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Abstract

Case memory maintenance in a Case-Based Reasoning sys-
tem is important for two main reasons: (1) to control the case
memory size; (2) to reduce irrelevant and redundant instances
that may produce inconsistencies in the Case-Based Reason-
ing system. In this paper we present two approaches based on
deletion policies to the maintenance of case memories. The
foundations of both approaches are the Rough Sets Theory,
but each one applies a different policy to delete or maintain
cases. The main purpose of these methods is to maintain the
competence of the system and reduce, as much as possible,
the size of the case memory. Experiments using different do-
mains, most of them from the UCI repository, show that the
reduction techniques maintain the competence obtained by
the original case memory. The results obtained are compared
with those obtained using well-known reduction techniques.

Introduction and Motivation
Case-Based Reasoning (CBR) systems solve problems by
reusing the solutions to similar problems stored as cases in
a case memory (Riesbeck & Schank 1989) (also known as
case-base). However, these systems are sensitive to the cases
present in the case memory and often its good competence
depends on the significance of the cases stored.

The aim of this paper is twofold: (1) to remove noisy
cases and (2) to achieve a good generalisation accuracy.
This paper presents two hybrid deletion techniques based
on Rough Sets Theory. In a previous paper, we presented
two reduction techniques based on these measures (Salamó
& Golobardes 2001). This paper continues the initial ap-
proaches presented in the previous one, defining a compe-
tence model based on Rough sets and presenting new hy-
brid approaches to improve the weak points. The conclu-
sion of the previous work was that the proposed reduction
techniques were complementary, so hybrid methods will
achieve a higher reduction and better competence case mem-
ories. Thus, in this paper, we present two hybrid approaches:
Accuracy-Classification Case Memory (ACCM) and Nega-
tive Accuracy-Classification Case Memory (NACCM). Both
reduction techniques have been introduced into our Case-
Based Classifier System called BASTIAN.
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The paper is organized as follows. Next section intro-
duces related work. In the next section, we explain the foun-
dations of Rough Sets Theory used in our reduction tech-
niques. After this section we detail the proposed reduction
techniques based on deletion policies, continuing in next
section describing the testbed of the experiments and the re-
sults obtained. Finally, in the last section, we present the
conclusions and further work.

Related Work
Many researchers have addressed the problem of case mem-
ory reduction (Wilson & Martinez 2000; Wilson & Leake
2001) and different approaches have been proposed. One
kind of approaches are related to Instance Based Learn-
ing algorithms (IBL) (Aha & Kibler 1991). Another ap-
proach to instance pruning systems are those that take into
account the order in which instances are removed (DROP1
to DROP5)(Wilson & Martinez 2000). The most similar
methods to our approaches, some of them inspired us, are
those focused on limiting the overall competence loss of the
case memory through case deletion. Where competence is
the range of target problems that can be successfully solved
(Smyth & Keane 1995). Strategies have been developed for
controlling case memory growth. Several methods such as
competence-preserving deletion (Smyth & Keane 1995) and
failure-driven deletion (Portinale, Torasso, & Tavano 1999),
as well as for generating compact case memories through
competence-based case addition (Smyth & McKenna 1999).
Leake and Wilson (Leake & Wilson 2000) examine the ben-
efits of using fine-grained performance metrics to directly
guide case addition or deletion. These methods are specially
important for task domains with non-uniform problem dis-
tributions. The maintenance integrated with the overall CBR
process was presented in (Reinartz & Iglezakis 2001).

Rough Sets theory
The rough sets theory defined by Pawlak, which is well de-
tailed in (Pawlak 1982), is one of the techniques for the
identification and recognition of common patterns in data,
especially in the case of uncertain and incomplete data. The
mathematical foundations of this method are based on the
set approximation of the classification space.

Within the framework of rough sets the termclassification
describes the subdivision of the universal set of all possible



categories into a number of distinguishable categories called
elementary sets. Each elementary set can be regarded as a
rule describing the object of the classification. Each object
is then classified using the elementary set of features which
can not be split up any further, although other elementary
sets of features may exist. In the rough set model the classi-
fication knowledge (the model of the data) is represented by
an equivalence relationIND defined on a certain universe
of objects (cases)U and relations (attributes)R. IND de-
fines a partition onU . The pair of the universe objectsU and
the associated equivalence relationIND forms an approx-
imation space. The approximation space gives an approxi-
mate description of any subsetX of U . Two approximations
are generated by the available data about the elements of the
setX, called the lower and upper approximations (see figure
1). The lower approximationRX is the set of all elements
of U which cancertainlybe classified as elements ofX in
knowledgeR. The upper approximationRX is the set of
elements ofU which canpossiblybe classified as elements
of X, employing knowledgeR.������������������������������������������X

R(X)
R(X)

Figure 1: The lower and upper approximations of a set X.

In order to discover patterns of data we should look for
similarities and differences of values of the relationR. So
we have to search for combinations of attributes with which
we can discern objects and object classes from each other.
The minimal set of attributes that forms such a combination
is called areduct. Reductsare the most concise way in which
we can discern objects classes and which suffices to define
all the concepts occurring in the knowledge.

Measures of relevance based on Rough Sets
The reduced space, composed by the set ofreducts(P ) and
core, is used to extract the relevance of each case.

Definition 1 (Accuracy Rough Sets)
This measure computes theAccuracycoefficient (Accur-
Coef) of each caset in the knowledge base (case memory)
T as:

For each instance t ∈ T it computes :

AccurCoef(t) =
card ( P (t))

card ( P (t))

(1)

WhereAccurCoef(t) is the relevance of the instancet;
T is the training set;card is the cardinality of one set;P is
the set that contains thereductsobtained from the original
data; and finallyP (t) andP (t) are the presence oft in the
lower and upper approximations, respectively.

The accuracy measure expresses the degree of complete-
ness of our knowledge about the setP . It is the percentage of
possible correct decisions when classifying cases employing
t. We use the accuracy coefficient to explain if an instance
t is on an internal region or on a outlier region. The values
of the measure when there exists only one caset as input is
limited to {0,1}. When the value is 0.0 it means an internal
case, and a value of 1.0 means an outlier case. Inexactness
of a set of cases is due to the existence of a borderline re-
gion. The greater a borderline region of a set (greaterP ),
the lower the accuracy of the set.

Definition 2 (Class Rough Sets)
In this measure we use thequality of classificationcoeffi-
cient (ClassCoef). It is computed as:

For each instance t ∈ T it computes :

µ(t) =
card ( P (t)) ∪ card ( P (−t))

card ( all instances)

(2)

WhereClassCoef(t) is the relevance of the instancet;
T is the training set;−t is T − t set;card is the cardinality
of a set;P is a set that contains the reducts; and finallyP (t)
is the presence oft in the lower approximation.

The ClassCoef coefficient expresses the percentage
of cases which can be correctly classified employing the
knowledget. This coefficient has a range of real values in
the interval [0.0, 1.0]. Where 0.0 and 1.0 mean that the in-
stance classifies incorrectly and correctly respectively,the
range of cases that belong to its class. The higher the qual-
ity, the nearer to the outlier region.

Reduction Techniques
This section presents two hybrid reduction techniques based
on the Rough Sets measures described in the previous sec-
tion. The difference between them is to facilitate the us-
age of the coverage when selecting the cases that are deleted
from the original case memory.

Categorisation model of case memory
The aim of these reduction techniques is to take advantage
of the benefits of each coverage measure (AccurCoef and
ClassCoef ). In order to make understanding the algo-
rithms and the environment of application easier, we intro-
duce different concepts and definitions.

We use these techniques on classification tasks. For this
reason, we modify some definitions. The distribution of the
case memory is done using a new categorisation in terms of
their coverageandreachability. Thecoverageandreacha-
bility concepts are modified with regard to (Smyth & Keane
1995). However, we maintain as far as possible the essence
of the original ones, but it is modified to our coverage mea-
sures (explained previously) and to our problem task.

Definition 3 (Coverage)
Let T = {t1, t2, ..., tn} be a training set of instances,∀ ti ∈
T :
Coverage(ti)= AccurCoef(ti) ⊕ ClassCoef(ti)



The⊕ operation is the logical sum of both values. When
AccurCoef value is 1, theCoverage is 1.0 but when it is 0
value, theCoverage is ClassCoef value.

Definition 4 (Reachability)
Let T = {t1, t2, ..., tn} be a training set of instances andCt

be a classification task,∀ti ∈ T :

Reachability(ti) =

{

Class (ti) if it is a Ct

Adaptable(t′, ti) if it is not a Ct

(3)
Whereclass(ti) is the class that classifies caseti and t’∈ T.

Accuracy-Classification Case Memory (ACCM)
Once we have computed the AccurCoef and ClassCoef, we
apply for the original case memory the algorithm 1 to select
the cases that have to be deleted from the case memory. The
cases not selected are maintained in the case memory. In a
graphical manner, the process is represented in figure 2.

The main idea of this reduction technique is to benefit
from the advantages of both measures separately. Firstly,
it maintains all the cases that are outliers, so cases with an
Coverage = 1.0 value are not removed. This assumption is
made because if a case is isolated, there is no other case that
can solve it. Secondly, the cases selected are those that are
nearest to the outliers and other cases nearby can be used to
solve it because their coverage is higher.

Algorithm 1 ACCM
1. SelectCasesACCM (CaseMemoryT )

2. confidenceLevel = 1.0 and freeLevel = ConstantTuned(set at 0.01)

3. select all instancest ∈ T asSelectCase(t) if t satisfies:

coverage(t) ≥ confidenceLevel

4. while not ∃ at least a t in SelectCase for each class c that

reachability(t) = c

5. confidenceLevel = confidenceLevel - freeLevel

6. select all instancest ∈ T asSelectCase(t) if t satisfies:

coverage(t) ≥ confidenceLevel

7. end while

8. Delete from CaseMemory the set of cases selected asSelectCase

9. return CaseMemoryT

1.0 0.0

outliers internals

range of cases selected to delete

Figure 2: Graphical description of ACCM process.

Negative Accuracy-Classification Case Memory -
(NACCM)
This reduction technique is based on the previous one, doing
the complementary process as shown in figure 3. The moti-
vation for this technique is to select a wider range of cases
than the ACCM technique. The main process in ACCM is to

select all the cases that are near to the outliers and maintain
those cases that are completely internal and do not have any
cases whose competence are contained. In NACCM the pro-
cess is to select cases to be maintained in the case memory
until all the classes contain almost one case. The NACCM
algorithm is divided in two steps:Step 1convert coverage
measure of each case to its negation measure in order to
let us modify the selection process from internal to outlier
points.Step 2use algorithm 2 that describes the SelectCas-
esNACCM process.

Algorithm 2 NACCM
1. SelectCasesNACCM (CaseMemoryT )

2. confidenceLevel = 1.0 and freeLevel = ConstantTuned(set at 0.01)

3. select all instancest ∈ T asSelectCase(t) if t satisfies:

coverage(t) ≥ confidenceLevel

4. while not ∃ at least a t in SelectCase for each class c that

reachability(t) = c

5. confidenceLevel = confidenceLevel - freeLevel

6. select all instancest ∈ T asSelectCase(t) if t satisfies:

coverage(t) ≥ confidenceLevel

7. end while

8. Maintain in CaseMemory the set of cases selected asSelectCase, those cases

not selected are deleted from CaseMemory

9. return CaseMemoryT

Thus, the selection of cases starts from internal cases to
outlier ones. However, this algorithm maintains the selected
cases. The aim is to maintain the minimal set of cases in the
case memory. The behaviour of this reduction technique is
similar to ACCM because it removes also cases near the out-
lier region but NACCM allows fewer cases to be maintained,
thus obtaining a greater reduction.

1.0 0.0

ACCMoutliers internals

range of cases selected to delete
0.0 1.0

NACCMoutliers internals

Negation of values

range of cases selected to maintain

Figure 3: Graphical description of NACCM process.

Experimental study
This section describes the testbed used in the experimental
study and discuss the results obtained from our reduction
techniques. Finally, we also compare our results with some
related reduction techniques.

Testbed
In order to evaluate the performance rate, we use ten
datasets. Datasets can be grouped in two ways:public
and private (details in table 1). Public datasetsare ob-
tained from the UCI repository (Merz & Murphy 1998).
They are:Breast Cancer Wisconsin (Breast-w), Glass, Iono-
sphere, Iris, Sonar and Vehicle. Private datasets(Golo-
bardeset al. 2002) come from our own repository. They deal
with diagnosisof breast cancer (BiopsyandMammogram).
Syntheticdatasets (MX11is the eleven input multiplexer and



TAO-grid is obtained from sampling the TAO figure using a
grid). These datasets were chosen in order to provide a wide
variety of application areas, sizes, combinations of feature
types, and difficulty as measured by the accuracy achieved
on them by current algorithms. The choice was also made
with the goal of having enough data points to extract con-
clusions.

Table 1: Datasets and their characteristics used in the empir-
ical study.

Dataset Ref. Samples Num. feat. Sym. feat. Classes Inconsistent

1 Biopsy BI 1027 24 - 2 Yes
2 Breast-w BC 699 9 - 2 Yes
3 Glass GL 214 9 - 6 No
4 Ionosphere IO 351 34 - 2 No
5 Iris IR 150 4 - 3 No
6 Mammogram MA 216 23 - 2 Yes
7 MX11 MX 2048 - 11 2 No
8 Sonar SO 208 60 - 2 No
9 TAO-Grid TG 1888 2 - 2 No
10 Vehicle VE 846 18 - 4 No

The study described in this paper was carried out
in the context of BASTIAN, acase-BAsed SysTem In
clAssificatioN. All techniques were run using the same set
of parameters for all datasets: a 1-Nearest Neighbour Algo-
rithm that uses a list of cases to represent the case memory.
Each case contains the set of attributes, the class, the Ac-
curCoef and ClassCoef coefficients. Our goal in this paper
is to reduce the case memory. For this reason, we have not
focused on the representation used by the system. The re-
tain phase does not store any new case in the case memory.
Thus, the learning process is limited to the reduced training
set. Finally, weighting methods are not used in this paper
in order to test the reliability of our reduction techniques.
Further work will consist of testing the influence of these
methods in conjunction with weighting methods.

The percentage of correct classifications has beenaver-
agedoverstratified ten-fold cross-validationruns, with their
corresponding standard deviations. To study the perfor-
mancewe use two-sided paired t-test (p = 0.1)on these
runs, where◦ and• stand for a significant improvement or
degradation of the reduction techniques related to the first
method of the table. Mean percentage of correct classifica-
tions is showed as%PA and mean storage size as%CM .
Bold font indicates the best prediction accuracy.

Experimental analysis of reduction techniques

The aim of our reduction techniques is to reduce the case
memory while maintaining the competence of the system.
This priority guides our deletion policies. That fact is de-
tected in the results. Table 2 shows the results for the IBL’s
algorithms and the Rough Sets reduction techniques. For
example, theVehicledataset obtains a good competence as
well as reducing the case memory, in both reduction tech-
niques. The results related to ACCM show competence
maintenance and improvement in some datasets, but the case
memory size has not been reduced too much. These results
show that ACCM is able to remove inconsistency and re-
dundant cases from the case memory, enabling to be im-
proved the competence. The NACCM technique shows,

as expected in its description due to a more restrictive be-
haviour, a higher reduction of the case memory. However,
the reduction in NACCM is not very large. The behaviour is
similar to ACCM. This is due to the fact that both reduction
techniques share the same foundations. The NACCM ob-
tains higher reduction while producing a competence loss,
although it is not a significant loss.

Table 2: Comparing Rough Sets reduction (ACCM,
NACCM) techniques to IBL schemes (Aha & Kibler 1991).

Ref. CBR ACCM NACCM IB2 IB3 IB4

BI
BC
GL
IO
IR
MA
MX
SO
TG
VE

%PA %CM
83.15 100.0
96.28100.0
72.42100.0
90.59100.0
96.0 100.0
64.81 100.0
78.61 100.0
84.61 100.0
95.76 100.0
67.37 100.0

%PA %CM
83.65 88.01
95.71 77.36
69.83 74.95
90.59 83.77
96.66 89.03
66.34 89.19
78.61 99.90
86.45◦ 71.71
96.13◦ 97.59
69.10◦ 72.35

%PA %CM
83.66 99.3
95.72 59.52
64.48 33.91
90.30 56.80
93.33 42.88
60.18 44.80
78.61 99.90
86.90◦ 78.24
90.25• 1.54
69.10◦ 72.35

%PA %CM
75.77• 26.65
91.86• 8.18
62.53• 42.99
86.61• 15.82
93.98 9.85
66.19 42.28
87.07◦ 18.99
80.72 27.30
94.87• 7.38
65.46 40.01

%PA %CM
78.51• 13.62
94.98 2.86
65.56• 44.34
90.62 13.89
91.33• 11.26
60.16 14.30
81.59 15.76
62.11• 22.70
95.04• 5.63
63.21• 33.36

%PA %CM
76.46• 12.82
94.86 2.65
66.40• 39.40
90.35 15.44
96.66 12.00
60.03 21.55
81.34 15.84
63.06• 22.92
93.96• 5.79
63.68• 31.66

In summary, the results obtained using ACCM and
NACCM maintain or even improve in a significance level
the competence while reducing the case memory.

Comparing rough sets reduction techniques to IBL,
ACCM and NACCM obtain on average a higher generali-
sation on competence than IBL, as can be seen in table 2.
The performance of IBL algorithms declines, in almost all
datasets (e.g.Breast-w, Biopsy), when case memory is re-
duced. CBR obtains on average higher prediction compe-
tence than IB2, IB3 and IB4. On the other hand, the mean
storage size obtained is higher in our reduction techniques
than those obtained using IBL schemes.

To finish the empirical study, we also run additional well-
known reduction schemes on the previous data sets. Table 3
compares ACCM to CNN, SNN, DEL, ENN, RENN. Table
4 compares ACCM to DROP1, DROP2, DROP3, DROP4
and DROP5 (a complete explanation of them can be found
in (Wilson & Martinez 2000)). We use the same datasets
described above but with different ten-fold cross validation
sets.

Table 3 shows that the results of ACCM are on average
better than those obtained by the reduction techniques stud-
ied. RENN improves the results of ACCM in some data sets
(e.g.Breast-w) but its reduction on the case memory is lower
than ACCM.

Table 3: Comparing ACCM technique to well known reduc-
tion techniques (Wilson & Martinez 2000).

Ref. ACCM CNN SNN DEL ENN RENN

BI
BC
GL
IO
IR
MA
MX
SO
TG
VE

%PA %CM
83.6588.01
95.71 77.36
69.8374.95
90.5983.77
96.6689.03
66.3489.19
78.61 99.90
86.4571.71
96.13 97.59
69.10 72.35

%PA %CM
79.57• 17.82
95.57 5.87
67.64 24.97
88.89• 9.94
96.00 14.00
61.04 25.06
89.01◦ 37.17
83.26 23.45
94.39• 7.15
69.74 23.30

%PA %CM
78.41• 14.51
95.42 3.72
67.73 20.51
85.75• 7.00
94.00• 9.93
63.42• 18.05
89.01◦ 37.15
80.38 20.52
94.76• 6.38
69.27 19.90

%PA %CM
82.79• 0.35
96.57◦ 0.32
64.87• 4.47
80.34• 1.01
96.00 2.52
62.53• 1.03
68.99• 0.55
77.45• 1.12
87.66• 0.26
62.29• 2.55

%PA %CM
77.82• 16.52
95.28 3.61
68.23 19.32
88.31• 7.79
91.33• 8.59
63.85• 21.66
85.05◦ 32.54
85.62 19.34
96.77 3.75
66.91 20.70

%PA %CM
81.03• 84.51
97.00◦ 96.34
68.66 72.90
85.18• 86.39
96.00 94.44
65.32 66.92
99.80◦ 99.89
82.74 86.49
95.18 96.51
68.67 74.56

In table 4 the results obtained using ACCM and DROP al-
gorithms show that ACCM has better competence for some



data sets (e.g.Biopsy, Breast-w, Ionosphere, Sonar), al-
though its results are also worse in others (e.g.Mx11). The
behaviour of these reduction techniques are similar to those
previously studied. ACCM obtains a balanced behaviour be-
tween competence and size. There are some reduction tech-
niques that obtain best competence for some data sets while
reducing less the case memory size.

All the experiments (tables 2, 3 and 4) point to some in-
teresting observations. First of all, it is worth noting that the
individual ACCM and NACCM work well in all data sets,
obtaining better results on ACCM because its deletion policy
is more conservative. Secondly, the mean storage obtained
using ACCM and NACCM is reduced while maintaining the
competence on the CBR system. Finally, the results in all
tables suggest that all the reduction techniques work well in
some, but not all, domains. This has been termed theselec-
tive superiority problem(Brodley 1993). Consequently, fu-
ture work consists of improving the selection of cases in or-
der to be eliminated or maintained in the case memory while
maintaining, as well as ACCM and NACCM techniques, the
CBR competence.

Table 4: Comparing ACCM reduction technique to DROP
algorithms (Wilson & Martinez 2000).

Ref. ACCM DROP1 DROP2 DROP3 DROP4 DROP5

BI
BC
GL
IO
IR
MA
MX
SO
TG
VE

%PA %CM
83.6588.01
95.71 77.36
69.8374.95
90.5983.77
96.6689.03
66.3489.19
78.61 99.90
86.45 71.71
96.1397.59
69.1072.35

%PA %CM
76.36• 26.84
93.28 8.79
66.39 40.86
81.20• 23.04
91.33 12.44
61.60 42.69
87.94◦ 19.02
84.64 25.05
94.76• 8.03
64.66• 38.69

%PA %CM
76.95• 29.38
92.56• 8.35
69.57 42.94
87.73• 19.21
90.00• 14.07
58.33• 51.34
100.00◦ 98.37
87.07 28.26
95.23• 8.95
67.16 43.21

%PA %CM
77.34• 15.16
96.28 2.70
67.27 33.28
88.89• 14.24
92.66• 12.07
58.51• 12.60
82.37◦ 17.10
76.57• 16.93
94.49• 6.76
66.21 29.42

%PA %CM
76.16• 28.11
95.00 4.37
69.18 43.30
88.02• 15.83
88.67• 7.93
58.29• 50.77
86.52◦ 25.47
84.64• 26.82
89.41• 2.18
68.21 43.85

%PA %CM
76.17• 27.03
93.28 8.79
65.02• 40.65
81.20• 23.04
91.33• 12.44
61.60• 42.64
86.52◦ 18.89
84.64• 25.11
94.76• 8.03
64.66• 38.69

Conclusions and Further Work
This paper presents two reduction techniques whose foun-
dations are the Rough Sets Theory. The aim of this paper is
twofold: (1) to avoid inconsistent and redundant instances
and to obtain compact case memories; and (2) to maintain
or improve the competence of the CBR system. Empirical
study shows that these reduction techniques produce com-
pact competent case memories. Although the case memory
reduction is not large, the competence of the CBR system is
improved or maintained on average. Thus, the generalisa-
tion accuracy on classification tasks is guaranteed.

We conclude that the deletion policies could be improved
in some points which our further work will be focus on.
Firstly, we can modify the competence model presented in
this paper to assure a higher reduction on the case memory.
Secondly, it is necessary to study the influence of the learn-
ing process. Finally, we want to analyse the influence of the
weighting methods in these reduction techniques.
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