Hamiltonian-Hopf bifurcation under a periodic forcing *Quasi-periodicity in splitting of separatrices*

E. Fontich, C. Simó and A. Vieiro

Universitat de Barcelona, Departament de Matemàtiques i Informàtica

Abstract

We consider the effect of a non-autonomous periodic perturbation on a 2-dof autonomous system obtained as a truncation of the Hamiltonian-Hopf normal form. We study the splitting of the invariant 2-dimensional stable/unstable manifolds of a fixed point. Due to the interaction of the intrinsic angle and the periodic perturbation the splitting behaves quasi-periodically on two angles. Different frequencies are considered: quadratic irrationals, frequencies having continuous fraction expansion with bounded and unbounded quotients, and "typical" frequencies in measure theoretical sense.

The model

We consider the $(2 + \frac{1}{2})$ -dof Hamiltonian system $H(\mathbf{x}, \mathbf{y}, t) = H_0(\mathbf{x}, \mathbf{y}) + \epsilon H_1(\mathbf{x}, \mathbf{y}, t)$, being $(\mathbf{x}, \mathbf{y}) = (x_1, x_2, y_1, y_2)$, where

Main result

Assume that $\epsilon > 0, c > 1, d > \sqrt{2}, \gamma \in \mathbb{R} \setminus \mathbb{Q}$ and $\nu < \nu_M \ll 1$. Let m_1/m_2 be an approximant of γ , and let $c_s \in \mathbb{R}$ be the constant such that $c_s m_1 |m_1 - \gamma m_2| = 1$.

Theorem. There exists a "universal" (almost independent of γ) function $\psi_1(L)$ s.t. the contribution of the harmonic associated to m_1/m_2 to the splitting satisfies

$$\psi_i(L)|_{L=c_s\nu m_1^2} \approx \sqrt{c_s\nu} \log |C_{m_1,m_2}^{(i)}|, \text{ when } \nu \to 0,$$

where $\Psi_2(L) = \Psi_1(L) - \sqrt{L} \log L/m_1$, $\Psi_i(L) \le \Psi_M \approx -4.860298$.

In particular, if m_1/m_2 corresponds to a **dominant best approximant harmonic (BA)** of ΔG_1 (resp. ΔG_2) for $\nu \in (\nu_0, \nu_1), \nu_0, \nu_1 \ll 1$, then $\Delta G_i \approx \exp\left(\psi_i(L)|_{L=\nu m_1^2 c_s}/\sqrt{c_s \nu}\right), i = 1, 2.$

 $H_0(\mathbf{x}, \mathbf{y}) = \Gamma_1 + \nu(\Gamma_2 - \Gamma_3 + \Gamma_3^2), \qquad \Gamma_1 = x_1 y_2 - x_2 y_1, \qquad 2\Gamma_2 = x_1^2 + x_2^2, \qquad 2\Gamma_3 = y_1^2 + y_2^2, \\ H_1(\mathbf{x}, \mathbf{y}, t) = g(y_1) f(\theta), \qquad g(y_1) = y_1^5 / (d - y_1), \qquad f(\theta) = (c - \cos(\theta))^{-1}, \ \theta = \gamma t + \theta_0.$

• We fix concrete values of c, d, γ and ϵ , and consider $\nu > 0$ as a perturbative parameter.

• The parameter $\theta_0 \in [0, 2\pi)$ is the initial time phase.

• Note that H_1 contains all powers $y_1^k, k \ge 5$, and all harmonics in θ .

The unperturbed system H_0 . The functions $G_1 = \Gamma_1$ and $G_2 = \Gamma_2 - \Gamma_3 + \Gamma_3^2$ are independent first integrals. In polar coordinates $x_1 + i x_2 = R_1 e^{i \psi_1}$, $y_1 + i y_2 = R_2 e^{i \psi_2}$ the restriction to (R_1, R_2) components is a Duffing Hamiltonian system (hence having figure-eight shape separatrices). On $W^{u/s}(\mathbf{0})$ one has $\psi_1 = \psi_2 \pm \pi$, $\psi_2 = t + \psi_0$. The 2-dimensional homoclinic surface is foliated by homoclinic orbits $(x_1(t), x_2(t), y_1(t), y_2(t))$ given by

 $x_1(t) + i x_2(t) = -R_1(t) e^{i \psi(t)}, \qquad y_1(t) + i y_2(t) = R_2(t) e^{i \psi(t)},$

being $\psi(t) = t + \psi_0$, $R_1(t) = \sqrt{2} \operatorname{sech}(\nu t) \tanh(\nu t)$, and $R_2(t) = \sqrt{2} \operatorname{sech}(\nu t)$.

Periodic forcing: ϵH_1 . When restricted to the unperturbed $W^{u/s}(\mathbf{0})$, $g(y_1)$ has a factor 1-periodic in t while $f(\theta)$ is periodic in t with frequency γ . Hence, $\gamma \in \mathbb{R} \setminus \mathbb{Q}$ leads to **quasi-periodic** phenomena.

The invariant manifolds $W^{u/s}(0)$ for different ν values

The angles (ψ_0, θ_0) are initial conditions on a fundamental domain (torus \mathcal{T}) of $W^{u/s}(\mathbf{0})$. Write $H_0 = G_1 + \nu G_2$, $G_1 = \Gamma_1$, $G_2 = \Gamma_2 - \Gamma_3 + \Gamma_3^2$, and consider the **Poincaré section** $\Sigma = \max(R_2)$.

Figure 2: For $\gamma = (\sqrt{5} - 1)/2$, $\epsilon = 10^{-4}$ we represent $\sqrt{\nu} \log |C_{m_1,m_2}^{(1)}/\epsilon|$ as a function of $\log_2(\nu)$. In the right plot, the points correspond to the values ν_j where the dominant harmonic changes. As expected, dominant harmonics are associated to best approximants: from $m_1 = F_j \rightarrow F_{j+1}$, where $\{F_j\}_j$ denotes the Fibonacci sequence. The rightmost change corresponds to $m_1 = 55 \rightarrow m_1 = 89$, while the leftmost to $m_1 = 196418 \rightarrow m_1 = 317811$.

Other frequencies: hidden/not hidden best approximants

Figure 3: We display $\sqrt{\nu}(\log(\Delta G_1)/\epsilon)$ as a function of $\log_2(\nu)$. Top left : $\gamma_0 = (\sqrt{5} - 1)/2 = [0; 1, 1, 1, 1, 1, ...] \approx 0.618033988749894.$ Top right : $\gamma_1 = [0; 10 \times 1, 1, 10, 1, 1, 10, 1, 1, 10, 1, ...] \approx 0.618051226819253.$ Bottom left : $\gamma_2 = [0; 10 \times 1, 1, 10, 1, 10, 1, 10, 1, 10...] \approx 0.618051374461158.$ Bottom right: $\gamma_3 = [0; 10 \times 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...] \approx 0.618020663293438.$

Figure 1: Splitting of the invariant manifolds: ΔG_1 (left) and ΔG_2 (right) for $\nu = 2^{-4}$ (top) and $\nu = 2^{-6}$ (bottom). We have considered c = 5, d = 7, $\epsilon = 10^{-3}$, and $\gamma = \gamma_0 = (\sqrt{5} - 1)/2$.

The Poincaré-Melnikov function

For simplicity, we discuss on the G_1 -splitting (similar for the G_2 -splitting). Recall that $H_1 = g(y_1)f(\theta)$, where $g(y_1) = y_1^5(d - y_1)^{-1}$ and $f(\theta) = (c - \cos(\theta))^{-1}$. Let c_j (resp. d_k) be the coefficients of the Fourier (resp. Taylor) expansion of f (resp. g'), that is,

$$f(\theta) = \sum_{j \ge 0} c_j \cos(j\theta), \qquad g'(y_1) = \sum_{k \ge 0} d_k y_1^{5+k}.$$

If $\zeta^0(s)$ is a solution of the system when $\epsilon = 0$, then one has $\psi = t + \psi_0$, $\theta = \gamma t + \theta_0$, $(\psi_0, \theta_0) \in \mathcal{T}$, and

Hidden BA (HBA) and "typical" measure-theoretical properties

Assume that (our system satisfies these assumptions):

- The perturbation is the product of two functions $f(x_1, x_2, y_1, y_2)$ and $g(\theta)$. Denote by $\mathcal{P}_1(t, \psi)$ and $\mathcal{P}_2(\theta)$ their contribution to the Poincaré-Melnikov integral.
- The homoclinic connections tend to zero when $t \to \pm \infty$ as $\operatorname{sech}(\nu t)$.
- $\mathcal{P}_1(t,\psi)$ is of the form $\sum A_j(t)\sin(j\psi)$, $\psi = t + \psi_0$, where A_j depend on powers of $\operatorname{sech}(t)$ and $||A_j|| \sim \exp(-j\rho_1)$, $\rho_1 > 0$,
- $\mathcal{P}_2(\theta)$ is of the form $B \sum_{j \ge 1} \exp(-j\rho_2) \cos(j\theta)$, $\theta = \gamma t + \theta_0$, $\rho_2 > 0$.

Then **minus the logarithm of the contribution** of the harmonic related to the BA N_k/D_k to the Poincaré-Melnikov function is

 $T(\nu, D_k) \approx D_k + s_k / \nu,$

where $s_k = |N_k - \gamma D_k|$ and where we have approximated $N_k = \gamma D_k + \mathcal{O}(D_k^{-2})$. The role of CFE appears as $s_k^{-1} = D_k \left(c_k^+ + 1/c_k^- \right)$, $c_k^+ = [q_{k+1}; q_{k+2}, \dots]$, $c_k^- = [q_k; q_{k-1}, \dots, q_1]$. We are interested in **minimizing** $T(\nu, D_k)$ for a given ν .

Theorem. (1) **Two consecutive** harmonics associated to BA **cannot** be hidden. (2) If the k + 1-th harmonic associated to BA is hidden then $q_{k+2} = 1$.

The following properties related to the CFE of γ hold for numbers in a set of full measure:

- The geometric mean of CFE quotients tends to the Khinchin constant KC ≈ 2.685452 .
- If D_n are the BA denominators, then $\lim_{n\to\infty} \log(D_n)/n \to LC = \pi^2/(12\log(2))$ (Levy constant).
- The Gauss map $x \to 1/x [1/x]$ is ergodic and the probability of having k as a quotient is given by the Gauss-Kuzmin law: $P(k) = \log_2(1 + 1/(k^2 + 2k))$. For a "typical" number, its CFE is a sequence of realizations of **not independent** identically distributed random variables.

Conjecture: Under the stated assumptions on the homoclinic and the perturbation, for a set of ratios of two frequencies $(1, \gamma)$ of full measure, **the distribution of HBA follows a normal law.**

the distance

 $G_1^u(\psi_0, \theta_0) - G_1^s(\psi_0, \theta_0) = \Delta G_1 + \mathcal{O}(\epsilon^2),$

is given by

$$\Delta G_1 = \epsilon \int_{-\infty}^{\infty} \{G_1, H_1\} \circ \zeta^0(s) \, ds$$

= $4\epsilon \int_{-\infty}^{\infty} \sin(t + \psi_0) \, f(\gamma t + \theta_0) \, \sum_{k \ge 0} \frac{\sqrt{2^{k+1}} \, d_k \, (\cos(t + \psi_0))^{4+k}}{(\cosh(\nu t))^{5+k}} \, dt$

After some algebra one obtains

$$\begin{split} \Delta G_1 &= \epsilon \sum_{j \ge 0} c_j \sum_{k \ge 0} 2^{\frac{3+k}{2}} d_k \sum_{0 \le 2i \le 4+k} b_{4+k,i} \sum_{l=\pm 1} I_1 \sin((k+5-2i)\psi_0 + lj\theta_0) \\ &= \epsilon \sum_{m_1 \ge 0} \sum_{m_2 \in \mathbb{Z}} C_{m_1,m_2}^{(1)} \sin(m_1\psi_0 - m_2\theta_0), \quad \text{where} \end{split}$$

$$I_1 = I_1(k+5-2i+lj\gamma,\nu,k+5), \quad I_1(s,\nu,n) = \int_{\mathbb{R}} \frac{\cos(st)}{(\cosh(\nu t))^n} \, dt, \quad b_{m,i} = \frac{m+1-2i}{2^m(m+1)} \left(\begin{array}{c} m+1 \\ i \end{array} \right).$$

Figure 4: We display the results for $\gamma = \pi - 3$. Counting the HBA in blocks of 1000 consecutive BA, we obtain that the CDF is $N(\mu, \sigma)$ with $\mu \approx 279.118$ and $\sigma \approx 9.604$ (more than 1/4th of the BA are HBA). One has 2785810 HBA from the first 10^7 quotients. Similar results were obtained for the "typical" frequencies $e^{\gamma_0} - 1$, $e^{\sqrt{2}} - 4$, $e^{\sqrt{3}} - 5$, $e^{\sqrt{5}} - 9$, and $e^{\sqrt{7}} - 14$.

References

E. Fontich, C. Simó and A.Vieiro. Splitting of the separatrices after a Hamiltonian-Hopf bifurcation under periodic forcing. Nonlinearity 32(4), 1440–1493, 2019.

E. Fontich, C. Simó and A.Vieiro. On the "hidden" harmonics associated to best approximants due to quasi-periodicity in splitting phenomena. Regular and Chaotic Dynamics 23(6), 638–653, 2018.