68.99• 0.55
77.45• 1.12
87.66• 0.26
62.29• 2.55

%PA %CM
77.82• 16.52
95.28 3.61
68.23 19.32
88.31 7.79
91.33 8.59
63.85 21.66
85.05◦ 32.54
85.62 19.34
96.77◦ 3.75
66.91• 20.70

%PA %CM
81.03• 84.51
97.00◦ 96.34
68.66◦ 72.90
85.18• 86.39
96.00 94.44
65.32 66.92
99.80◦ 99.89
82.74 86.49
95.18◦ 96.51
68.67 74.56

some data sets (e.g. Breast-Wisconsin) but its reduction on the case memory
is lower than SOMI.

Table 5. Mean percentage of correct classifications (%PA) and mean storage size
(%CM). Two-sided paired t-test (p = 0.1) is performed, where a • and ◦ stand for a
significant improvement or degradation of our SOMI approach related to the system
compared. Bold font indicates best prediction accuracy.

Ref. SOMI DROP1 DROP2 DROP3 DROP4 DROP5

BI
BC
GL
IO
IR
MA
MX
SO
TG
VE

%PA %CM
83.75 88.74
95.99 29.42
64.37 37.89
90.03 50.68
93.33 13.18
57.19 25.36
78.61 99.9
87.50 65.15
91.31 1.37
69.95 68.33

%PA %CM
76.36• 26.84
93.28• 8.79
66.39 40.86
81.20• 23.04
91.33 12.44
61.60 42.69
87.94◦ 19.02
84.64 25.05
94.76◦ 8.03
64.66• 38.69

%PA %CM
76.95• 29.38
92.56• 8.35
69.57◦ 42.94
87.73 19.21
90.00 14.07
58.33 51.34
100.00◦ 98.37
87.07 28.26
95.23◦ 8.95
67.16 43.21

%PA %CM
77.34• 15.16
96.28 2.70
67.27 33.28
88.89 14.24
92.66 12.07
58.51 12.60
82.37◦ 17.10
76.57• 16.93
94.49◦ 6.76
66.21• 29.42

%PA %CM
76.16• 28.11
95.00 4.37
69.18◦ 43.30
88.02 15.83
88.67• 7.93
58.29 50.77
86.52◦ 25.47
84.64 26.82
89.41• 2.18
68.21 43.85

%PA %CM
76.17• 27.03
93.28• 8.79
65.02 40.65
81.20• 23.04
91.33 12.44
61.60 42.64
86.52◦ 18.89
84.64 25.11
94.76◦ 8.03
64.66• 38.69

The results in table 5 report that SortOutMeanInternalCM obtains a bal-
anced behaviour between competence and size. On the other hand, there are
some reduction techniques that obtain best competence for some data sets mak-
ing a smaller reduction of the case memory size. Sort out technique shows better
competence for some data sets (e.g. Biopsy, Breast-w, Vehicle), although its
results are also worse in others (e.g. MX11).

All the experiments (tables 3, 4 and 5) lead to some interesting observa-
tions. First, it is worth noting that the individual SortOutInternalCM (SOI)
and SortOutMeanInternalCM (SOMI) work correctly in all data sets, obtaining
better results using SOMI because the gravity pointer selection of MasterCases
is more representative than the first case of each CoverageGroup. Therefore, as
a second conclusion, we demonstrate the feasibility of the sort out case mem-
ories and the competence model. Finally, the results in all tables suggest that
all the reduction techniques work well in some, but not all, domains. This has

been termed the selective superiority problem [2]. Consequently, future work will
consist of improving the selection of MasterCases in order to enlarge the out-
lier cases from the internal ones to improve the overall competence in all the
domains.

6 Conclusions and further work

This paper presents a competence model defined using Rough Sets theory. Under
this competence model it introduces two different approaches to the reduction of
the case memory: the first one presents different deletion techniques; the second
one relies on building techniques. The aim of this paper was twofold: (1) to denote
that the deletion techniques of sort out case memories are reliable, and (2) to
reveal that the construction of case memories will be feasible using a competence
model and sort out case memories. Empirical studies show that these reduction
techniques produce a higher or equal generalisation accuracy on classification
tasks. We can conclude that the deletion policies could be improved in some
facets and the building policies are a promising area to study. Our further work
will be focused on these observations. Firstly, we can modify the selection of
MasterCases in order to enlarge the distance from internal cases to outlier
ones and to obtain a higher competence. Secondly, the building policies have to
avoid some gravity points. Therefore, it could be interesting to study different
methods to build the case memory. Finally, we want to analyse the influence of
the weighting methods and similarity functions in these reduction techniques.

Acknowledgements

This work is supported by the Ministerio de Sanidad y Consumo, Instituto de
Salud Carlos III, Fondo de Investigación Sanitaria of Spain, Grant No. 00/0033-
02. We wish to thank Enginyeria i Arquitectura La Salle (Ramon Llull Univer-
sity) for their support to our Research Group in Intelligent Systems. We also
wish to thank D. Aha for providing the IBL code as well as D. Randall Wilson
and Tony R. Martinez who provided the code of the other reduction techniques.
Finally, we wish to thank the anonymous reviewers for their useful comments.

References

1. D. Aha and D. Kibler. Instance-based learning algorithms. Machine Learning,
Vol. 6, pages 37–66, 1991.

2. C.E. Brodley. Addressing the selective superiority problem: Automatic algo-
rithm/model class selection. In Proceedings of the 10th International Conference
on Machine Learning, pages 17–24, 1993.

3. P. Domingos. Context-sensitive feature selection for lazy learners. In AI Review,
volume 11, pages 227–253, 1997.

4. J.M. Garrell, E. Golobardes, E. Bernadó, and X. Llorà. Automatic diagnosis with
Genetic Algorithms and Case-Based Reasoning. 13:367–362, October 1999. Else-
vier Science Ltd., ISSN 0954-1810.

5. E. Golobardes, X. Llorà, M. Salamó, and J. Mart́ı. Computer Aided Diagnosis
with Case-Based Reasoning and Genetic Algorithms. Knowledge-Based Systems,
(15):45–52, 2002.

6. D. Leake and D. Wilson. Remembering Why to Remember: Performance-Guided
Case-Base Maintenance. In Proceedings of the Fifth European Workshop on Case-
Based Reasoning, pages 161–172, 2000.

7. X. Llorà and J.M. Garrell. Inducing Partially-Defined Instances with Evolution-
ary Algorithms. In Proceedings of the 18th International Conference on Machine
Learning (ICML’2001), pages 337–344. Morgan Kaufmann Publishers, 2001.

8. C. J. Merz and P. M. Murphy. UCI Repository for Machine Learning Data-Bases
[http://www.ics.uci.edu/∼mlearn/MLRepository.html]. Irvine, CA: University of
California, Department of Information and Computer Science, 1998.

9. Z. Pawlak. Rough Sets. In International Journal of Information and Computer
Science, volume 11, 1982.

10. L. Portinale, P. Torasso, and P. Tavano. Speed-up, quality and competence in
multi-modal reasoning. In Proceedings of the Third International Conference on
Case-Based Reasoning, pages 303–317, 1999.

11. T. Reinartz and I. Iglezakis. Review and Restore for Case-Base Maintenance.
Computational Intelligence, 17(2):214–234, 2001.

12. C.K. Riesbeck and R.C. Schank. Inside Case-Based Reasoning. Lawrence Erlbaum
Associates, Hillsdale, NJ, US, 1989.

13. M. Salamó and E. Golobardes. BASTIAN: Incorporating the Rough Sets theory
into a Case-Based Classifier System. In Butllet́ı de l’acia: III Congrés Català
d’Intel·ligència Artificial (CCIA’00), pages 284–293, Barcelona, Spain, October
2000.

14. M. Salamó and E. Golobardes. Rough sets reduction techniques for case-based
reasoning. In Proceedings 4th. International Conference on Case-Based Reasoning,
ICCBR 2001, pages 467–482, Vancouver, BC, Canada, 2001.

15. M. Salamó, E. Golobardes, D. Vernet, and M. Nieto. Weighting methods for a
Case-Based Classifier System. In LEARNING’00, Madrid, Spain, October 2000.
IEEE.

16. S. Salzberg. A nearest hyperrectangle learning method. Machine Learning, 6:277–
309, 1991.

17. B. Smyth and M. Keane. Remembering to forget: A competence-preserving case
deletion policy for case-based reasoning systems. In Proceedings of the Thirteen
International Joint Conference on Artificial Intelligence, pages 377–382, 1995.

18. B. Smyth and E. McKenna. Building compact competent case-bases. In Proceedings
of the Third International Conference on Case-Based Reasoning, pages 329–342,
1999.

19. B. Smyth and E. McKenna. Competence Models and the maintenance problem.
Computational Intelligence, 17(2):235–249, 2001.

20. D.C. Wilson and D.B. Leake. Maintaining Case-Based Reasoners:Dimensions and
Directions. Computational Intelligence, 17(2):196–213, 2001.

21. D.R. Wilson and T.R. Martinez. Reduction techniques for Instance-Based Learning
Algorithms. Machine Learning, 38, pages 257–286, 2000.

22. Q. Yang and J. Wu. Keep it Simple: A Case-Base Maintenance Policy Based on
Clustering and Information Theory. In Proc. of the Canadian AI Conference, pages
102–114, 2000.

23. J. Zhu and Q. Yang. Remembering to add: Competence-preserving case-addition
policies for case base maintenance. In Proceedings of the Fifteenth International
Joint Conference on Artificial Intelligence, volume 1, pages 234–239, 1999.

