# Hamiltonian-Hopf bifurcation under a periodic forcing 

## Quasi-periodicity in splitting of separatrices

E. Fontich, C. Simó and A. Vieiro<br>Universitat de Barcelona, Departament de Matemàtiques i Informàtica

Universitatide
BARCELONA

We consider the effect of a non-autono
as a truncation of the Hamiltonian-Hopf normal periodic perturbation on a 2 -dof autonomous system obtained ble/unstable manifolds of a fixed point. Due to the intere study the splitting of the invariant 2 -dimensional stathe splitting behaves quasi-periodically on two angles. Diftion of the intrinsic angle and the periodic perturbation frequencies having continuous fraction expansion with bourent frequencies are considered: quadratic irrationals, in measure theoretical sense

## The model

We consider the $\left(2+\frac{1}{2}\right)$-dof Hamiltonian system $H(\mathbf{x}, \mathbf{y}, t)=H_{0}(\mathbf{x}, \mathbf{y})+\epsilon H_{1}(\mathbf{x}, \mathbf{y}, t)$, being $(\mathbf{x}, \mathbf{y})=\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$, where

$$
H_{0}(\mathbf{x}, \mathbf{y})=\Gamma_{1}+\nu\left(\Gamma_{2}-\Gamma_{3}+\Gamma_{3}^{2}\right), \quad \Gamma_{1}=x_{1} y_{2}-x_{2} y_{1}, \quad 2 \Gamma_{2}=x_{1}^{2}+x_{2}^{2}, \quad 2 \Gamma_{3}=y_{1}^{2}+y_{2}^{2},
$$

$$
H_{1}(\mathbf{x}, \mathbf{y}, t)=g\left(y_{1}\right) f(\theta), \quad g\left(y_{1}\right)=y_{1}^{5} /\left(d-y_{1}\right), \quad f(\theta)=(c-\cos (\theta))^{-1}, \theta=\gamma t+\theta_{0}
$$

- We fix concrete values of $c, d, \gamma$ and $\epsilon$, and consider $\nu>0$ as a perturbative parameter
- The parameter $\theta_{0} \in[0,2 \pi)$ is the initial time phase.
- Note that $H_{1}$ contains all powers $y_{1}^{k}, k \geq 5$, and all harmonics in $\theta$.

The unperturbed system $H_{0}$. The functions $G_{1}=\Gamma_{1}$ and $G_{2}=\Gamma_{2}-\Gamma_{3}+\Gamma_{3}^{2}$ are independent first integrals. In polar coordinates $x_{1}+i x_{2}=R_{1} e^{i \psi_{1}}, y_{1}+i y_{2}=R_{2} e^{i \psi_{2}}$ the restriction to ( $R_{1}, R_{2}$ )components is a Duffing Hamiltonian system (hence having figure-eight shape separatrices). On $W^{u / s}(\mathbf{0})$ one has $\psi_{1}=\psi_{2} \pm \pi, \psi_{2}=t+\psi_{0}$. The 2-dimensional homoclinic surface is foliated by homoclinic orbits $\left(x_{1}(t), x_{2}(t), y_{1}(t), y_{2}(t)\right)$ given by

$$
x_{1}(t)+i x_{2}(t)=-R_{1}(t) e^{i \psi(t)}, \quad y_{1}(t)+i y_{2}(t)=R_{2}(t) e^{i \psi(t)},
$$

being $\psi(t)=t+\psi_{0}, R_{1}(t)=\sqrt{2} \operatorname{sech}(\nu t) \tanh (\nu t)$, and $R_{2}(t)=\sqrt{2} \operatorname{sech}(\nu t)$.
Periodic forcing: $\epsilon H_{1}$. When restricted to the unperturbed $W^{u / s}(\mathbf{0}), g\left(y_{1}\right)$ has a factor 1-periodic in $t$ while $f(\theta)$ is periodic in $t$ with frequency $\gamma$. Hence, $\gamma \in \mathbb{R} \backslash \mathbb{Q}$ leads to quasi-periodic phenomena.

The invariant manifolds $W^{u / s}(0)$ for different $\nu$ values
The angles $\left(\psi_{0}, \theta_{0}\right)$ are initial conditions on a fundamental domain (torus $\left.\mathcal{T}\right)$ of $W^{u / s}(\mathbf{0})$. Write $H_{0}=G_{1}+\nu G_{2}, G_{1}=\Gamma_{1}, G_{2}=\Gamma_{2}-\Gamma_{3}+\Gamma_{3}^{2}$, and consider the Poincaré section $\Sigma=\max \left(R_{2}\right)$.




Figure 1: Splitting of the invariant manifolds: $\Delta G_{1}$ (left) and $\Delta G_{2}$ (right) for $\nu=2^{-4}$ (top) and $\nu=2^{-6}$ (bottom). We have considered $c=5, d=7, \epsilon=10^{-3}$, and $\gamma=\gamma_{0}=(\sqrt{ } 5-1) / 2$.

## The Poincaré-Melnikov function

For simplicity, we discuss on the $G_{1}$-splitting (similar for the $G_{2}$-splitting). Recall that $H_{1}=$ $g\left(y_{1}\right) f(\theta)$, where $g\left(y_{1}\right)=y_{1}^{5}\left(d-y_{1}\right)^{-1}$ and $f(\theta)=(c-\cos (\theta))^{-1}$. Let $c_{j}$ (resp. $d_{k}$ ) be the coefficients of the Fourier (resp. Taylor) expansion of $f$ (resp. $g^{\prime}$ ), that is,

$$
f(\theta)=\sum_{j \geq 0} c_{j} \cos (j \theta), \quad g^{\prime}\left(y_{1}\right)=\sum_{k \geq 0} d_{k} y_{1}^{5+k} .
$$

If $\zeta^{0}(s)$ is a solution of the system when $\epsilon=0$, then one has $\psi=t+\psi_{0}, \theta=\gamma t+\theta_{0},\left(\psi_{0}, \theta_{0}\right) \in \mathcal{T}$, and the distance

$$
G_{1}^{u}\left(\psi_{0}, \theta_{0}\right)-G_{1}^{s}\left(\psi_{0}, \theta_{0}\right)=\Delta G_{1}+\mathcal{O}\left(\epsilon^{2}\right)
$$

is given by

$$
\begin{aligned}
\Delta G_{1} & =\epsilon \int_{-\infty}^{\infty}\left\{G_{1}, H_{1}\right\} \circ \zeta^{0}(s) d s \\
& =4 \epsilon \int_{-\infty}^{\infty} \sin \left(t+\psi_{0}\right) f\left(\gamma t+\theta_{0}\right) \sum_{k \geq 0} \frac{\sqrt{2^{k+1}} d_{k}\left(\cos \left(t+\psi_{0}\right)\right)^{4+k}}{(\cosh (\nu t))^{5+k}} d t
\end{aligned}
$$

## After some algebra one obtains

$$
\begin{aligned}
\Delta G_{1} & =\epsilon \sum_{j \geq 0} c_{j} \sum_{k \geq 0} 2^{\frac{3+k}{2}} d_{k} \sum_{0 \leq 2 i \leq 4+k} b_{4+k, i} \sum_{l= \pm 1} I_{1} \sin \left((k+5-2 i) \psi_{0}+l j \theta_{0}\right) \\
& =\epsilon \sum_{m_{1} \geq 0} \sum_{m_{2} \in \mathbb{Z}} C_{m_{1}, m_{2}}^{(1)} \sin \left(m_{1} \psi_{0}-m_{2} \theta_{0}\right), \quad \text { where }
\end{aligned}
$$

$$
I_{1}=I_{1}(k+5-2 i+l j \gamma, \nu, k+5), \quad I_{1}(s, \nu, n)=\int_{\mathbb{R}} \frac{\cos (s t)}{(\cosh (\nu t))^{n}} d t, \quad b_{m, i}=\frac{m+1-2 i}{2^{m}(m+1)}\binom{m+1}{i} .
$$

## Main result

Assume that $\epsilon>0, c>1, d>\sqrt{2}, \gamma \in \mathbb{R} \backslash \mathbb{Q}$ and $\nu<\nu_{M} \ll 1$. Let $m_{1} / m_{2}$ be an approximant of $\gamma$, and let $c_{s} \in \mathbb{R}$ be the constant such that $c_{s} m_{1}\left|m_{1}-\gamma m_{2}\right|=1$.
Theorem. There exists a "universal" (almost independent of $\gamma$ ) function $\psi_{1}(L)$ s.t. the contribution of the harmonic associated to $m_{1} / m_{2}$ to the splitting satisfies

$$
\left.\psi_{i}(L)\right|_{L=c_{s} \nu m_{1}^{2}} \approx \sqrt{c_{s} \nu} \log \left|C_{m_{1}, m_{2}}^{(i)}\right|, \quad \text { when } \nu \rightarrow 0,
$$

where $\Psi_{2}(L)=\Psi_{1}(L)-\sqrt{L} \log L / m_{1}, \Psi_{i}(L) \leq \Psi_{M} \approx-4.860298$.
In particular, if $m_{1} / m_{2}$ corresponds to a dominant best approximant harmonic (BA) of $\Delta G_{1}$ (resp. $\Delta G_{2}$ ) for $\nu \in\left(\nu_{0}, \nu_{1}\right), \nu_{0}, \nu_{1} \ll 1$, then $\Delta G_{i} \approx \exp \left(\left.\psi_{i}(L)\right|_{L=\nu m_{1}^{2} c_{s}} / \sqrt{c_{s} \nu}\right), i=1,2$.


Figure 2: For $\gamma=(\sqrt{5}-1) / 2, \epsilon=10^{-4}$ we represent $\sqrt{\nu} \log \left|C_{m_{1}, m_{2}}^{(1)} / \epsilon\right|$ as a function of $\log _{2}(\nu)$. In the right plot, the points correspond to the values $\nu_{j}$ where the dominant harmonic changes. As expected, dominant harmonics are associated to best approximants: from $m_{1}=F_{j} \rightarrow F_{j+1}$, where $\left\{F_{j}\right\}_{j}$ denotes the Fibonacci sequence. The rightmost change corresponds to $m_{1}=55 \rightarrow m_{1}=89$, while the leftmost to $m_{1}=196418 \rightarrow m_{1}=317811$.

## Other frequencies: hidden/not hidden best approximants



Hidden BA (HBA) and "typical" measure-theoretical properties
Assume that (our system satisfies these assumptions):

- The perturbation is the product of two functions $f\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ and $g(\theta)$.

Denote by $\mathcal{P}_{1}(t, \psi)$ and $\mathcal{P}_{2}(\theta)$ their contribution to the Poincaré-Melnikov integral.

- The homoclinic connections tend to zero when $t \rightarrow \pm \infty$ as $\operatorname{sech}(\nu t)$.
- $\mathcal{P}_{1}(t, \psi)$ is of the form $\sum A_{j}(t) \sin (j \psi), \psi=t+\psi_{0}$, where $A_{j}$ depend on powers of $\operatorname{sech}(t)$ and $\left\|A_{j}\right\| \sim \exp \left(-j \rho_{1}\right), \rho_{1}>0$,
- $\mathcal{P}_{2}(\theta)$ is of the form $B \sum_{j \geq 1} \exp \left(-j \rho_{2}\right) \cos (j \theta), \theta=\gamma t+\theta_{0}, \rho_{2}>0$.

Then minus the logarithm of the contribution of the harmonic related to the BA $N_{k} / D_{k}$ to the Poincaré-Melnikov function is

$$
T\left(\nu, D_{k}\right) \approx D_{k}+s_{k} / \nu
$$

where $s_{k}=\left|N_{k}-\gamma D_{k}\right|$ and where we have approximated $N_{k}=\gamma D_{k}+\mathcal{O}\left(D_{k}^{-2}\right)$. The role of CFE appears as $s_{k}^{-1}=D_{k}\left(c_{k}^{+}+1 / c_{k}^{-}\right), c_{k}^{+}=\left[q_{k+1} ; q_{k+2}, \ldots\right], c_{k}^{-}=\left[q_{k} ; q_{k-1}, \ldots, q_{1}\right]$. We are interested in minimizing $T\left(\nu, D_{k}\right)$ for a given $\nu$.
Theorem. (1) Two consecutive harmonics associated to BA cannot be hidden.
(2) If the $k+1$-th harmonic associated to BA is hidden then $q_{k+2}=1$.

The following properties related to the CFE of $\gamma$ hold for numbers in a set of full measure:

- The geometric mean of CFE quotients tends to the Khinchin constant KC $\approx 2.685452$.
- If $D_{n}$ are the BA denominators, then $\lim _{n \rightarrow \infty} \log \left(D_{n}\right) / n \rightarrow \mathrm{LC}=\pi^{2} /(12 \log (2))$ (Levy constant).
- The Gauss map $x \rightarrow 1 / x-[1 / x]$ is ergodic and the probability of having $k$ as a quotient is given by the Gauss-Kuzmin law: $P(k)=\log _{2}\left(1+1 /\left(k^{2}+2 k\right)\right)$. For a "typical" number, its CFE is a sequence of realizations of not independent identically distributed random variables.
Conjecture: Under the stated assumptions on the homoclinic and the perturbation, for a set of ratios of two frequencies $(1, \gamma)$ of full measure, the distribution of HBA follows a normal law.



Figure 4: We display the results for $\gamma=\pi-3$. Counting the HBA in blocks of 1000 consecutive BA, we obtain that the CDF is $N(\mu, \sigma)$ with $\mu \approx 279.118$ and $\sigma \approx 9.604$ (more than 1/4th of the BA are HBA). One has 2785810 HBA from the firs $10^{7}$ quotients. Similar results were obtained for the "typical" frequencies $e^{\gamma_{0}}-1, e^{\sqrt{2}}-4, e^{\sqrt{3}}-5, e^{\sqrt{5}}-9$, and $e^{\sqrt{7}}-14$.

## References

E. Fontich, C. Simó and A.Vieiro. Splitting of the separatrices after a Hamiltonian-Hopf bifurcation under periodic forc ing. Nonlinearity 32(4), 1440-1493, 2019.
E. Fontich, C. Simó and A.Vieiro. On the "hidden" harmonics associated to best approximants due to quasi-periodicity in splitting phenomena. Regular and Chaotic Dynamics 23(6), 638-653, 2018.

