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Abstract
We consider the effect of a non-autonomous periodic perturbation on a 2-dof autonomous system obtained

as a truncation of the Hamiltonian-Hopf normal form. We study the splitting of the invariant 2-dimensional sta-
ble/unstable manifolds of a fixed point. Due to the interaction of the intrinsic angle and the periodic perturbation
the splitting behaves quasi-periodically on two angles. Different frequencies are considered: quadratic irrationals,
frequencies having continuous fraction expansion with bounded and unbounded quotients, and “typical” frequencies
in measure theoretical sense.

The model
We consider the (2 + 1

2)-dof Hamiltonian system H(x,y, t) = H0(x,y) + εH1(x,y, t), being
(x,y) = (x1, x2, y1, y2), where

H0(x,y) = Γ1 + ν(Γ2 − Γ3 + Γ2
3), Γ1 = x1y2 − x2y1, 2Γ2 = x2

1 + x2
2, 2Γ3 = y2

1 + y2
2,

H1(x,y, t) = g(y1)f (θ), g(y1) = y5
1/(d− y1), f (θ) = (c− cos(θ))−1, θ = γt + θ0.

•We fix concrete values of c, d, γ and ε, and consider ν > 0 as a perturbative parameter.
• The parameter θ0 ∈ [0, 2π) is the initial time phase.
•Note that H1 contains all powers yk1 , k ≥ 5, and all harmonics in θ.

The unperturbed system H0. The functions G1 = Γ1 and G2 = Γ2 − Γ3 + Γ2
3 are independent

first integrals. In polar coordinates x1+ ix2 =R1e
iψ1, y1+ i y2 =R2e

iψ2 the restriction to (R1, R2)-
components is a Duffing Hamiltonian system (hence having figure-eight shape separatrices). On
Wu/s(0) one has ψ1 = ψ2 ± π, ψ2 = t + ψ0. The 2-dimensional homoclinic surface is foliated by
homoclinic orbits (x1(t), x2(t), y1(t), y2(t)) given by

x1(t) + ix2(t)=−R1(t)eiψ(t), y1(t) + i y2(t)=R2(t)eiψ(t),

being ψ(t) = t + ψ0, R1(t) =
√

2 sech(νt) tanh(νt), and R2(t) =
√

2 sech(νt).

Periodic forcing: εH1. When restricted to the unperturbedWu/s(0), g(y1) has a factor 1-periodic in
t while f (θ) is periodic in t with frequency γ. Hence, γ ∈ R \Q leads to quasi-periodic phenomena.

The invariant manifolds W u/s(0) for different ν values

The angles (ψ0, θ0) are initial conditions on a fundamental domain (torus T ) of Wu/s(0). Write
H0 = G1 + νG2, G1 =Γ1, G2 =Γ2−Γ3+Γ2

3, and consider the Poincaré section Σ = max(R2).
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Figure 1: Splitting of the invariant manifolds: ∆G1 (left) and ∆G2 (right) for ν = 2−4 (top) and ν = 2−6 (bottom). We
have considered c = 5, d = 7, ε = 10−3, and γ = γ0 = (

√
5− 1)/2.

The Poincaré-Melnikov function
For simplicity, we discuss on the G1-splitting (similar for the G2-splitting). Recall that H1 =
g(y1)f (θ), where g(y1) = y5

1(d − y1)−1 and f (θ) = (c − cos(θ))−1. Let cj (resp. dk) be the co-
efficients of the Fourier (resp. Taylor) expansion of f (resp. g′), that is,

f (θ) =
∑
j≥0

cj cos(jθ), g′(y1) =
∑
k≥0

dky
5+k
1 .

If ζ0(s) is a solution of the system when ε = 0, then one has ψ= t+ψ0, θ=γt+θ0, (ψ0, θ0)∈T , and
the distance

Gu1(ψ0, θ0)−Gs1(ψ0, θ0) = ∆G1 +O(ε2),

is given by

∆G1 = ε

∫ ∞
−∞
{G1, H1} ◦ ζ0(s) ds

= 4ε

∫ ∞
−∞

sin(t + ψ0) f (γt + θ0)
∑
k≥0

√
2k+1 dk (cos(t + ψ0))4+k

(cosh(νt))5+k
dt.

After some algebra one obtains

∆G1 = ε
∑
j≥0

cj
∑
k≥0

2
3+k
2 dk

∑
0≤2i≤4+k

b4+k,i

∑
l=±1

I1 sin((k+5−2i)ψ0+ljθ0)

= ε
∑
m1≥0

∑
m2∈Z

C
(1)
m1,m2

sin(m1ψ0 −m2θ0), where

I1 =I1(k+5− 2i+ljγ, ν, k+5), I1(s, ν, n)=

∫
R

cos(st)

(cosh(νt))n
dt, bm,i=

m+1−2i

2m(m+1)

(
m+1
i

)
.

Main result
Assume that ε > 0, c > 1, d >

√
2, γ ∈ R \Q and ν < νM � 1. Let m1/m2 be an approximant of

γ, and let cs ∈ R be the constant such that csm1|m1 − γm2| = 1.

Theorem. There exists a “universal” (almost independent of γ) function ψ1(L) s.t. the contribution
of the harmonic associated to m1/m2 to the splitting satisfies

ψi(L)|L=csνm2
1
≈
√
csν log |C(i)

m1,m2
|, when ν → 0,

where Ψ2(L) = Ψ1(L)−
√
L logL/m1, Ψi(L) ≤ ΨM ≈ −4.860298.

In particular, if m1/m2 corresponds to a dominant best approximant harmonic (BA) of ∆G1

(resp. ∆G2) for ν ∈ (ν0, ν1), ν0, ν1� 1, then ∆Gi ≈ exp
(
ψi(L)|L=νm2

1cs
/
√
csν
)
, i = 1, 2.
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Figure 2: For γ = (
√

5 − 1)/2, ε = 10−4 we represent
√
ν log |C(1)

m1,m2/ε| as a function of log2(ν). In the right plot, the
points correspond to the values νj where the dominant harmonic changes. As expected, dominant harmonics are associ-
ated to best approximants: from m1 = Fj → Fj+1, where {Fj}j denotes the Fibonacci sequence. The rightmost change
corresponds to m1 = 55→ m1 = 89, while the leftmost to m1 = 196418→ m1 = 317811.

Other frequencies: hidden/not hidden best approximants
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Figure 3: We display
√
ν(log(∆G1)/ε) as a

function of log2(ν).
Top left :
γ0 = (

√
5 − 1)/2 = [0; 1, 1, 1, 1, 1, ...] ≈

0.618033988749894.
Top right :
γ1 = [0; 10× 1, 1, 10, 1, 1, 10, 1, 1, 10, 1, ...] ≈
0.618051226819253.
Bottom left :
γ2 = [0; 10 × 1, 1, 10, 1, 10, 1, 10, 1, 10...] ≈
0.618051374461158.
Bottom right:
γ3 = [0; 10 × 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...] ≈
0.618020663293438.

Hidden BA (HBA) and “typical” measure-theoretical properties
Assume that (our system satisfies these assumptions):
• The perturbation is the product of two functions f (x1, x2, y1, y2) and g(θ).

Denote by P1(t, ψ) and P2(θ) their contribution to the Poincaré-Melnikov integral.
• The homoclinic connections tend to zero when t→ ±∞ as sech(νt).
• P1(t, ψ) is of the form

∑
Aj(t) sin(jψ), ψ = t + ψ0, where Aj depend on powers of sech(t) and

‖Aj‖ ∼ exp(−jρ1), ρ1 > 0,
• P2(θ) is of the form B

∑
j≥1 exp(−jρ2) cos(jθ), θ = γt + θ0, ρ2 > 0.

Then minus the logarithm of the contribution of the harmonic related to the BA Nk/Dk to the
Poincaré-Melnikov function is

T (ν,Dk) ≈ Dk + sk/ν,

where sk = |Nk − γDk| and where we have approximated Nk = γDk + O(D−2
k ). The role of CFE

appears as s−1
k =Dk

(
c+
k + 1/c−k

)
, c+

k = [qk+1; qk+2, . . . ], c
−
k = [qk; qk−1, . . . , q1]. We are interested

in minimizing T (ν,Dk) for a given ν.

Theorem. (1) Two consecutive harmonics associated to BA cannot be hidden.
(2) If the k + 1-th harmonic associated to BA is hidden then qk+2 = 1.

The following properties related to the CFE of γ hold for numbers in a set of full measure:
• The geometric mean of CFE quotients tends to the Khinchin constant KC ≈ 2.685452.
• If Dn are the BA denominators, then limn→∞ log(Dn)/n→ LC = π2/(12 log(2)) (Levy constant).
• The Gauss map x → 1/x − [1/x] is ergodic and the probability of having k as a quotient is given

by the Gauss-Kuzmin law: P (k) = log2(1 + 1/(k2 + 2k)). For a “typical” number, its CFE is a
sequence of realizations of not independent identically distributed random variables.

Conjecture: Under the stated assumptions on the homoclinic and the perturbation, for a set of ratios
of two frequencies (1, γ) of full measure, the distribution of HBA follows a normal law.
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Figure 4: We display the results for γ = π − 3. Counting the HBA in blocks of 1000 consecutive BA, we obtain that the
CDF isN(µ, σ) with µ≈279.118 and σ≈9.604 (more than 1/4th of the BA are HBA). One has 2785810 HBA from the first
107 quotients. Similar results were obtained for the “typical” frequencies eγ0− 1, e

√
2− 4, e

√
3− 5, e

√
5− 9, and e

√
7− 14.

References
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