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Validated computations
• Interval Arithmetics.

• Dependency problem and wrapping effect.

• Validated integration of ODE’s.

◮ Interval based methods.

◮ Taylor based methods.

• Computer assisted proofs.
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Why interval arithmetics?

Every time that a real number x is stored on a computer roundoff errors occur.

This error is propagated in future computations.

Example. Consider the iteration

xk+1 = 4 ∗ xk ∗ (1 − xk), x0 = 0.125 (logistic map).

We have x30 ∈ [0.2700460954982581, 0.3113121869300575] due to

propagation of roundoff error.

Rounded Interval Arithmetic provides a tool to bound the roundoff error in

an automatic way .
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Real Interval Arithmetic

• The interval arithmetic is an extension of the real arithmetic.

• Real interval: [a] = [al, au] = {x ∈ R | al ≤ x ≤ au}.

• Notation:

w([a]) = au − al is the width of the interval [a].

m([a]) = (al + au)/2 is the mid point of the interval [a].

• Consider the set of real intervals:

IR = {[a] = [al, au] | al, au ∈ R, al < au}.
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Real Interval Operations

Given [a], [b] ∈ IR, for any operation ◦ ∈ {+,−, ∗, /}, we define

[a] ◦ [b] = {x ◦ y |x ∈ [a], y ∈ [b]}

Equivalently,

[a] + [b] = [al + bl, au + bu],

[a] − [b] = [al − bu, au − bl],

[a] ∗ [b] = [min(albl, albu, aubl, aubu), max(albl, albu, aubl, aubu)],

[a]/[b] = [al, au] ∗ [1/bu, 1/bl], if bl > 0.

• The + and ∗ inverses only exist for real numbers.

• + and ∗ are both associative and commutative but...

Sub-distributive law: [a] ∗ ([b] + [c]) ⊆ [a] ∗ [b] + [a] ∗ [c]

Numerical Integration Methods Applied to Astrodynamics and Astronomy (IV) – p.5/37



Interval Arithmetic: drawbacks

• Interval arithmetic is usually affected by overestimation, mainly due to the

Dependency Problem and the Wrapping Effect .

• Our validated methods have to deal with these problems in a suitable way

to make rigorous computations with small overestimation.
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Dependency problem

The Dependency Problem is due to the use of interval arithmetic in

computations. The computation with interval arithmetic treats two different

occurrences of the same variable as if they were different variables. In general,

the order in which the operations are made also plays a role.

Examples:

• Clearly x − x = 0 for all x ∈ [1, 2].

Using interval arithmetics we have [1, 2] − [1, 2] = [−1, 1].

• It is x2 − x ∈ [−1/4, 0] for all x ∈ [0, 1].

Using interval arithmetics directly: [0, 1] ∗ [0, 1] − [0, 1] = [−1, 1].

Using x2 − x = x(x − 1): [0, 1] ∗ ([0, 1] − 1) = [−1, 0].

Dividing [0, 1] in 10 equal parts: [−0.35, 0.1] (quite poor estimation still).
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The wrapping effect

The Wrapping Effect concerns with the problem of including rotated boxes in

interval sets. Our validated computations have to confront it by adapting the

coordinates to the geometry of the problem as much as possible.

Example (Moore):
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Consider f(x, y) =
√

2

2
(x+y, y−x).

The image of the square [0,
√

2] ×
[0,

√
2] is the rotated square of corners

(0, 0), (−1, 1), (2, 0) and (1, 1). In-

terval arithmetics gives [0, 2]×[−1, 1],

a square that doubles the size.
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Rounded Interval Arithmetic

For validated computations roundoff errors on the operations must be

considered. We can extend the real interval arithmetic by rounding positive at

the right end and negative at the left end.

[a] + [b] = [(al + bl)H, (au + bu)N]

[a] − [b] = [(al − bu)H, (au − bl)N],

[a] ∗ [b] = [min(albl, albu, aubl, aubu)H, max(albl, albu, aubl, aubu)N],

[a]/[b] = [al, au] ∗ [1/bu, 1/bl], if bl > 0.

A real number x is represented by an interval [x] = [xH, xN], where xH is the

negative rounding of x and xN is the positive rounding of x.

In this way, interval arithmetic provides a tool to bound roundoff errors in com-
putations in an automatic way.
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Validated Integration of ODE’s

• Interval based methods.

◮ Moore’s direct algorithm.

◮ Parallelepiped method.

◮ QR-Lohner method.

• Taylor based methods.
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Initial value problem (ISVP)

We consider the problem
{

u′ = f(u),

u(t0) = u0 ∈ {u0},

where f : R
m → R

m, u0 ∈ R
m and {u0} is a set of R

m.

Given h > 0 we look for a set {u1} ⊂ R
m such that

u(t0 + h; u0) ∈ {u1} for all u0 ∈ {u0}.

Main goal: The validated integrator should provide {u1} as close as possible

to the set

{u(t0 + h, u0), u0 ∈ {u0}} .
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Different approaches

In the literature mainly two different approaches can be found:

• Interval methods : They represent the set {u1} using admissible sets

which can be intervals, parallelepipeds, cuboids,...

Main Advantages:
Fast,

Easy to introduce uncertainties,

More general: they can be applied to non-analytic cases.

• Taylor-based methods : They represent the set {u1} as a Taylor

expansion with respect to the initial uncertainties in {u0}.

Main Advantage:
Accurate.
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Interval methods
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Moore’s direct algorithm (i)

In Moore’s approach sets ({ }) are represented by intervals ([ ]).

Recall that:

For u0 ∈ {u0}, Taylor expansion of u(t0 + h; u0) up to order n around

t = t0 gives

u(t0 + h; u0) = T (u0) + R(ξ; u0),

where

T (u0) = u0 + f(u0)h + · · · + dn−1

dtn−1
f(u0)

hn

n!
,

and

R(ξ; u0) =
dn

dtn
f(u(ξ; u0))

hn+1

(n + 1)!
,

with ξ ∈ [t0, t0 + h].
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Moore’s direct algorithm (ii)

To make rigorous the evaluations:

If {u0} ⊂ [u0], then

T ({u0}) ⊂ T ([u0])

T ({u0}) := {T (u0)|u0 ∈ {u0}}

where

T ([u0]) = [u0] + f([u0])h + · · · + dn−1

dtn−1
f([u0])

hn

n!
.

R(ξ, u0) ⊂ R([û0])

where [û0] is an interval box such that u(t; u0) ⊂ [û0] for all t ∈ [t0, t0 + h]

and for all u0 ∈ [u0].
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Moore’s direct algorithm (iii)

Rough enclosure procedure:

To compute [û0] the following iterative scheme was proposed by Moore

[û0
0] = [u0] + [ǫ, ǫ],

[ûk+1
0 ] = [u0] + [0, h]f([ûk

0]).

Finally,

[u1] = T ([u0]) + R([û0]),

gives a solution of the initial set value problem at time t0 + h.

Numerical Integration Methods Applied to Astrodynamics and Astronomy (IV) – p.17/37



Moore’s direct algorithm (iv)

Inconveniences:

• Small step size.

The rough enclosure procedure requires Euler step-size.

• Dependency problem.

T ([u0]) depends on the interval extension of f .

• Wrapping effect.

The set {T (u0), u0 ∈ [u0]} is not an interval box and hence we need to

include it in T ([u0]).

Show movie
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First order interval methods

Note that

T ({u0}) ⊂ T (m(u0)) +

“small”wrapping
︷ ︸︸ ︷

DT ([u0])([r0]),

where m(u0) denotes the center of the interval set and [r0] = [u0]−m(u0).

Moore’s algorithm in centered form reads

[u1] = T (m(u0)) + DT ([u0])([r0]) + [z1], (1)

where [z1] = R([û0]).

Idea: The first variational equation gives a linear change of coordinates that

allows to represent the sets in a more accurate way than using interval

representation.
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Parallelepiped method

Sets are represented by parallelepipeds, that is, sets of the form

p + A[r],

where p ∈ R
n (point), A ∈ R

n×n (matrix) and [r] ⊂ R
n (interval).

For {u0} = m(u0) + A0[r̂0], it should be

T (m(u0)) + DT ([u0])A0([r̂0]) + [z1] ⊂ {u1},

and if we require {u1} = m(u1) + A1[r̂1] it turns out that

m(u1) = T (m(u0)) + m(z1),

A1 = m(DT ([u0]A0)),

[r̂1] = [B1][r̂0] + [A−1
1 ]([z1] − m(z1)).

([B1] is such that DT ([u0])A0 = A1[B1].) Show movie
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QR-Lohner method

In general, the matrices A1 of the parallelepiped method tend to be singular

because of the errors. The inversion is, hence, a numerical problem.

To solve this inconvenience an alternative representation (cuboids) was

proposed by Lohner. Instead of parallelepipeds p + A[r] he proposed

p + Q[r],

with Q orthogonal matrix.

The adapted iteration reads (starting set m(u0) + Q0[r̂0]):

m(u1) = T (m(u0)) + m(z1),

Q1 s.t. Q1R1 = A1 = m(DT ([u0]Q0)),

[r̂1] = R1[B1][r̂0] + [Q−1
1 ]([z1] − m(z1)).

([B1] is such that DT ([u0])Q0 = A1[B1].)

Numerical Integration Methods Applied to Astrodynamics and Astronomy (IV) – p.21/37



Sum up: First order interval methods

• They are fast but produce big overestimations .

• They try to reduce overestimation by adapting coordinates .

In any case...

The methods described need DT to be evaluated in the interval set

[u0] = m(u0) + A0[r̂0] which is not the set {u0} itself.

[u]

{u}=p+A[r]

⇒ overestimation
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2nd. order interval methods

Recall:

Direct method: [u1] = T ([u0]) + [z1].

First order: [u1] = T (m(u0)) + DT ([u0])A0([r̂0]) + [z1]

We can compute the second order approximation (2nd order interval

methods). In the parallelepiped case it reads,

[u1] = T (m(u0)) + DT (m(u0))A0[r̂0] +

1

2
(A0[r̂0])

tD2T ([u0])(A0[r̂0]) + [z1].

This modification assures a good approximation of the dynamics in the interval

set in a larger time interval.
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Results: 1st order vs. 2nd. order

1st. order 268.75 days

2nd. order 893.75 days

Table 1: Maximum time of integration (in days) applying first and second order parallelepiped

method to the Kepler’s (Sun-Apophis) problem (h = 0.625 days). Uncertainty 10−6 AU.

1st. order 632.5 days

2nd. order 1529.375 days

Table 2: Maximum integration time obtained for Apophis in the (N +1)-JPL problem using first

and second order parallelepiped validated methods. Uncertainty ±5 × 10−8 AU.
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Taylor Based methods
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Taylor-based methods (I)

• When computing the set {u1} at time t = t0 + h of the ISVP with initial

condition {u0} the interval computations give rise to wrapping and

dependency phenomena.

• We have seen that the dependency on initial conditions up to first and

second (or higher order) helps in reducing wrapping effect.

Idea: Taylor-based methods

Represent the set {u1} as a Taylor series with respect to the initial conditions.
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Taylor-based methods (II)

• A set {u1} is included in a Taylor model

(p, I)

where p is a Taylor polynomial of order n with respect the initial condition

and I is an interval bounding the errors of the approximation given by p.

• A step of integration:

(p0, I0) → (p1, I1).

• It requires operations on polynomials and bound the error.
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Comments on Taylor-based methods

• Ability to deal with non-convex sets : it is not necessary to embed the

approximated solution in an interval set at each step.

• The wrapping effect still plays a role in the interval part. We should use

the same methods as for interval methods: parallelepiped representation,

QR representation,... for the remainder interval part.

• They are more accurate but more expensive .

Numerical Integration Methods Applied to Astrodynamics and Astronomy (IV) – p.29/37



Bibliography on Taylor-based methods
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Computer Assisted Proofs

• What can be proved using interval arithmetics?

• Examples:

◮ Fixed points / Periodic orbits.

◮ List of some available proofs related with dynamical systems.

Numerical Integration Methods Applied to Astrodynamics and Astronomy (IV) – p.31/37



A Computer Assisted Proof

We need:

• A theoretical (mathematical) result which should be computationally

verifiable , that is, the hypothesis reduce to check a finite number of

inequalities .

• A non-validated high accuracy computation verifying what we want to

prove.

Using interval arithmetics we...

• ... check the hypothesis of the theorem. If they hold then the theorem is

proved.

Anything that fits within this general framework can be proved using interval
arithmetics.
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An example

Consider the Hénon map: Hα :

(

x

y

)

→ R2πα

(

x

y − x2

)

( Rβ rotation of angle β).

For α = 0.15 computations gives an evidence that there is a periodic orbit of

period 10.

Non-validated Newton method (error 10−12) shows that it is located on the

symmetry axis y = tan(πα)x at the point

(0.88136978166752866, 0.44908033417495569)

−→ We want to prove it.
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Hénon map
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The theoretical result

Theorem (Newton-Kantorovich).

Let x0 ∈ R
n and f : R

n → R
n a function of class C2 such that Df(x0) is

regular. Let a, b and c constants such that

1. ‖Df(x0)
−1‖ ≤ a,

2. ‖Df(x0)
−1f(x0)‖ ≤ b, and

3. for all x verifying ‖x − x0‖ ≤ 2b it is ‖D2f(x)‖ ≤ c.

Then, if abc < 1/2

there exists a unique zero in B2b(x0).
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The proof

1. We consider Hn
α , n = 10, and look for a fixed point.

2. We apply non-rigorous Newton method to get a good approximation.

3. Then we we apply interval arithmetics to find constants a, b and c of the

theorem (we compute the 1st and 2nd differentials of the map, the inverse,

and all the computations using interval arithmetics).

Conclusion: a < 2.137772, b < 2.01205 × 10−12 and c < 31.0425.

Then abc < 1.335232 × 10−10 and there exist a unique 10-periodic point

located inside the ball Br(x0) of center

x0 = (0.88136978166752866, 0.44908033417495569)

and radius

r = 4.024098e − 12.
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List of examples of CAP available

Many different topics related with dynamical systems:

Langford - 1982, the proof of Feigenbaum universality conjectures

Eckmann, Koch, Wittwer - 1984, universality for area-preserving maps

Mischaikow and Mrozek - chaos in Lorenz equations, 1995

Kapela and Simó, “Computer assisted proofs for nonsymmetric planar

choreographies and for stability of the Eight” . Nonlinearity, 2007.

For a list of examples see:

http://www.imub.ub.es/cap07/slides/lect1.pdf
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